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BLACK HOLES AND QUANTUM MECHANICS*
By G.’t Hoort
Institute for Theoretical Physics, Utrecht**
(Received July 28, 1987)

A black hole can be seen as a particle-like solution of the equations of General Relativ-
ity. In this set of lectures it is explained why one expects that these objects must emit radia-
tion by applying quantum field theory in the space-time environment of a black hole, as was
discovered by S. Hawking. But the result seems to contradict the notion that black holes
are just another kind of (more or less elementary) particles. The author then shows that
the derivation is incomplete because gravitational self-interactions between in- and outgoing
particles are ignored. It may well be that a more precise treatment does produce “decent”
quantum mechanical behaviour of black holes but it seems that a new formulation of quantum
mechanics in the presence of space-time horizons will be needed. A possible alley towards
such a theory is outlined.

PACS numbers: 04.60.+n

1. Introduction

At sufficiently small time- and distance scales, or equivalently, at high enough energy
scales, gravitational interactions among elementary particles can no longer be ignored.
When a sufficient amount of matter is brought together very closely then Einstein’s
equations dictate that the system will collapse under its own weight, and only one stable
final configuration will be reached rather quickly: a stationary solution called “a black
hole”.

Black holes can come in any size, ranging from cosmic proportions to the “Planck
scale” (which is probably the smallest possible distance scale in Physics). In some sense
they may resemble extended solutions of ordinary quantum field theory, but in one very
important way they seem to be very different: the ordinary rules of quantum mechanics
seem to break down. We will see that they appear to behave like more or less conventional
thermodynamic systems. Even though the specific heat is negative, the entropy of a black
hole can be computed to be finite (up to an unknown additive constant). But application
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of the laws of field theory fails to give any relation between this entropy and the number
of states a quantum black hole can be in. In this way black holes seem to be fundamentally
different from any other particle or system in the universe. Yet the heaviest elementary
particles can in no fundamental way be distinguished from the lightest black holes. In this
set of three fectures the author will try 1o explain how this problem comes about, and where
one could search for a resolution.

2. Classical gravity and the Schwarzschid black hole: a summary [I)

In General Relativity one uses completely arbitrary coordinates x = (x, ) to indicate
points of space-time, and a fundamental symmetric tensor field g,,(x) to determine the
distance ds between two neighbouring points x and x+dx:

ds? = g, dx"dx’. 2.1
We indicate the inverse of g with upper indices and its determinant without indices:

g =8N g =det(g,) (2.2)

The connection fields or Christoffel symbols I" are defined by (we use summation conven-
tion when an upper index is identical to a lower one):

qu\' = gaﬁrﬂ#vi (2.3)
‘rpuv = %(—aﬂguv""&ygﬁv*'avgﬁu)’ (24)
re, =r.,, 2.5)

Covariant derivatives are defined as:

D,g(x) = 0,¢(x), (2.6)
D,A(x) = 0,A,(x)—T",(x)A,(x), 2.7
D,,A" = ﬁuA”—i—F”w,A“, (2.8)
Dygaﬂ = 0, (2.9)
D(fe) =D,f g+f D,g. (2.10)

The Riemann curvature is
Rty = 00"+ T "ol T vg— (> B). 2.11)

The Ricci tensor is

R,, = R, (2.12)

and
R =g"R,, = R (2.13)
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They have the properties:

Ryvap+Ryapy+ Rypye = 0, (2.14)
Ryvep = —Ryupe = Rapgyrs 2.15)
D,R¥, s+ D, R* s +DgRF,,, = 0, (2.16)
2D,R,, = O,R. .17
Einstein’s equation is:
Ry, ~% Rgu,+Ag,, = 87GT,,. (2.18)

Here A is the so-called cosmological constant, which is usually assumed to vanish although
nobody really knows why. G is Newton’s constant and T, is the energy-momentum density
of matter. Eq. (2.18) can be connected to an action principle: it is obeyed by the
extremum of

S ={%dx, (2.19)
p R matter
£ = \/g Ig;a + % . (2.20)

