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The effect of the Coulomb potential on:the chiral symmetry breaking in a model of
QCD is analyzed. The renormalized gap equation for massless quarks interacting through

- o
the Lorentz vector potential V(r)~ or— — is solved numerically. The chiral parameters
r

are calculated for several values of «;.

PACS numbers: 12.38.-t, 12.38.Lg

1. Introduction

One of the basic questions of low energy Quantum Chromodynamics is whether the
chiral symmetry is spontaneously broken and by what mechanism: [1]. The large coupling
constant in this energy region prevents us from using the perturbation theory, and we have
to look for another methods. Some results on this subject have been obtained from the
lattice calculations, however, the inclusion of the light fermions (m — 0) on a lattice is still
problematic. Suitable lattice methods have been proposed only recently [2]. In the
continuum there are various approaches to that question. One of them [3], which is very
often used, is based on writing down the gap equation in Landau gauge QCD. There was
found large-Q? asymptotic behaviour of the dynamical quark mass. The other model [5],
which we are using, relies on the analogy between strong interaction and the superconductiv-
ity [4].

In this approach the quark interaction is described by the Coulomb gauge QCD Ha-
miltonian, which was derived first by Finger et al. [5] and the QCD vacuum is approximated
by a coherent superposition of the quark-antiquark pairs. The ground state is analyzed
via the variational approach which leads to a gap equation. The starting point of the calcula-
tions, which were done in Ref. [5], consists of taking the normal ordering of the Hamilton-
ian in chirally symmetric vacuum. This renormalization procedure preserves the chiral
invariance and produces the finite quark self-energy. Unfortunately, the prescription cannot
be applied to confining potentials, since in this case the chiral invariant vacuum turns out
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to be stable [6]. The renormalized gap equation for general potential was derived from the
renormalized Dyson equations for the vector and axial-vector vertices in paper by Adler
and Davis [7]. The gap equation for the linear potential was also solved there. However,
the resulting chiral parameters (), dynamical quark mass, f;) are several times smaller
than the experimental ones. Similar large discrepancies were found in papers {8], where
the model was applied to the system with finite baryonic number density. It was pointed
out by several authors [6-8], that the addition of the short range attraction to the linear
potential would improve the results. In this paper we solve the gap cquation for potential
which is composed from the Coulomb piece and the linear confining one.

In Chapter two we review the basic assumption of the model. The gap equation for
the potential is derived in Chapter three. The numerical solutions of the equation and con-
cluding remarks are presented in Chapters four and five.

2. The model

The chirally invariant Coulomb gauge QCD Hamiltonian, introduced first by Finger
et al. [5], for quarks interacting through the fourth component of Lorentz vector instanta-
neous potential is

e - . W R
H = Z pix)(—a- V)w(x)+%z V(x—y) (wJ'(X)E u(X))

x %58
L o e a
X (w*(,v)—2 w(y)) +(Z—1) Z P (x) (= V)p(x). 2.n

The space integrations are discretized temporarily and do not play an important role
in the model. The continuum limit will be taken at the end. «, 4%, f = 1 ... 8 stand for
Dirac and Gell-Mann matrices respectively and w(x) is the coloured, single flavour, massless
quark field. The generalization to the case of two flavours is straightforward.

The quark field ¥ can be expanded in terms of free massless spinors t°, u°

o 1 - N - N
VAR = Z [l (K)bSR) + 0o (k)d 2 (= k)Je™ ™, (2.2)
ks

where b2(k) and d°(k) are the annihilation operators for a massless quark and antiquark
with colour index «, helicity s and momentum k. V(x) is equal to the sum of linear and
Coulomb potentials?

r

V(r) = - (ar—— E§) ) (2.3)

! The minus sign in (2.3} is introduced in order to obtain the attractive force between the qq in a colour
singlet state.
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where r = |r|. The last part of the sum in Eq. (2.1) is a counterterm, which must be included
in order to obtain finite results [7].

