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MESON

Using the technique of nonlinear realizations we discuss the structure of the chirak

effective Lagrangians. The only restrictions on the possible form of the Lagrangian we con-
sider are phenomenological ones: the Vector Meson Dominance (VMD), universality and
KSFR relation. We consider in more detail the SU(2) case (nonanomalous part). From this
general point of view we review a number of Lagrangians recently proposed in literature.

PACS numbers: 12.40.-y, 12.40.Vv

1. Introduction

There is a recent interest in the old Skyrme idea of baryons as soliton excitations of
mesonic fields [1]. In order to realize this idea one has to write first an effective Lagrangian
describing the low-energy physics of mesons. Unfortunately, due to the unsolved dynamical
problems of the QCD, which do not permit to relate the phenomenological parameters
to those of QCD the rigorous derivation of such a low energy Lagrangian is still lacking
(there are, however, some attempts in this direction, see Ref. [2]). Therefore, in order to.
construct the effective Lagrangian, some authors invoke other apriori principles like the
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hidden symmetry [3] or gauging the chiral group [4]. The question arises how those prin-
ciples are connected (if at all) with the QCD dynamics.

We would like to present here a slightly diffecent point of view.

First, following Weinberg [5] we notice, that any scattering amplitude satisfying the
conditions of being unitary, analytic, Lorentz covariant, and having the appropriate
symmetry can be reconstructed (by the usual Feynman rules) from the general, hermittean,
local, Lorentz invariant Lagrangian, having the same symmetry. Of course, all particles
we consider should be included into this Lagrangian from the very begining. We have only
the algorithm for an amplitude construction with given poles, thresholds etc., rather than
a theory predicting the bound stares etc.

Secondly, the form of the Lagrangian is defined by using only principles strongly
supported by phenomenology and, by some theoretical arguments:

(2) The PCAC scheme,

(b) the vector meson dominance hypothesis (VMD).

Here PCAC means that the underlying symmetry is the chiral SU (N) x SU(N) symmetry,
broken spontaneously to th: diagonal SU(N) (and, of course, broken also explicitly by
giving the mass to the Goldstone bosons in order to produce the partial conservation
of the axial current) [6, 7]

The VMD principle is introduced by imposing the field-current identity in the way
proposed by Kroll, Lee and Zumino [8, 9].

The resulting Lagrangian is of course, still an infinite sum of terms with increasing
number of derivatives. Proceeding in the standard way to describe the low energy region
we restrict our analysis to the terms with as small as possible number of derivatives. In
order to eliminate the off-diagonal terms in the kinetic part of the Lagrangian one has to
perform axial field redefinition (see Sect. 2). We demand this redefinition not to produce
the terms containing more derivatives than those already included into the Lagrangian.
‘The minimal number of derivatives satisfying this condition is four.

The aim of this paper is the explicite realization of the program. We derive the most
general (nonanomalous part [10] of) Lagrangian using systematically the technique of
nonlipear realizations and exploiting fully freedom allowed by symmetry principles and
‘VMD. This unique framework allows us to discuss Lagrangians appearing frequently
in literature. The Lagrangians obeying condition (a) emerge as particular cases of our
Lagrangian (see Tables I and II). We are also motivated in part by some inconsistent
statements made in different papers. In contradistinction to the standard approach (cf. Refs
[16, 17, 20]) we proceed as follows. By imposing the VMD principle in a way as general as
possible we derive the whole family of Lagrangians with VMD differing in terms breaking
the local chiral symmetry (Sect. 2). For the field-current identity is the off-shell condition
the important problem of choice the physical g, -field is also automatically solved.

In the sequel we restrict ourselves to the SU(2) case [10] (a possible generalization
to SU(N) case is briefly discussed in Sect. 4).

The material contained in this paper is an extended version of that presented during
the Krakow Workshop on Skyrmion and Anomalies [21].
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2. The effective Lagrangians

2.1. Nonlinear realization of SUL(2) x SUg(2)

The nonlinear realizations [7] seem to be natural framework guaranteeing the appro-
priate pattern of the symmetry breaking. Thus we present the basic notions and formulae.