A spherically symmetric solution of Einstein’s equation after matter has moved to the
center (7,, = 0) can be written as

ds? = — F(r)dt? + G(r)dr?+ H(r) (d6* +sin? 8d p?), 2.21)
but we still have the freedom to redefine r: r — r’, such that after the redefinition,
H(r) = 12 (2:22)

The equations R,, = 0 give three equations for F and G, but of these one is redundant
because of the automatic Bianchi identity (2.17). One finds successively

0{(FG) = 0 = F(r) - G(r) = Const, 2.23)
which constant can be put equal to one by rescaling ¢, and
0,(rF) = 1 = F(r) = 1/G(r) = 1-2M]r. (2.24)
Here, 2M is an arbitrary integration constant. But one may observe that the function
F(r) corresponds directly to the gravitational red-shift, so that it can easily be identified
as the gravitational potential, which is asymptotically
VFr) > 1-M]r, (2.25)
and one may conclude that
M = Gm, ‘ (2.26)

where m is the black hole mass.



190

At the points
r=2M, .27

this metric is singular, but this singularity is an artifact of the coordinates chosen. Consider
the new time coordinate

7, = t+2M log (r—2M), (2.28)

then in the coordinates (i+,r, 0, ) the singularity disappears. These are the so-called
“ingoing” Eddington-Finkelstein coordinates. The region 0 < r < 2M can be reached
from the outside, 7+ is real there, but ¢ is complex. In that region (which will be called
region 11T later), the local future light cone points entirely towards the singularity at r = 0.

One may also consider the ‘“‘outgoing” FEddington-Finkelstein coordinates,
replacing ¢ by

{_ =1t=2M log(r—2M); (2.29)

in these coordinates the region 0 < r < 2M can be reached going backwards in time.
The local future lightcone points outwards. We will call this region IV. Here also ¢ is com-
plex. However, if this metric is regarded as a solution of Einstein’s equations of a black
hole formed by collapse of matter at ¢ = ¢;, then region IV is unphysical: to reach it one
would have to cross the region f < ¢,, where the black hole was not yet formed, and matter
was present so that the vacuum Einstein equations were not valid there.

In spite of the fact that region IV js not present in such a “physical” black hole, it is still
worthwhile to consider coordinates that show both regions III and 1V. These are the so-
-called Kruskal coordinates (x, y, 0, ¢), where x and y are defined by

[5;—4 —1] &M = _xy, (2.30)
€PM = —x/[y. (2.31)
By differentiating one finds |
4dxdy _ 1 2[ dr? i —dt2:|, 2.32)
xy  4M2| (1-2M/r)
ds?* = =24 )dxdy+r*dQ?, (2.33)

where

16M? —

A(r) = dQ? = d6* +sin? 6d¢>. (2.34)

Notice that in these coordinates the singularity at r = 2M totally disappears. The lines
x = const., Q = const., and the lines y = const., £ = const., are light rays.
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At every r, t we have two solutions for x and y (differing by a sign), so the regular
region r > 2M occurs twice in (x, ») Space (to be called regions I and II). We indicate the
regions I to IV in Fig. L.

The central region, |x| < 1, [y] < 1, is very important for understanding the quantum
mechanics of the black hole. It is there where objects sent in in the far past, and particles
that will emerge in the distant future meet each other. To describe that region, the curvature
of space-time is only of secondary importance. If we replace it by flat space we have the
so-called Rindler space.

Fig. 1. The Kruskal coordinates

Consider a flat Minkowski space-time described in coordinates ¢, z, and x = (x, y).
Let us then consider the new coordinates 7, {, and x, given by

z = {coshr,

t = {sinhr,

X=X (2.35)
Of these coordinates, T can be considered to be a time coordinate, because any shift of the
form t — 7417, is nothing but a Lorentz transformation, and hence leaves the laws of
physics, as phrased in these “Rindler coordinates”, invariant: the laws of physics do not
change with time. A stationary observer in these coordinates has { = const., which is
a curved trajectory in Minkowski space; hence such an observer feels a gravitational field
which is constant in time. This field becomes infinitely strong at { = 0. Clearly, Rindler
space is 2 model for a gravitational field, { and  play the role of the Schwarzschild coordi-
nates r and . The Kruskal coordinates x and y correspond to the Minkowski lightcone
coordinates -+ z.

