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We investigate one-loop effects at finite temperatures for an open Rotertson-Walker
Universe, and we obtain formulae fo1 a scalar field Coleman-Weinterg potential. The meaning
of non-zero temperature and negative curvature for the space-time topology R XPS® is
discussed. Zero-point fluctuation of energy are determined.
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Classical Coleman-Weinberg potential, on which the inflationary scenario is based
[1], has been determined for Minkowski spacetime. Hu and O’Connor argued [2] that
such an approach is not fully consistent with the inflationary scenario. There are no reasons
to think that it remains the same for Bianchi or Robertson-Walker models [3].

Hu and O’Connor [2] have shown that in Robertson-Walker cosmological models
the potential contains curvature in such a way that the negative curvature causes the
symmetry breakdown (suppressing inflation) whereas the positive curvature reproduces
the symmetry (amplifics inflation).

From the point of view of inflationary scenatio it is important to determine exact
formulae describing the effective potential for cosmological models with non zero curvature
and finite temperatures [1]. Maslanka [4] has determincd such potential for the closed
Robertson-Walker Universe. However, from cosmological point of view, both open and
closed models are equally important.

In the present work we give exact formulae for the Coleman-Weinberg potential for
Robertson-Walker spacetime with the negative curvature. According to expectations of the
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standard world model great densities of matter and radiation are characteristic for the early
phase of evolution of the Universe. Thus quantum processes take place in thermal bath of
the temperature T equal to the temperature of the Universe [1].

In our work we determine the effective action at a finite temperature in one-loop
approximation by using the zeta-function regularization method proposed by Hawking [5].
Our work is a continuation of the research initiated by Parker and Fulling [6], and by
Lee and Sakai [7] who invesigated quantum effects in the open Robertson-Walker Universe.
After Wick transformation has been performed R! x PS® spacetime possesses the topology
of S1 x PS? where S* is the compactified Euclidean time and PS? is a pseudosphere with the
scale factor a.

Radius § of the circle S* is equal to the inverse temperature of the Universe, § = 1/T[8].

We performe calculations assuming the static approximation i.e. assuming that the
timescale of expansion of the Universe (H-! = g/d) is much greater than the characteristic
timescale of quantum effects. In other words, we assume that the thermodynamical equilib-
rium takes place at every moment.

We shall consider a scalar field ¢ with self-interaction potential i¢* coupled to the
background metric of R* x PS? space. In such a case, the one-loop correction to the effective
potential is the following

Vi) = — {L(0)+1In u*(0)},

2Vol (M)
-where {(s) is zeta-function of the operator
= —O+ER+5 i

and R = —6/a? is the curvature scalar for PS3, £ — a coupling parameter, ] — Laplace-
-Beltrami operator for S* x PS? space, In u? — a renormalization term, Vol(M) is volume
of the space S x PS?® (Vol(M) = g Vol PS3).

By using the spectrum and degencracy of Laplace-Beltrami operator [6] the effective
potential can be determined up to one-loop corrections.

Before the regularization the potential is
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where

@O

o S(1-6), (o) = Z K,

n
n=1

K,(x) is the Mac Donald function [8]. Now, we shall renormaliee the potential V{(¢).
We shall do it only at the zero-temperature limit of (1). By using asymptotic properties
of Mac Donald functions, we see that:

o Ao, e, 3,
V@) L5 V0) = 1 8 o 6

i
2 (5 ¢2 + K2>
t <¢+ ) IH—T——% 2
Renormalization conditions are the following:
d*V.(4)
2 =0, €))
do”  |y=o
d*Veo(9) :
Ry i ey
From condition (3) we obtain:
) K2 1+ 192né
n— = — -
e Jx’a® ®
From (4) we have
oA A2 i x?
AT T2 ©
If we use other renormalization conditions:
d*v,,
112 = 0’ (33)
a*v, .
do* |4=m - o (42)

we obtain the following rather complicated formulae from (3a):

A
M? 6t 1 (5 2+'€2> »
4 2a42 2
5 (A+61)— e + e BA*M* +22k*) | In ————”2 -1
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1 (A°M> +2ix>M)?
MRTTIA RV =0, (52)
( +2M2x2+x4>
4
and from (4a):
A
- M2 2
222 62 |2 T
2822 Tean? T\ 2
N 3 (ISA*M* +242%Kk*M? +44%*)
12872 Ao, L\
-M“+k )
2
2 3 2 )’ 4
2APM3 420k MY + 607 M | = M? &2
MG2M? +20sc?) |PE M H2AEM)E (2 +’”)
12872 PN
EM"'*'K

1224M° + 3232 M3 +164°k*M

y) 4
_M2 2
(3+)

By using (5) and (6) we obtain renormalized effective potential of a simpler form and with
a lower number of arbitrary parameters:

2 5‘152""‘72
V@) = 5 6% <¢2+x) N EASI I

K /

) |
N <\/¢+>+3—K—i. )

Anp)’