The element of dynamical group G = SU(2) x SUg(2) is denoted by g = (gr, gx);
the algebraic subgroup H is the diagonal SU(2) subgroup (the isospin group). The preferred
(Goldstone) fields transforms as follows:

(g, &) (& &) = (&, ED) (b, b) 1)
or

gl =&h, gt = ¢ 2

The fields ¢ parametrize the coset space G/H which is topologically equivalent to SU(2).
We introduce the gauge fields transforming as follows

AP = g1y Peir) + gLr)OuBiy: (3)
It is convenient to define the vector and axial vector fields as follows:
Vu = % (AI’;+A§)’ Au = %(A};_AD' “

In the fundamental representation of (gL, gg) the generators read:

TV = (17,0, Tr=(0,il%. (5
Writing :
(&%, ©)0, (&, &) = (0, + 1, 0, —1,),
(&5, &) (0u+Vu+ A (&, &) = (B +7 Du—T1), (6)
we get:
n, = 3 (E'0,6— 0,8,
o, =% (&19,£+¢0,Lh), @)
and

My = N+t (AL~ EARED),
@, = 0, +1 (EALE+EARED). ®)

The forms 7, and @, have the following transformation properties under the local and global
chiral transformations

ﬁ;t = hﬁ”h_l, J’; = hd’uh—l"'hauh_l‘ ®

On the other hand, under the global chiral transformations forms #, and w, transform
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as follows
Ny = Im,‘h—‘, w, = hw,,h‘1+h0,,h_1. 10)

The forms w, and &, can be used to construct the covariant derivatives of #, and 7,

D, = o, + [0, 1],

D,ii, = 0,41, + @, fi.]- €3))

The transformation properties of the covariant derivatives D,n, and ﬁ,ﬁv are the same
as forms n, and #,, respectively (Eqs (9) and (10)).
Finally we can form the field tensor

F (@) = 0,d,—0,0,+[®,, &,]. (12)

It is easy to check that the following identities hold (the Cartan-Maurer equations)

~ v

Duﬁv —Dvﬁu = '12' [éfFuv(AL)é - é:Fuv(AR)é‘r]a
Fun(@)+ [, ] = 5 [ETF,(ADE+EF,(ADET],
Dmn,—Dy, =0, Fuv(w)+[’7w ']v] =0. (13)

In order to fascilitate the comparison with literature we present below the explicit expression
for the forms in two other parametrizations (see also the Appendix).

A. Introducing the new SU(2) variable
U=¢ (1%

we obtain the following transformation rule:

U'=gUg. (15)
The following relations hold:

et = L (A;—-UARUT-U8,UY),
Ep, LY+ 80,8 = L (AL +UALUT+Us,UY). (16)
B. One can also use the g-model parametrization (o, ¢) defined by:
U=¢=ol+ig, o*+¢° =1. an

(0, @) transforms as the four-vector under the SO(4) (SU(2), x SU(2)) group. The Cartan
forms read

$— (18)
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and
- i - - . 1 ...
By = N+ E'T A, +¢x ”+;¥—1¢(¢Aﬂ) ’
. i of - - 1 5 .-
W, = W, + E‘C O’V,,+¢XA"+;:.—1¢(¢V‘,) . (19)

To construct the Lagrangian invariant under the global (or local) transformations of
SU_(2) x SUg(2) we have only to choose the function of n,, F, (@), D, (or #,, F,(®),
D,#,) invariant under the group SU(2), (diagonal subgroup).

2.2. The principle of VMD

According to Kroll, Lee and Zumino [8, 9] the Lagrangian having the global isospin
symmetry and satisfying the field-current identity

2
se-m mce 3
J =—20
u 2 B
should be of the form
L(p,, ...) = 2(2,, ...)+% m20?, (20)

where # is the part which is invariant under local isospin transformations

1 i
o, = ho,h ™'+ —hé,h™', o, = — 10, n
8o 2

and, for remaining fields denoted symbolically by (...) the transformation looks as follows

(... = D(h) (...).
For L should be also globally chiral invariant, the nontrivial problem is to reconcile both
conditions. This includes in particular the proper choice of the physical g -field to be discus-
sed later.
2.3. The effective Lagrangian

Following the recipe presented above, we can write the general Lagrangian containing

the terms up to the fourth order in the forms as follows:

L= Llocal +Lglobab (22)
where

Ligeay = a Tr (ﬁyﬁv—ﬁuﬁv)z'}'b Tr Fﬂv(d))z
+¢ Tr (Foo(@) + [ 1,17 +d7 T ([A, 5,))°

+d Tr (7,7)2 - d Tr (7,7,
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Lglobal = o Tr [(ﬁu - ’7/,«)2 +((bn - wu)z] +oy Tr (ﬁu —’1,4)2
+(o; —ay) Tr (n,0") + 6, Tr ([, 1,])°
+5Z Tr ([(ﬁu - nu)’ (ﬁv - nv)])z +? Tr ([((bu - (Ou), (d)v - mv)])z,

and a, b, ¢, d7, d'D, d, aq, 0y, s, 81, 85, y are arbitrary coefficients.

