Vol. Bi9 (1988) ACTA PHYSICA POLONICA No 12
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For a particle constrained in the internal variables by relations of the light cone type,
we derive generators of motion within the framework of the Sudarshan, Mukunda and
Goldberg formalism as an extended form of the Dirac generator procedure for constrained
Hamiltonian dynamics. It is shown that the realization of the Poincaré group obtained for
this particle is compatible with the Lie algebra of the de Sitter group SO(2, 1), proper to
rotator models. Characteristic features of a relativistic rotator are then demonstrated on
evolution equations for dynamical variables.

PACS numbers: 11.30.Cp

1. Introduction

One of approaches examining the space-time structure of composite particles is based
on the construction of representations of the Poincaré group. A general method of in-
corporating relativistic symmetry in the Hamiltonian form has been given by Dirac [1].
In the Dirac formalism the central idea is to realize the ten generators of the Poincaré
group in terms of a set of dynamical variables defined on a hypersurface of the Minkowski
space. We are usually interested in the transitive realizations i.e. such realizations of the
Poincaré group, when its elements map every point of the hypersurface onto any other
point of this hypersurface. The transitive realizations are determined by the invariants
of the group, which in the case of the Poincaré group are formed by the two quantities
P2 and w?, P* being the momentum of the given system and w* its Pauli-Lubasnski vector.
The latter is defined as

Wy = (1/2)e,,, P"M*’, (1.0)

where £,,,, 15 the totally antisymmetric unit tensor and M*” is the angular momentum.
The Poisson brackets (PB) of these invariants with all generators of the Poincaré group
can be shown to vanish.
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A familiar transitive realization of the Poincaré group is given by the generators
M" = x*p'—x"p", (1.1)
P = pt, (1.2)

with the canonical coordinates x* and p” obeying the PB

=g (X7 ={04p) =0 (1.3)

This realization is special in this sense that it corresponds to the case when w? = Q;
this means that it describes a free massive point-like particle with the vanishing internal
angular momentum. If one takes a more general ansatz with w? # 0, for instance that
introduced by Wigner [2] in connection with the unitary irreducible representations of the
Poincaré group (for illumination we add that the Wigner program based on the little groups
even if formulated on the quantum level, can be without troubles translated into the lan-
guage of the classical theory because of intertheory correspondence mediated by the
Hamiltonian formalism)

M* = x*p"—x"p*+ &' = (1.4
P = p*, (1.5)

it is quite possible that the appropriate realization ceases to be transitive. In (1.4) £ and 5
are the internal canonical variables involving as the only nonzero PB{&", '}, namely

ey =g", (W ={"n}=0 (1.6)

and the squares £2 and #? are subject to some constraints. Actually, if the constraints are
chosen to be £2 = Q, 52 = 0 for any P2, they become inconsistent with the PB ({2, n?} # 0)
and so the realization is not transitive (in Wigner [2] #* =0, {2 =0 if p* <0,
&2 = const < 0 if p? = 0).

In the present paper we want to examine consequences of the violation of this property,
assuming the existence of the constraints

i

&=0 2=n"=0,

e =1, n°=-m (1.7)

The constraints (1.7) remind the light-cone conditions and hence they can be denoted
as the Light-Cone Constraints (LCC). It is obvious that the object described by the relations
(1.3)-(1.6) and restricted by the LCC (1.7) is not pointlike. It represents a composite particle
since the appropriate realization is intransitive.

To obtain both realization of the Poincaré Lie algebra and equations of motion for
such a LCC particle we shall use the eleven-generator formalism by Sudarshan Mukunda
and Goldberg [3]. It amounts to an extended form of the Dirac [4] generator formalism
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for constrained Hamiltonian dynamics, admitting ten of generators to realize the Poincaré
algebra and one fo yield the equations of motion. One of characteristic features of this
treatment is that all the eleven generators obey a condition concerning objective reality
of world lines, called the world-line condition, as a necessary condition for any form of
relativistic dynamics to escape the no-interaction theorem (Currie et al. [5]). In such a form
of relativistic Hamiltonian dynamics if the evolution parameter is chosen dynamically,
all the generators arc independent, if however kinematically, one obtains only ten indepen-
dent generators and the formal'sm is properly reduced to Dirac’s instant form of dynamics.
We shall follow closely Sudarshan et al. [3] and for more details the reader is referred to
this work.