3. Scalar field theory in Rindler space

In this chapter we will derive explicitly the fact that black holes emit spontaneous
radiation [2]. Everything can be understood as a feature of the central region in Kruskal
space, and indeed all we need is the Rindler coordinate transformation (2.35). We will
only consider non-interacting scalar particles; other cases are not really different.
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A scalar field @ in Minkowski space (7, f) can be written as

- d*k o ey
O, 1) = f————~ [aR)e™ ~*o' 4 at(Rye™ 57+ o], (€2
N2ko(R)V
. a*k e
(r, 1) = —— [ —ikoa(k)e™™ +ikoa'(k)e” ™ ]. 3.2)
V2ko(F)V

Here, V = (27)%, and we have

[a(k), a'(k)] = 8>k —K'), (3.3)
and
[8(F), ()] = —id>(r—7"), (3.4)

etc.
First we make the transition to lightcone coordinates,

u=_U~-2)2, v=(>+2)2,
k, = ko+ks, k_ =ko—ks. 3.5)
Then in Rindler time these evolve as
v - ve'

u—ue ", (3.6)

And we define new annihilation operators a;:

a(k) ko = ay(, ki) ks, 3.7
which, because
Okel _ -k-"—, (3.8)
0k; |z ko
are now normalized by
[a,(k, k), al(k', k)] = 8%(k—K")o(ks —K). 3.9)
So we can write
@(?, 1) = A(F, )+ AT, 0); (3.10)
A(F,u, v) = dhedk+ a,(k, ky)etr —ikrumik-v, (3.11)
V2Vk,

k+>0
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Now in Rindler time, k is constant and
k, - k.¢,
k_—k_e ™. (3.12)

If we Fourier transform the field @ of Eq. (3.10) with respect to 7 then we may expect
to get annihilation and creation operators corresponding to definite amounts of energy
for the Rindler observer. Therefore we now choose to Fourier transform a, with respect
to log k.:

a,(k, ky) VRt = Qm)72 | doayk, o) P, (3.13)

where
‘ W=k +m? =k k_. (3.14)

and the mew annihilation operators a, are normalized as
[ay(k, w), ab(k', 0)] = 6*(k—k)o(w— o). ©(3.15)

The inverse of Eq. (3.13) is

ay(k, ) = | dk,Qrk,) 2a(k, k. )e ™, (3.16)

Oty 8

The Hamiltonian Hy for a Rindler observer is the generator of a boost in its time
coordinate t, that is, a Lorentz transformation. It is

Hy = | z#u(r, 0)d°F, (3.17)
where %M(?,.t) is the Hamilton density for the Minkowski observer:
Hyu(F, 1) = &+ (38)* +5 m*D”. (3.18)

A straightforward calculation now yields:
Hp = [ d%k | dowdk, w)ak, o). (3.19)

so indeed in all respects, a, behaves as an annihilation operator corresponding to a Rindler
energy .

Nevertheless, a, is not the annihilation operator we want to work with. We would like
to split the operator Hy into two parts:

Hg = H,—Hy, (3.20)
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with
Hy = [ 20()# (7, 0)d°F;  Hy = — [ 26(=2)# (7, 0)d*7.

And now it is important to note that H; and Hy, do not split the integral (3.19) in the same
manner.
Let us write the field 4 in Eq. (3.10) in terms of a,:

- d*k O
A(r 1) = J dwjﬁ K(~o, pu, pr)e* a,(k, ). 3.2D
Here u and v are the coordinates (3.5) and K is an integration kernel, which turns out to be
dx . . .
K(w, a, ) = | — x'@e x2~iblx (3.22)
X
(1]

We need some properties of K. When « < 0 and § > 0 then the integrand in (3.22)
converges rapidly if Im (x) > 0. Therefore we may rotate the integration contour by

x> xé%0< g £ (3.23)

Taking ¢ = n gives us the identity
dx i —nw ixa+if/x — W Ly
K(w, o, f) = | — x"e™ ™ =e "“K¥(-m,a, ), a<0 f>0. (3.24)
x
[}