Formula (7) describes the renormalized one-loop potential for a massless scalar field at

finite temperatures in the space R! x PS3. Effective potential (7) allows one to determine

the quantity E, = lim ¥(¢) which corresponds to the vacuum energy; to be more precise
¢—0

= 0. (6a)

Njw

it is free-energy density

Ee=— " e i—(T)i 1,(Bx). ®)

The case of the conformal coupling ¢ = 1/6 needs a special attention. In this case, we
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Fig. 1. Dependence ¥ (4, a), where a is the scale factor, for small a. If a = 0 V(#, a) - —oo (potential
well are not shown); f = S, = const
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Fig. 2. Dependence of the Casimir energy Ec(a, f). If a — 0 dependence on 8 becomes manifest. In Ec(a, §)
dependence on a is dominated
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mainly on f
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Fig. 7. Dependence V(#) for a, f§ = const

cannot perform renormalization procedure at the point ¢ = 0 because of infrared diver-
gerncies.

In the case of the conformal coupling, non renormalized potential is

V(§) = Vo(d)+ V()

where

_/1 . O r 1 /4 22 g__ 5
Vw(‘i’)—;ﬁ‘/’ +H¢“‘2—;5¢ +64—n§"¢ In N2 -7 ®

;t 2
, 2? i
Ve(d) = — le (ﬁ\/iqé ) (10)
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Fig. 9. Dependence V (4, a) for B = const (potential wells are not shown). Dependence V (4, f) is qualitatively
the same

When renormalizing V,(¢) we demand that:

EVD)
d¢4 6=M )
Then
A
~M?
oA A2 2 A2
—_—= 5 In ] — > 5. (11)
4! 256x U 256w

Finally, the renormalized one-loop poténtial for the conformal coupling is the following:

V! A2 *\ ip? [,
V(¢)—Z‘!¢—27¢2+256n2¢2[1n(];17>“T]—le(ﬁ 54’) (12)

Curvature has been taken into account only in the “mass term” — (1/2a%)¢2. Qualitative
dependence of the effective potential (7) and the free — energy density (8) on the param-
eters appearing in these quantities is shown in figures.

Numerical analysis shows that inflation can appear for a wide range of parameters
a (scale factor) and B (inverse temperature). For small a and small § inflation vanishes.
It is interesting that qualitative dependence ¥(¢, @) for a given B and V(¢, p) for a given
a are similar. For large a (small curvatures) and large f (low temperatures) potentials
V¢, a) and V(¢, f) depend mainly on the field.
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Discussion and conclusions

The finite-temperature field theory in a flat spacetime can be simply generalized
to the case of static curved spacetime. The generalisation of the imaginary time formalism
is then possible due to the fact that the background metric is time independent. However,
there is no general method of determination of finite-temperature quantum effects in an
arbitrary time-dependent curved spacetime. The analysis of thermodynamical properties
of matter fields in an external gravitational field would be fully satisfactory if we could
construct the thermal energy-momentum tensor of field being in the state of thermo-
dynamical equilibrium (locally) due to sufficiently strong interactions. It is, however,
a very difficult task. In order to determine the thermal energy-momentum tensor of
matter fields one usually makes the following assumpions:

(i) The metric of the background spacetime is independent of time.

(ii) The thermodynamical equilibrium of matter fields is due to their interactions
with the thermal bath.

In this paper we have used these assumptions. Therefore, we have used the so-called
static approximation. In this approximation, one treats scale factor as independent of time
while computing effective potential. In other words, we assume that the characteristic time of
quantum processes is much smaller than the characteristic time of evolution of universe. The
assumption of the static approximation is not obvious and requires further investigations.

The new inflationary model, elaborated by Linde, Albrecht and Steinhardt, has been
criticized by Brandenberger and Kahn [10] as wrongly making use of the zero-tempera-
ture effective potential.

The effective potential in finite temperature for a universe with negative curvature
obtained by us may be used in constructing the inflationary scenario [11], or Linde’s scenario
of chaotic inflation [12].

In this paper the exact formula for one-loop effective potential involving an arbitrary
coupling to a gravitational field of type 4 ER¢? is determined. We considered arbitrary
values of the coupling parameter &, since the actual coupling is not known.

In the case of minimal coupling (£ = 0) and massless scalar particles, due to infrared
divergencies, the renormalization of the effective potential at ¢ = 0 is not applicable. For
that reason in the paper the renormalization procedure is performed twice: at the points
¢=0and ¢ = M.

From numerical analysis of the potential obtained two main conclusions can be
formulated:

— if a universe is of negative curvature, inflation can occur when the curvature is suffi-
ciently small (there is some critical value of curvature, i.e. such @y, that Ve (a0 = 0);
— if a universe is of negative curvature, inflation can occur when the temperature is suffi-
ciently low (there is some critical value of temperature T, such that Vg (Ter) = 0).

As from numerical analysis it follows that for big curvatures and high temperatures
the effective potential goes to — oo, it seems reasonable to include the chemical potential
term in the expression for the effective potential [11] and [13].

Authors would like to thank to P. Borzemski for his help in preparing figures.
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