In Sect. 2 we derive within the accepted formalism the evolution equations and the
ultimate form of the generators of motion for the LCC particle. We shall sec that even if the
original phase space is 16 dimensional and the pair of the constraints (1.7) is considered
to be weak, suitable transformations and two other constraints reduce the system to the
appropriate number (12) of the variables, which determine its states. One of two latter
constraints allows to select the evolution parameter. In the present article we prefer the
more familiar instant form of dynamics and choose this parameter in a kinematic way.
A brief discussion is made also of the alternative dynamical choice.

In Sect. 3 we shall show explicitly that the examined particle is not pointlike. Using
the set of generators, deduced in the previous Section, we construct the classical realization
of the symmetry group for this particle. We find that it corresponds to the group SO(2, 1).
This de Sitter group appears also in the kinematical structure of rotator models that were
extensively studied by Mukunda et al. [6], Aldinger et al. {7}, Bohm et al. {8] and Cotben
[9]. The LCC particle belongs thus to the category of classical relativistic rotator models.

The fact that the evolution equations of the particle exhibit features characteristic
to the relativistic rotators is confirmed in Sect. 4 by giving solutions of these equations.

Our problem is particular in this kind of dynamics. The constraints (1.7) are primary
and moreover repfesented by two independent functions. Therefore, a mapping of the
manifold onto itself in the appropriate reduced phase space must be limited to canonical
transformations utilizing the Dirac Brackets (DB). The constraints are now applied in the
strong sense and the mapping becomes one-to-one and bicontinous.

2. Form of the eleven generators of motion

2.1. Equations of world sheets

We start with the st of basic canonical variables x, p, &, n which fulfil the algebra
of the PB given in Sect. 1 (Eqs (1.3) and (1.6)). In constructing the canonical realization
of the considered particle we begin with the generators expressed by relations (1.4) and
(1.5). Now, we shall assume that for this particle the two independent LCC constraints
(1.7) are initially satisfied in the weak sense (¢ = 0, n? = 0). Both the functions define
a 14 dimensional constraint hypersurface X in the original 16 dimensional phase spacc I".
The conditions (1.7) are not consistent with the PB (1.3) and (1.6), since {£2, 1%} # 0.
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To use these constraints in the strong sense, we must pass to the DB {f, g}*, which for
two dynamical variables f and g, or their functions, are defined by the formula

{fep={ra+{L2y" 132 8- {£2} {1 gD, 2.1)

where and in what follows we omit the operator labsl over the constraint symbol 1-4.
The corresponding DB for the basic independent variables of our phase space have then
the form

{x*, p"}* = g  {E“n}* = g —n"EE) 7Y, (2.2

remaining DB being equal to zero. It may be verified that the DB of the geaetators of the
Poincaré group are given by the relations

(M, M)+ = ghMY 4 g MM _ gh MY _ gepgho
{P*, M™}* = ghp'— gp, 23)

i.e. they have the same form as the PB of these quantities for the free particle. Since
{M"”,i}* =0, ({P,i}*=0, i=1.2 2.4

the hypersurface X is invariant under the canonical transformations of the given variables.
Hence, the generated realization of the Poincaré group in terms of the transformations R*
can play now the role of the canonical transformations, replacing the familiar transforma-
tions R of the standard mode! of the single free particle. The new canonical transformations
map X onto itself. The hypersurface X as the union of two-dimensional “orbits”-sheets
is generated by the set of these transformations applied to any point (x, p, &, n) of the
reduced phase space. To construct the sheets, it is sufficient, for the basic dynamical vari-
ables, symbolized by ©Q, to solve a system of the differential equations which clearly respect
the presence of the constraints (1.7)

dQ(o)