In L., (invariant under the local transformations of the chiral group) the term
Tr (D,f,+D,7,)? has been omitted, because it contains the second order derivatives of
fields. On the other hand we admitted the term Tr (7,7")* despite the fourth power of time
derivative. This results in some problems with quantization. In Ly, (invariant only under
the global transformations of the chiral group), we have written explicitly only those terms
which survive after imposing VMD principle (the first three terms) or arcise in the Lagran-
gians appearing in the literature. The omitted terms could be easily constructed from
Mo (@~ @),y Fy(@) and D,ii,— D,fi,. Now we have to consider the restrictions following
from VMD condition. Let us recall, that, in order to satisfy the VMD, L should allow the
representation (20):

L = %-m}Tro,0"
with % invariant under the gauge transformations (21).
Performing these transformations in the Lagrangian L we get:

2

AL = L—L = "2 (2g, Tr (g,h10"h) —Tr (h1d,h)?).
%o

On the other hand:
AL = ALglobal‘

One easily finds that the transformation rule for L can be reconciled with its structure only
if Lyopa has the form:

2
m
L‘g,{::!tlx)e:l = - (g_e) Tr {(ﬁu -”n)z +(a~’y _'wu)z]

e
m 2
+a (——°> Tr [#,~n,)> —n%] + other terms at
&
most linear in 7, and (®—w),. (23)
The terms not written out explicitly are of a higher order in derivatives. In the sequel we

neglect these terms, since the generalization taking them into account is straightforward.
The corresponding g,-field reads:

1
Q;x = —g_' (Vu+—;— a(éfﬁyé - éﬁyéf)): (24)

e
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where
Ve = ';“ [‘5*(‘511 — 0, —fu+n,)¢ + é(d’u -, +7,— ’?,u)éf]

2
is the vector part of the linear multiplet (V,, 4,) and ¢ = «, (—gf—) . The solution of Eq.

Q

(24) with respect to V, reads:

-

O P (2.0, —a($ x (8,9 +04,) +2,$($0,))]. (25)

The final form of the L, satisfying the VMD conditions, is:

2
L‘;lh:tla)al == (ﬂ) Tr [(ﬁn - ’lu)z +H(@D,— wu)l — a7, — ’7u)2 - '7;2:)] (26)
e

Insofar we have identified the physical fields for the pseudoscalar Goldstone bosons
(modulo the transformations allowed by the equivalence theorems [7]) and for the vector
mesons. Now we have to consider the axial-vector fields. We have no principles to determine
the form of the physical axial field Jz;,, apart from obvious ones: it should be an axial-
-vector and should transform according to the adjoint representation of the diagonal sub-
group of the chiral group and quadratic part of the Lagrangian should be diagonal in fields.
The most natural way to fulfil these requirements is to choose the axial-vector part of the
linear multiplet of the gauge fields shifted appropriatly to get rid off the nondiagonal terms
in quadratic part of Lagrangian:

-~ - 1 - - o
A, = gasd,+ f— S(0) (9,1 — g0, X 1), 27

n

where 7 = f,$ and S(o6) is a function of the field ¢ = v f:? The nondiagonal terms are

eliminated if:
m, \? -1
S(1) = d[(a—l)(—°> —d] ) (28)
&,

Apart from the condition (28) the form of S(o) is arbitrary. In most papers it is simply
a constant: S(o) = S(1). However, we would like to stress, that the above arbitrariness
does not influence (according to the equivalence theorems [7]) on shell S-matrix elements.
On the other hand, by a proper choice of S(o) (to be discussed below) one can make the
off-shell extension of the S-matrix as smooth as possible.

The final form of the Lagrangian is obtained after the normalization of the kinetic
terms. As a result we obtain the following relations:

I , 1 my\* S m, z
a4 =", b+c=—_5, d=[—]+@=-){—],
2g4 2g, 8a g

s = ~1—(a—1)(%>

mqu
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and
2 . 2
£2 = <i"~) [1—(a—1)2 (M> ~B], (29)
gg mAgQ

2

m

where we denote o = (—i) B. VMD demands f to vanish. Note, that the last relation
&

taken for o = B = 0 coincides with the famous Weinberg’s sam rule [11].