Similarly to the BCS description of the superconductivity, the vacuum in the model
is approximated by a coherent superposition of states of the colour singlet qq pairs

1> =~ H(1~Mﬁ(k)0 SRyt (T —k)) 102, 24

where N = [] N/ 1;}}32(1() denotes the normalization factor, and 7 is the volume element
l-r:s,a

in the momentum space. The state |Q) is chirally asymmetric unless § = 0 — in this case

|Q2) is equivalent to the chirally symmetric, perturbative vacuum |0). The momentum

space wave function of a quark-antiquark pair (k) is determined by the following gap

equation

KO 2.5)

However, the equation (2.5) contains logarithmic divergences unless the appropriate renor
malization is performed. This is done in the next Chapter.

3. The gap equation

In order to derive the gap equation we have to calculate the matrix element
& = (Q|HIQ>. To this end, it is useful to introduce the Bogoliubov-Valatin (B-V) transfor-
mation, which consists of expanding the quark field v in terms of a new spinors basis v, u

Po(x) = Z (s (R)b (R + v ()~ 0] %, (3.9

with the new annihilation Operators bsa(k) and s,(k) defined by
b (K)1Q> =0 and d k)R> =0. (3.2)

With the aid of definitions (2.2) and (3.1) one can show that there exists the linear relation
between the old (massless) and the new creation and annihilation operators

¢() ¢()

byk) = cos —— b(k)+ss do*(=k),

¢>()

sd(k) = —sin — b°+(k)+ d)(

d°(=R). (3.3)

The rotation angle of the B-V transformation is defined by the following equations

sin ¢(—k) L) — and  cos ﬂ) = —-1: . (34

2 V1+BKR) 2 VIR
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After performing the B-V transformation, the vacuum energy can be calculated by means
of the Wick’s theorem. The latter implies that the Hamiltonian (2.1) can be rewritten in

the form?
H=6&+:H,:+:H,:,

where

¢ = 322“ (CRZED)! )’ Z V(k—p) Tr [4.()A_(P)],

X
, 1 . - I > = B et
Hy =35 Z VE=) [97(X) (A4 (k)— A_(k)p(y)]e* =
Xk
+Z Yy () (—id - V)p(),

Lol R AP
H, = Z 3 V(x—y) (w*(X) 5 w(X)) (w*(ﬂ 5 WU’)) .

- —

x,y.8

Ai(l;) represents the projection operators (k = l?/ k1)
As(K) = L (14+Bsin ¢(k) £ - k cos P(k)),
and V(E) denotes the Fourier transform of the potential

V(E) = a* Y V@ T = k) + V),

where [7]
vy = M v = 2%
R (k)?

(3.5)

(3.6)

(3.7)

(3.3)

(3.9)

Substituting Eqs. (3.6-7) into Eq. (2.5), after taking the continuum limit, we obtain

the nonlinear integral equation

ksin ¢(k) = (1 - 2Z)k sin (k)

d? - - “n
+2 J-a;t% V(p—k) (sin ¢(p) cos ¢p(k)—kp sin (k) cos ¢(p))-

(3.10)

Inserting the Fourier transform of the potential (3.8) into Eq. (3.10) we find that the
ultraviolet divergence in the integral in Eq. (3.10) can be eliminated by means of the mo-

mentum independent renormalization constant

1 dp
Z-1=—2 Vp—kk
J‘(z) «(p—k)kp.

(3.11)

2 The normal ordering in the model was studied in papers [6, 11].
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Substituting Eq. (3.11) into Eq. (3.10) and after performing integrations over aungles we
arrive at the ultraviolet finite, one-dimensional equation

2
ksin ¢(k) = J dp(I’5(k, p) sin ¢(p) cos ¢(k)—I3(k, p) sin ¢(k) cos $(p))

+ ;—Jdp (Ii(k. p) sin ¢(p) cos ¢(k)+2i5(k, p) sin ¢(k) sin M) . (3.12)
4

where
1

I3k, p) = f dkp)V (k —p) =

-1

40‘ pz

(k*=p??’
1

1Yk, p). = j dRpRFV L —5) =

-1

+p® L. o p+k

I5(k, -3 10
2%p 2k, p)— e gip k

-

1

IS(k, p) = fd(lii))V°(1€~E) = -

-1

og . s
g!p—kf

%P ip+ki
k

1
. AAmAL L K*4+p* . o p
Ik, p) = | d(kp)kpV*(k—p) = Iy(k, p)— -5 . (3.13)
2kp k
-1

The infrared finiteness of the equation (p = k) was discussed in Ref. [7]. It is insured
by using the colourless trial states. As a consequence one can add arbitrary constant to the
potential without changing the results. The contribution from constant potential vanishes

between colour singlets, since it is proportional to the Casimir operator of the colour sym-
metry group.