~ v,{Q0), i}*, (2.3)

where v; (i = 1, 2) are arbitrary factors and Q“(0) = @*. From Egs. (1.3), (1.6), (2.1)
and (2.5) one has

dx"(o) —0 dp*(o) _

X 0
do do

dé* dn*
71% = 0,{¢" n*} = 20"(0); d—’:; =u,{n", &% = 20,80 (2.6)

Eqs (2.6) characterize the world sheets of the LCC particle. The concrete form of these
sheets depends, obviously, on the specification of the factors v,.
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2.2. Next reduction of the phase space dimensions

A world line on each sheet will be determined only if one chooses suitably new con-
straints. These new constraints — label them 3 and 4 — must, of course, respect the two
previous ones. The dynamical constraint 3 will help to specify a world line as a curve
C which is a function of the only parameter o. It can be deduced with still an unspecificated
parameter o from the set of the differential equations for each of the basic variables

dQ*(e) 0Q2%o)

~
~

do do

+0v{Q*(0), 3}*, Q.7

where Q"(0) = Q" and v is an arbitrary constant.

The sense of the constraint 4 is then to adjoin to each point (x, p, £, ) on C a concrete
value of the evolution parameter o. If we choose 4 in such a form that the PB with 3 are
different from zero, the rigorous physical variables and their mutua! relations are repro-
duced by way of the new DB that for 2 phase variables f and g become

{3 ={fg+({1,2} 3,4D7'[{1, 2} ({/. 3} {4, 8} - {4} {3, 8])
+{,3} {4} {2, g} {2} 4. gh+{2.3} ({1} {4. g}
—{f, 4} {1, gh+{3. 43 ({1} {2, g} - {/ 2} {1, gD]. (2.8)

(2.8) defines the DB for the twelve dimensional phase space corresponding to the four
chosen constraints of the LCC particle. If 3 possesses yet the property {M**, 3} ~ 0 and
{P’, 3} ~ 0, one finds that the two-star DB between M and P reproduce precisely the same
Lie algebra of the Poincaré group as their one-star DB (2.3). Hence, the new realization
of the Poincaré group in terms of the transformations R*(4, a) provides again canonical
relations with respect to the two-star DB. The new canonical transformation R**(4, a),
MOTEOVEr, preserves o.

If one assumes that 4 depends explicitly on o, the arbitrariness of the factor v in Eq.
(2.7) may be suppressed and then there is the possibility to specify the evolution paramecer
using just this equadion. It implies

v .‘3—4({3, 4141, 2.9)
(472

We find that the equation of motion tor a function f(x, p, &, n), constrained on Z, is an
equation of the type
a o o4 {3, /1>

Loy L 2.10
de  do 0o {3,4}* 2.10)

It turns out that it is possible always to find an appropriate operator of dynamic evolu-
tion — the Hamiltonian — to such a type of the equation [3]. Then
of of

do ~ 3 TSI @1
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’

and . is dependent on the prescribed constraints 1-3 as well as on another new
o

constraint, f being a function of the 12 new variables and o.

2.3. World line conditions

We must accept yet the requirement that the canonical transformations reproduce
the geometrical transformation of world points, this means we need to formulate condi-
tions of objective reality for the world lines, thus the world line conditions of the LCC
particle. Let the generator G

G =3 0"M,,~a’P, (2.12)

constructed from the generators (1.4) and (1.5), be the generator corresponding to two
infinitesimal transformations of the Poincaré group. Let the point x(s), p(s), &(o), n(e)
on the curve C of the phase space lead to the world points with the coordinates x*(o),
&*(o) in the inertial frame O. By a transformation R**(4, a) applied to x, p, &, n we obtain
a point x’, p’, &', n” on a curve C’ and to it there correspond world points with the co-
ordinates x'*(¢) and ¢'%(o) in O’. If one combines Eq. (2.11) with two other equations
expressing both the reconstruction of the appropriate world line in terms of the space-
-time vectors as well as the generator G and the Lorentz transform of these vectors [3],
one finds
&'x"
{G, x"}** ~ olx"+a"+ (3«7 +{#, x“}**) 4,0,
. o'er