Summing up this section we write down the properly normalized Lagrangian:
1 Y N 5 \2 1 ~y 2
L = ETr D, — D) + Eg—é— —c ) Tr (F,(®))
+¢ Tt (Fou(@)+ [ 1,D)* +d7 Tr ([f,, 7,1 +d Tr (75)°

2 2 2
_ (ﬂ) Tr’(ﬁm—zu—l)(i:&) Tr (n,;ﬁ"‘)HB—l)(ﬁ") Te ()’

A e i
2
- (%) Tr (@, @, +8, Tt ([, 1,17 +8; Tr (@1, G— 1))
[

+y Tr ([(@~w),, (B —),])". (30)

For further discussion we retained here the terms proportional to. 8, 84, 6, and y which
are not allowed by VMD. The forms 7, and @&, expressed in terms of physical fields defined
above (Eqs (25) and (27)) read

i _ - 1 - - -
f, = 3 T {[1 ——oc(l—az)] t l:nguzl“+ 7(1-{-05(0’)) (O — 840, %X )

1 1—a(l+0). - -
+ ﬁ __0'(“7(—}-‘1)1) n((1+05S(0)) (n0,m)+ gAf,,O'(n.plu))]} s

~ i - - + gA 1—0( «XJ
D, =—1 =
BT ST i—en)

+ ;,1—2 éf [t—a(1—6%)] '[6S(6)+(1 +5(0)) (1 —~x—ag)]

XTE X (8,7 — 8,0, X ﬁ)} . (31

The main result of our paper is the Lagrangian (30) with =4, =, =y = 0 given
in terms of physical fields (modulo Eqs (18) and (31)). In Appendix we present, in
more familiar notation, the equivalent form of the Lagrangian (30). This is the most general
chiral symmetric Lagrangian of the fourth order in Cartan forms satisfying the VMD
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condition. Its construction fully exploits a freedom allowed by symmetry considerations,
It follows from Eqs (25) and (30) that there exists the one-parameter family (characterized
by «) of solutions to the VMD condition. This is in contradistinction with the literature
(cf. Refs [13, 17, 20]) where the Lagrangians satisfying VMD condition correspond to
a=0.

We want to underline that our Lagrangian is a generalization of all chiral invariant
Lagrangians proposed in the literature. Thus we can discuss them as particular cases of our
approach.

3. Discussions and comparisons with other approaches

3.1. The VMD, KSFR relation and universality

As we have stated above the VMD condition implies (see Eq. (30)) 8 = 6, = 4,
= y = 0 and the proper choice of the g, field (Eq. (24)). Let us notice that the relation
between g, and g,,, does depend on the definition of the g, field. For choice made above,
i.e. consistent with the VMD condition it reads

2
(x—1)? (—m°g‘) -1
. \&Ma
8o = 8o m.g 2T
1—(a—1)? <—°~5) .y
gqrnA
So for B = 0 the VMD and universality hold simultaneously irrespective of the value of a.

Due to this freedom the KSFR relation 2g2,, - /2 = m? can be satisfied without imposing
any further constraint on masses m,, m, and coupling constants g,, g,. It demands only

2
m
(@=1)* = —;—( "g") .
gAmQ
For the standard choice i.e. « = 0 (compare with Table I) the KSFR relation leads to the
additional constraint 2m2g} = m}g2. Obviously, the KSFR relation can hold without

Q -
demanding VMD and universality. It is then equivalent to the relation

2732 2
2[1-(0:—1)2 (%‘) ] = 1—B—(a—1) ('—"ﬁ) :
ngA mAgQ
We want to stress again that the consequent use of the technique of nonlinear realiza-
tions is the best approach to construct the maximal number of independent invariants out
of which the effective Lagrangian is built.
Comparing our general Lagrangian (Eq. (30)) with those given in the literature (see
Table I), we note in particular, that the existence of the additional arbitrary parameter
C is recognized only by Ogievetsky and Zupnik [13] (see also Sect. 3.2).
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TABLE I

The comparison of different effective Lagrangians (using the original notation) containing vector and
axial — vector mesons. Each invariant enters into Lagrangian with appropriate coefficient shown in the