When a > 0 and # < 0 we have, using a similar contour shift,
K(w, o, p) = e"K*(—w,a, ), a>0, p<O0. (3.25)

We now split the integral (3.21) into two integrals for positive w. If 7 is in region I we
have u < 0 and v > 0. Therefore,

- r &k - -
A ) = dej - e [K(~w, pu, uw)a,(k, o)
NL14
o
+e " K*(—~w, uu, pv)a(k, —w)], (3.26)
and

- - d’k .
Al(r, 1) = J-da)f\/‘m_v T [K*(—o, pu, pr)al(—k, )
0

+e " K(—w, pu, uv)al(—k, —w)]. (3.27)
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Combining these now into the field @ (see (3.10)), we see

. ¢ k- - .
&(r, t) = jdco J\/W e*"{K(—w, pu, uv) [a,(k, w)+e " al(—k, —w)]
0

+K*(—w, pu, po) [al(—k, ) +e ™a,(k, —w)]. (3.28)
This prompts us to define an operator afk, ) as follows,
ak, w) V1—e 2™ = ay(k, o)+ e al(~k, —w). (3.29)

Clearly, if 7, ¢ are in region I then @(r, t) only depends on g, and its Hermitean conjungate.
Similarly, in region I we have g,

gk, @) V1= 2™ = ay(k, —o)+e” al(—k, w). (3.30)
The normalization factors are needed to get the commutation rules
lak, ©), af(k', )] = 8*(k~ k') (@—a'); (3.31)
similarly for [ay, af], and furthermore we have:

[ab ax] = [am ay] = [ay, a"] = [ay, a}‘l] = 0. (3.32)

And now indeed,

H, = | do | d*koadia,+C;
[¢]

H, = [dof d*kwahay+C, (3.33)
14

where C is a common, irrelevant constant coming from the ordering process. It cancels
in Hg, Eq. (3.20). ‘

From the commutation rules (3.31)-(3.32) we see that all observables in region II
commute with all a,, a}, and vice versa. Therefore, not the operators a,, a}, but a; and
al are the proper annihilation and creation operators for Rindler observers in region
I, and g, af; in region 11. Transformations such as (3.29) and (3.30) involving a and at are
called “Bogolyubov transformations”.

Let now |Q2) be the vacuum state as defined by an observer in Minkowski space, i.e.
al® = a,|Q> = a,|Q> =0, forall k, o (3.34)

It is now opportune to introduce as a basis for Hilbert space those states which at each set

of values of +k and » have definite values for n, = ai(k, w)a(k, ) and for ny = afay.
- def def
At each (+k, w) we label these states as |m, n;,>. Clearly,

T110,0) # (). (3.35)

ki
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To express |©) in our Rindler basis we use, from (3.29) and (3.30)
a(k, o) [@) —e”"af(—k, ©) 1) = 0; (3.36)
ay(k, ®) |2) ~e”"af(~k, ©) 12> =0, (3.3
so that, when acting on |2)>, we have
afal, = e ™ atal = afa,. (3.38)

Consequently, |Q)> only consists of states with

Ay = My (3.39)
1) = ;fni"; ny. (3.40)
We find f, from (3.36):
)n:fn Jnin=Lny =e" Zf Jn+l in, n+1); (3.41)
Jorr = (3.42)
Conclusion:
@ = [V 3 Y ke (3.43)

where the square root is a normalization factor. Notice that (3.39) implies

Hel2) =0, (3.44)

or: | is Lorentz invariant. More surprising perhaps is that there are many other Lorentz
invariant states. These, as all elements |n, m) of our basis, must have divergent expectation
values for their energy and momentum in Minkowski space.