{G, E** ~ b +a"+ (-5&_ +{s#, 5"}**) 8,0. (2.13)
Eqgs (2.13) define the world line conditions for the LCC object. They are an expression
of the requirement for 5,0 and 5,0 to be linear in w and a. There remains the equestion
whether 6,0 (i = 1, 2) do exist, and if they do, then what difference is between them.
To obtain the expressions for 6,0 in an explicit manner, one needs to specify the
constraints 3 and 4. Let the constraint 3 be chosen, as an invariant under R(A, a), in the

following way
3=pt-mr+(&—n)-p. (2.14)

The most straightforward manner of the choice for the constraint 4, which leads to introduc-
ing the laboratory time and to adopting the familiar Dirac instant form, is to pose

4 = xo—o0. 2.15)

First we must express in Eqs (2.13) the final DB in terms of the PB, using Eqs (2.8) and
(2.10)~(2.11). The left hand side of the first of Eqs (2.13) becomes

{3, ¥}
3.4)°

”’x,+a*~{G, 4} (2.16)



983

since the PB of {1, x*}, {2, x*}, {4, x*} and {G, 3} are equal to zero and {G, x*} = v*"x,+a".
On the other hand, the right hand side of the above equation is equal to

04
o x,+a* — = ({3, 4}%)71{3, x*}*8,0, (2.17)

because Eqs (2.10) and (2.11) lead to the last term of Eq. (2.17). However, owing to the
relations {3, x*}* = {3, x"} and {3, 4}* = {3, 4} and taking into account Eqs (2.16) and
(2.17), one finds

-1
5,0 = (%) (G, 4}, (2.18)

and this is formally the same relation that was obtained for the standard free pointlike parti-
a -1
cle (compare with [3]; here the formula (37) has to b. expressed as ét = {G, y} (a—x> ) .
T

A similai analysis, performed on the second of Eqs (2.13), provides exactly the same
resule (2.18), i.e. 8,6 = 8,0 = Jo. Consequently, the infinitesimal changes of the evolution
parameter, linear in @ and aq, are equal for each of both sets of variables. A world
line of the LCC particle involves then information on evolution of the whole particle
including its internal behaviour. The world line condition (2.13) as a requirement that
there exist expressions §,0 is thus obeyed with the choice (2.15). Hence, due to this kinematic
constraint 4, the “no-go” theorem of Curie etal. [S] does not enter the dynamics of the particle.

2.4. Generators of motion

Now we can determine th: eleven generators of motion of the particle, following the:
procedure introduced in [3]. We easily find using Eqgs (2.12), (2.15) and (2.18) as well as
(1.4) and (1.5) the relation

é¢ = {G,4} = —0%x;—-a’. (2.19)

From (2.19) one sees that g does not have to contain terms with @’* and &’ relating to the
purely Eaclidean group. The part of the world line condition (2.13), linking to this group,
is satisfied trivially. The remaining components of this condition are connected exclusively
with the Lorentz transformations. It holds

{Moj, X}¥* = —adf+x,{#, X"}, (2.20)
because (in metrics 1, —1, —1, —1)
{Moj, ¥} = —06], {Mo;, 4} = x;, {3, %"} = 2p*+& 1"
{, x*p% = {p% P = 2p°+8° ") 2"+ E 1Y), (2.21y
Similarly we have for the components &