2
Table; here M = (ﬁ'-> , (
&e

R L LYMD Ref. [13]
Invariants Ref. [16 : Ref. [1 s
Eq. (30) | Eq. (30) el o Eq. (35) ef. [17] | Ref. [20]
Tr Byt~ Dyiia)? L S ! 1
- i
(Yl S/ M 283 264 287 242 223 4z’
Te (Fun@)? ! ! o ¢ 0 0
r w — —c - —_—
. 2¢2 222 22
Tr (Fynl @)+ s D2 : -2 ! !
r w N c c — —
w s Ty 2¢? 2g5 2¢; 4¢*
-~ o~ £2(1—¢2
Tr ([, D) & | ao 0 e 0 0
225
Tr (u7*) da d) 0 0 0 0
2
~ o~ . m
Tr () —-N —-N —(a+of % ~-N -~N -1 ﬁ)
2
Tr (7u7*) 2(1—a)M | 2(1—a)M 2af; 2M 2M _3.)
g
m 2
Tr (1an™) B-NM -M —(a+d)f: -M -M -1 (~_°)
g
m 2
Tr (0y—w,)? -M -M —bf? -M -M -1 (__0_)
g
Tr ([nnﬂv])z 0, 0 —z‘e‘z— 0 0 0
Tr ([(5"'77)1“ (5" ? S, 0 0 0
Tr ((@— 0)y, (G— o)) ¥y 0 o 0
VYMD yes no | yes yes yes
Universality ' yes yes yes yes yes
yes, for - yes i yes, for yes, for yes, for
KSFR ' N=2M(@x | ' N=2M N=2M | m}=12m;

3.2. The second order Lagrangian

-

In order to make some definite phenomenological predictions from the PCAC, it is
desirable to have the Lagrangian with the lowest possible number of derivatives when
expressed in terms of physical fields (to quarantee smooth momentum dependence of
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amplitudes). The Lagrangian LY™P given by the formula (30) (with f = 6, = 6, = y = 0)
is quartic in derivatives. The condition for LY™® to be quadratic, determines uniquely the

function S(o):

S(o) =

. e=1- ("—’-th> : (32)

We obtain also the following conditions on the parameters of the Lagrangian:

1—-¢o

dPV =0=a, 1-& =2g} d+c(l-2cgl)=0, (33y

so Weinberg’s relation (see Eq. (29)) takes the standard form:

2 2
ge ngA

In such a way we arrive at the following Lagrangian (in more conventional notation
it is presented in the Appendix) '

1 - -
LMP = — Tr (D,fi,~ Dfi,)’
28a

1 my\?
+ A2 Tr (Fuv((b)'*'(l -82) [ﬁw ﬁv]]z_ ("_A) Tr ﬁuﬁ“
2g ga

e

2
- (—'3—) Tr [(u=n,)" + (@~ )"~ 15 ], (35)
Q

where the forms 7, w,, f, and @, are given by the Eqs (38) with S(o) defined Eq. (32).
The KSFR condition [17] reads: € = —1. The Lagrangian (35) was constructed many
years ago by Ogievetsky and Zupnik [13] who discussed also widely its phenomenological
consequences. This Lagrangian is the most general chiral invariant one of the second order
in derivatives fulfilling the VMD condition. However, being of the second order in deriva-
tive it does not allow stable solitonic solution. For this it is desirable to examine the more
general Lagrangian given in previous Section.

3.3. The Lagrangians without axial mesons

For the completness of our discussion we consider now the question of eliminating
of the axial-vector mesons. Although such a procedure is contradictory to the general idea
of the effective Lagrangians (since we believe, that all the states lying below some energy
scale should be included), it is frequently considered in the literature (Refs [3, 4, 14]).
The elimination should be performed in a gauge covariant way and the corresponding
condition should involve the axial-vector quantity. The simplest possible condition is:

j, =0, (36}
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.or equivalently in the terms of the fields 4*®
AL = UALUT+ U, U

We can solve it explicitly for the axial fields:
- 1 - - -
A, = — ];"—(,_ (0, — 8,0, X T0).
After imposing the constraint (36) the Lagrangian (30) takes the form:

1 m,\?
Ly = 2—g2~ Tr (F,w(cT)))2 - (——Q—) Tr [(cb,,—w,,)2 +(1 —ﬁ)nﬁ]
e

+0 Tt ([, ,)* +7 Tr ([(@— ), (D—0),])* + ... (37

Note also, that Weinberg’s sum rule (29) should be replaced by

2 _ (M)
fa = (1-p). (38)

8e

We remind that in order to obtain the Lagrangian fulfilling VMD one has to put f = &
1

=y = 0. From the Eq. (24) it follows that ¢, = — V.. Then theabove Lagrangian coincides
g

with the one given by Weinberg [15]. It is of th; same form as the Lagrangian proposed
by Bando et al. [3] and Kaymakcalan and Schechter [4]. However, their choice of physical
field differs from that of Weinberg and our (they identify the ¢, field with i®,). Consequently
the VMD is spoiled by the terms of higher orders in fields.