4. Numerical solution

The gap equation (3.12) can be sclved numerically by using the over-relaxed Gauss-
-Siedel algorithm, which is described by Adler and Piran [9]. Before solving the equation,
we have to single out the p = k singularity apparent in the first integral (in I(Lu,). After
discretizing, the Eq. (3.12) takes the form

C, sin ¢(k)+ C, sin ¢(k;) cos ¢(k)+ C; cos ¢(k;) = 0, (4.1)

with C; ; 3, depending on ¢. The second term in (4.1), which comes from the p-integration
over a small neighbourhood of %;, is introduced in order to avoid the singularity.
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We find ¢(k). by successive approximations starting with ansatz obeying the boundary
counditions

0 == and ¢k b 4
BO) =% and gk > ) - %, (42)

which can be derived from (3.12).

For each i we solve Eq. (4.1) by Newton iterations. Then the coefficients C, , 3, are
computed by replacing the old value ¢(k,) with the new one according 10 the Gauss-Siedel
algorithm, and so on. Our solution for ¢(k) is depicted in Fig. 1 for a few values of «,. In
the case of the linear potential (a, = 0) the momentum space wave function behaves like
~ 1/k® for large k. After the addition of the Coulomb potential the large-k asymptotic
behaviour is replaced by (4.2).

We can calculate the dynamical quark mass m* and the order parameter {(uu) for
a quark flavour u once the solution of the gap equation is known. The effective quasiparticle
mass in the momentum units | = /o is given by the formula [7]

' dg B __,_E__
(gk_)lmo o om* @3

The calculation of the quark condensate is more involved. After introducing a tempo-
rary ultraviolet momentum cutoff 4 we compute the {uu) using the definitions (2.4)
and (3.1)

- 1
uu) = 7 {QIpyisd), (4.4)
10 Y T
Bip ! ]

08 - -

[ 2,00 )
a6t =

olg~ 04

b dg=08 i

1 o =10
02 : —
O,U . A 1 " 1 " L L M

G0 as i p 15

versus momentum k& in units 1 = /o for several values g

k
Fig. 1. The gap function (k) = tan )
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TABLE 1

The quark condensate <uu> and dynamical
quark mass m* for various &g, At the bottom
we put the experimental values taken from

Ref. [12]
"N {uw> (MeV3) | m* (MeV)
0.0 - (95)3 70
0.4 —(150)% 95
0.8 - {210)® 120
1.0 —(260)3 170
exp. -~ (225)3 300
then, taking the 4 —» c0 we obtain
_ 27 b
ug) = — — —, (4.5)
8t «

Applying the Egs. (4.3), (4.4) we calculated (uu) and m* for some values of «, — see
Table L. In the calculations we chose /¢ = 350 MeV.

5. Discussion of the results

From Table 1 we see that the chiral parameters increase reasonably after the addition
of the Coulomb field. This is in agreement with earlier expectation [6-8]. In the first line
of Table I we have displayed the results obtained by Adler and Davis [7] without ¥,. The
consistent growth with o, may be easily understood. The inclusion of the Coulomb potential
effectively increases the string tension and produces the higher values of the chiral param-
eters. Thus, the improvement is a result of the inclusion of the high momentum component
to the potential V(k). The strong influence of the Coulomb potential seems natural, since
the main portion of the chiral symmecry comes from small Cooper pairs.

However, there are still discrepancies in this result, what is not surprising. The trans-
verse gluons [7] and retardation effects have been neglected. The inclusion of the effects
leads to a much more complicated equation which is difficult to study [10]. Also, taking
into account the current quark masses should improve the results.

Since the Coulomb field makes the model more realistic we plan to solve the Bethe-
-Salpeter equation for the potential (3.8). Also it would be interesting to see how the
Coulomb field influences restoration of the chiral symmetry.
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would like to thank Mr. W. Kubica, University of Rochester N. Y. USA and A. von Hum-
boldt Foundation, W. Germany for the computer assistance which made this publication
possible.
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