{Mo, S3** = &85+ x;{o, &), (2.22)
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since
{Mo;, &} = Lo, {Moj 1} =0, (Mg}, 4} = x; (2.23)
(o, 8 = —({1,2} {3,4)7'({1, 2} {3, &} - {1, 3} {2, &},

or explicitly

{0, e = 2p°+ =" (g_p n“—p") : (2.24)
'h
Now one can readily find the ultimate form of equations of motion. They may
be decived either from Eqs (2.7) and (2.9), alternatively from Eq. (2.10), or in terms of the
two-star DB from the equation
d )
——}: == ——f +{#, [ }**, (2.25
do oo
the expressions {J, x*}** and {s#, &*}** being evaluated above (see Egs (2.21) and
{2.24)). If we accept the constraint 4 as given by (2.15) and require for the resulting evolution
equations to have a manifestly covariant form with the narural choice ‘

do ~ dx° = m™'2p° + &% —n%dx, (2.26)
where t is another evolution parameter, we deduce directly:
X =mTN - +2p"), P =0,

&=E)"E T =P i = )TE T pE P (2.27)

The equations of this type for the set of variables x, p, &, n have appeared first in [10].
Their solution will be given in Sect. 4.

The constraints 3 and 4, introduced by Egs (2.14) and (2.15), modify the relation
between the laboratory time and the path parameter, as demonstrated by Eq. (2.26).
On the other hand, this relation has an impact on the ultimate form of the generator M,
fixing in it the coordinate x°. Let us summarize now all the 11 generators valid for the par-
ticle, constrained by the conditions (1.7), (2.14) and (2.15):

My = x;ps— %P+ Em— &,
Mo; = m™'1(2p° +&° —n°)p;—x,(0* +mH)' 2+ Eon; — E o
P;=pj, Py=po= (P*+m)'?, H# = p, ~ (p*+m?)/2. (2.28)

We see that the object described by the generators (2.28) preserves features of a structural
entity. The mentioned constraints exert an influence upon the character of equations
of motion and, naturally, on x°. The behaviour of this entity will be discussed in more
detail in Sect. 3—4. If internal motion is excluded (¢ — 0,  — 0), then from (2.28) we arrive
immediately at the generators describing the single free particle in the Dirac instant form
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(compare again with tesults of {3]; here the limit demands some fixation of p,, adequate
1o the elementary limit of a composite model). In this form of dynamics only the generators
P* and M*"* are independent. The equations of motion (2.27) are dependent on these quanti-
ties and can be derived in a self-consistent way from them, as it is apparent, if one applies
simultaneously the conditions (1.7) and (2.26).

Now we adopt the dynamical variant of the constraint 4, choosing

4 =P x—mo. (2.29)

From a similar analysis of the world line condition (2.13), as made in the case of the kine-
matic choice, one deduces that again 6,06 = §,6 = (04/06)-1{G, 4} = d0. Then using (2.13)
and (2.29), we have d6 = —m~'p - a. Thus, contrary to the previous case, we find that
there is no dependence éo on w,,.

The evolution equations can be established either in terms of the relation (2.10)
with the one-star DB, or on the basis of Eq. (2.25) containing the two-star DB with an
appropriate Hamiltonian. It can be straightforwardly verified that if 5 i< of the form

# = —mln(po/m), po = (p*+m?)'?, (2.30)

identical with that of the frce-particle case [3], and if one chooses the infinitesimal change
do to be
do ~ m~'p-dx = m™2p,(2p* + & —nM)dx, (2.31)

with a new evolution parameter 7, the equations of motion (2.27) remain conserved. In the
set of new generators there appears the difference only in the definition of M,; and 5. The
Hamiltonian has the form as above (Eq. (2.30)) and M,; is given by

Mo; = p5 '[m™ 1(2p,+ &~ n)p" +p - ¥1p;~x,po. (232)

If we compare (2.32) in the limit £ — 0,  — 0 with the outcome for the ordinary free
particle, we decude that the spatial position variable x; coincides with the corresponding
x; only in the centre of mass frame (as seen by comparing with [3]). The description of the
LCC paiticle is, however, different than in the preceding case. It turns out that it does not
belong to any of the Dirac forms. All the 11 generators are now fully independent.