Let us now discuss the KSFR relation. As in the case of VMD condition the validity
of KSFR relation depends crucially on the choice of the physical ¢, field. If we take

1
¢, = — V, then
[ g@ n

8o = —81-B7". (39)

‘The Eqs (38) and (39) imply then that the KSFR relation is fulfilled if 8 = — 1. Consequently,
VMD and KSFR relation cannot hold simultaneously. On the other hand the choice
0, = i®, implies

8onn = _%‘ gg(l_ﬁ)—l (40)

instead of Eq. (39) and the KSFR relation holds for § = 1. The summary of results relevant
to this section is given in Table II.
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4. Concluding remarks

In this paper we discuss the general framework for constructing the mesonic effective
Lagrangians. Our emphasis was on general setting rather than on particular applications.
Because of frequently contradictory statements appearing in the literature we have tried
to clarify the situation in a systematic way.

Finally let us note that the generalization of the above formalism to the case of SU(¥)
group is in principle straightforward. All the equations and relations concerning Cartan’s
forms remain unchanged provided they are expressed in terms of U’s and &’s (which become
the N x N unitary matrices). The only difference is that because of the more complicated
form of the reduction of the tensor product of the adjoint representations two additional
terms appear in the Lagrangian (30):

(Tr#,4*)°,  Tr(,f,) Tt (7).

There are, however, some subtleties concerning the hiercharchy of symmetry breaking
and VMD. The discussion of these problems will be given in next paper.

We would like to acknowledge Dr J. Kunz and Dr Y. Brihaye for many helpful discus-
sions. Special thanks are to Prof. W. Tybor for bringing to our attention the Ogievetsky

paper.

APPENDIX

1. Below we list some formulae useful for the comparison of different Lagrangians
28,6 = (V,U)Ut = —U8,Ut—UANUT + 4L,
2, = —Us,UY,
2@t +£0,ET) = U, UT + UALUT + 45,
2w, &t 420,81 = Uo,UT,
24D, i, — D\, )Et = Fj,— UFUT,
2E(F (@) + 71, A,]EY = Fp,+ UFLUT,
where F® = F,(4"™).
2. The general Lagrangian (30) expressed in terms of the matrix U reads
L=4% (—12— + —12—> Tr [(F)* +(Fr)*]+% (iz - iz) Tr F UFRUT
8o ga 8o 8a
N m

mz ! 2 2
+1 (—T" — —2—) Tr (V,U)UR(V*U)UT -4 -gzi Tr [(A5)* +(45)]
e

gg ga
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ok (5:? e +dt->> Te ([(V,U)UY, (V,U)Ut]) +d T [(V,U)UN(V*U)UHT?
e

1
+1 (c oy ) Tr (F5,+ UFU ™) [(V*U)UY, (V' U)UT]
Q
2 2
_la (.T&> Tr 0, U)UN(V*U)UT +1 B (—';—") Tr (2, U)UH@ V) Ut

4 Q
+13, Te (v, U)UY, (V,U)UTD +4 6, Tr ([AL - UALUY, AL—UASUT])?
+3y Tr ([A5+UARUT, AL+ UASUT).
The analogous form of the second order Lagrangian (Eq. (35)) is the following

1 1
£ = (5 + 2 ) Te LR+

A Q

1 1 m_\?
+%( = — )Tr FLUFUt—1 (-—Q-) Tr [(A5% +(45)*]
gQ ga gQ

m2 mz
+1 <—§ - *23.) Tr (V,U)UN(V*U)U?

gQ 8A
84 -
+35° ’a Tr ([(V,U)UT, (V,U)U'])?
Q
82

g2

Tr (FL,+ UFS,UY [(V'U)UY, (V' U)UTY,

2
m

£ =1-— (_Ag{) .
gam,
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