3. LCC particle and the SO(2, 1) realization of Poincare’s group

Now we shall attempt to construct the canonical realization of the Poincaré group
generated by the expressions (1.4) and (1.5) for the particle constrained by the relations
(1.7). We shall use Wigner’s treatment of the construction of representations of the Poincaré
group via the little Lorentz group (see [2]). The standard procedure is to find the state
vectors, which are diagonal in the quantities P2 and w?, having the meaning of analogons
of the Casimir operators. The Pauli-Lubariski vector w, given by (1.0) has the following
components

w=p-M, w=p°M-—pxN, (3.1)
where M = (M?3, M3, M'2) and N = (M°, M®2, M©3).
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The appropriate algebra can be built up without troubles, because its fundamental
relations have been discussed in the preceding sections. As emphasized there, the constraints
(1.7) do not fulfil the condition {¢2, n*} = 0 and therefore it has been necessary to pass
to the DB. So we have obtained the Lie algebra of the Poincaré group, in which the DB
of the basic dynamical variables are defined by relations (2.2) and the DB of the generators
M and P retain the standard form valid for the free pointlike particle (2.3).

We now construct the quantities

Jo=%i""p-nE n+ip-¢,

Jy=%4""p nE-n—ip-& Jy=—E-m, (3.2)

=

where 4 is a constant. Taking into account Egs (2.2), one can immediately prove the rela-
tions

p-&&m*=p-& {Enpnl-m*=pnin
{p-&p-né-mp*=p¥-n (3.3
Finally, from Eqgs (2.2), (3.2) and (3.4) we derive
{Jo, Jz}* =Jy {Jo’ J1}* = _szza {Jla Jz}* = Jo. (3.4)

We have the result: the algebra represented by the relations (2.3) and (3.4) corresponds
to the Lie algebra of the SO(2, 1) group. The appropriate Casimir operator has the form

2
Ji—Ji—-m?i} = -m’é-r;(f' — P fp'n)- (3-5)

We must find yet the expression for the Pauli-Lubanski vector, to complete calcula-
tions concerning the little group. We need first simplify the DB {&*, n°}* involved in (2.2).
It is convenient to introduce the new variable

’

=n— =& (3.6)

=

Mo
o
¢ and 5 being constrained hereafter by the conditions (1.7). The inverse relation to Eq. (3.6)
may be immediately computed and reads

2 2
> > n 7 [ n /]
n=n-=-=¢ n =- ==& (3.7)
28-n 21
Then the DB for the new variables & and 7’ become
Mo &}* = 0w, (&6 &}* =0, {m,m}*=0. (3.8

Likewise, th2 generators of the little group, defined by (2.2), will have the very simple form;
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namely
M =xxp+éxn, N=xp—p°x+£&%, (3.9

in terms of 5. The pair of the dynamic variables & and 7’ determines that part of the angular
momentum which corresponds to the particle spin, as it is seen from Eq. (3.9), since 5 oc &
x 7. Thus we have found that appropriate canonical realization of the LCC particle with
the adequate description of its spin is compatible with the representation of the de Sitter
group SO(2, 1). The same kind of groups emerges also in the kinematic structure of the
Mukunda et al. [6] model of the classical rotatcr. Thus, the LCC particle belongs to the
family of rotator pasticle models discussed in the papers [6-9].

4. Rotator footing of the equations of motion

Now we shall describe motion of the LCC object. Eqs (2.27), derived in Sect. 2, are
the equations of constraint Hamilton dynamics with the rotator physical content that now
has to be demonstrated explicitly. To show that these equations lead to rotator motion,
one does not have to look directly for their solutions. Egs (2.27) are identical (disregarding
multiplication constants) with the set of equations derived by Petras [10] for a model of
the composite lepton, if a specific choice of interaction of its components is accepted. The
model has not been fully successful, however the equations of motion of the given com-
posite system appear to be applicable in a wider framework. It is sufficient to specify only
the factors in these equations and we can have in hand the complete solutions. They read [10]

& = A* cos wt+ B* sin wt—1 pY,
n* = —A*sin wt+B* cos wr+ % pt,
x* = 1 [(A*~ B sin wt—(4* + B) cos wt] +2p%, 4.1
where the integration constants 4 and B must generally obey the conditions
pA=p-B=A-B=0, A*=RB*= —| 4.2
and the Lorentz scalars are chosen consistently with the equations of motion to yield
np=—-¢(-p=2, E-np=-1; w=2 “.3)

We see that the motion of our particle consists of rectilinear uniform motion in the direction
of the velocity p/m and the rotation motion with the frequency @ = 2 (in the appropriate
units) according to (4.3). It is clear from (4.1) that in the rest frame we have the pure
rotation motion

% = 1 [(A—B)sin ot — (4 + B) cos ot], 4.9)

with [Zl = |B|=1= Rand A-B=0, the elementary fenght R of the rotator being given
by the magnitude of the vectors 4 and B.
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5. Conclusion

In this paper an attempt has been made to support revived interest in theories of
composite models of particles such as those of [11-14, 6-9] and others (a complete biblio-
graphy up to 1968 see Ref. [15]). The present article gives a nontrivial application of the
Sudarshan et al. [3] formalism reproducing simultaneously the current generators of the
Poincaré group and the equations of motion, if the transitivity of this group is violated.
In our case the violation is due to the light cone condition (1.7), imposed upon the internal
variables ¢ and 5. It is worthwhile to note that these conditions acted in our theory as the
first-class constraints, both being independent of each other. Therefore an ambiguity of the
original Hamiltonian of the free particle, evoked by the addition of a vanishing linear com-
bination of &2 and 2, implies the equality to zero of coriesponding coefficients. Neverthe-
less, the established Lie algebra with { }* secured, as we have seen, canonical transforma-
tions mapping of the hypersurface X onto itself.

By accepting two other constraints: invariant under R(A,d) (2.14) and kinematic
(dynamic) (2.15) ((2.29)), we were able to generate states characterized by the SO(2, 1)
realization of the Poincaré group and thereby to show that the examined particle exhibits
features of the classical relativistic rotator. The case of the LCC particle shows that the
constraint dynamics of world lines [3] is an efficient tool regardless whether all the eleven
generators are independent or not.

REFERENCES

[1] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

[2] E. P. Wigner, Ann. Math. 40, 149 (1939).

[3] E. C. G. Sudarshan, N. Mukunda, J. N. Goldberg, Phys. Rev. D23, 2218 (1981).

[4] P. A.M. Dirac, Can. J. Math. 2,129 (1950); see also P. A. M. Dirac, Lectures on Quantum Mechanics,
Yeshiva Univ. Press, New York 1964.

[S] D. G. Currie, T. F. Jordan, E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963).

[6] N. Mukunda, H. van Dam, L. C. Biedenharn, Phys. Rev. D22, 1938 (1980).

[71 R. R. Aldinger et al., Phys. Rev. D28, 3020 (1983).

[8) A. Bohm et al., Phys. Rev. D28, 3032 (1983).

[91 H. C. Corben, Phys. Rev. D30, 2683 (1984).

[10] M. Petras, High Energy Particle Interactions, Proceedings of the Conference Smolenice, Vol. 2, ed.
Veda, Publ. House of SAS, Bratislava 1976.

[11]1 A. J. Hanson, T. Regge, Ann. Phys. (N. Y.) 87, 498 (1974).

[12] H. Leutwyler, J. Stern, Ann. Phys. (N. Y.) 112, 94 (1978).

[13] S. Mallik, E. Hugentobler, Phys. Rev. D20, 1849 (1979).

[14] N. Mukunda, E. C. G. Sudarshan, Phys. Rev. D21, 2210 (1981).

[15] H. C. Corben, Classical and Quantum Theories of Spinning Particles, Holden-Day, San Francisco
1968.