The probability that a Rindler observer in region I, while looking at the state |2),
observes n; particles with energy @ and transverse momentum k in region I is

Py =Y <Qlny, mypy {ng ny! Q) = (£, 17 = (L= 27) 7 Te72me, (3.45)

ni

This we can write as
P, = ¢ PED, (3.46)

where E = no is the energy, and § = 1/T can be interpreted as a temperature. F is then the
free energy, ¢’f = (1—e 2™)™!. One concludes that the Rindler observer detects particles
radiating in all directions at a temperature which is in his units of energy

T, = 1/27. (3.47)
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Now consider the central region in the Kruskal space of a black hole. For the distant
observer this is just Rindler space. Now as a matter of fact all observers must see matter
here, namely the ingoing objects that produced the black hole, at a very early time. If at
later times nothing more is thrown into the hole then the Rindler observer will see the
incoming particles approach the state |0, 0>, which, as we remember, also corresponds to
a highly energetic state in the local Minkowski space. But all these particles are incoming
particles. In the local Minkowski frame no particles are seen coming out. To describe those
we need the state Q). An observer at late times in the Kruskal region 1 will think he sees
this state {2). This is why we expect him to see rad ation corresponding with a tempera-
ture T. Notice that the time unit in Eq. (2.31) differs by a factor 4M from the one in (2.35).
Therefore, in natural units, the temperature of the expected radiation emitted by a black
hole is

Ty = 1/87M, (3.48)
This is the Hawking temperature [2].

4. The gravitational back reaction

There is something very peculiar about this result of the previous Section. It namely
suggests that any observer who looks at a black hole long after the last objects have been
thrown in, will see a thermodynamic mixture of quantum mechanical states, to be described
by a density matrix,

0= NLY inpe ™y, 4.1)
ko M
where N is a normalization factor. After all, we must assume that the labels ny correspond-
ing to particles in region II are irrelevant to him. Only with this matrix ¢ we can reproduce
the probabilities (3.45). But what if we started with one pure quantum mechanical state
describing imploding matter? Does then also the density matrix (4.1) evolve?

Suppose now that a black hole is simply the most compact, and in some sense the
most general, object with a given total energy. Suppose that in all other respects black
holes may be assumed to obey the ordinary rules of quantum mechanics. This then would
‘imply that when the state of all particles that made up the black hole in some implosion
process were completely specified, then also the state of all outgoing particles should be
well determined, probably as a complicated linear superposition of many different “decay
modes™. In particular, it should not be a mixture of different states in a density matrix
g unless

Tro?=Tro =1, 4.2)

=

which means that it can be seen as a single pure state, if the initial state was pure as well.

Apparently, this is not what one finds when applying standard quantum field theory
in the vicinity of the black hole horizon. One finds a thermal spectrum (4.1), to be normal-
ized by

Tro =1, 4.3)

<
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so that Eq. (4.2) cannot be obeyed. What is wrong in standard quantum field theory near
a horizon?

First of all we note that the difference between pure states and mixed states will be
more and more difficult to detect as the black hole becomes larger. The final state could
be pure but so complicated that for all practical purposes it can be handled as a thermo-
dynamical mixture. By the time a black hole is so large that observers can be sent in nobody
will ever detect the difference.

For small black holes however the question of quantum mechanical purity is extremely
important. It seems then that (4.1) can only be an “approximation”. Is there a way to replace
it by a single realistic wave function?

What was ignored in the standard derivation was the gravitational interaction between
ingoing and outgoing matter. But this interaction is crucial. Suppose a particle goes in
with momentum p, at time ¢ = ¢;. After a long time, ¢ = £, > f{, we look again at the
black hole and observe a Hawking particle with momentum p, coming out. At some time
to, roughly halfway between ¢, and 7, the two particles must have met, that is, they were
at the same distance from the horizon, one entering, the other leaving. Both were accompa-
nied by a gravitational shock wave [3]. Particles and shock waves collide at t = #,. The
center-of-mass energy with which this collision takes place can easily be estimated:

Elm = =5 = 0[ppye™ ], (4.4)
increasing far beyond control when
t—t; > 4M. 4.5

In reality collisions with these energies do not take place, or rather, they are not seen.
The ingoing particle does not see the outgoing particle but experiences a surrounding
vacuum. However, as soon as we introduce a detector at ¢ = ¢, that can distinguish different
modes of outgoing particles, we have trouble at t = t,, because the detector has split up
the wave function in pieces that may contain these objects, hitting the ingoing particles
with tremendous center-of-mass energies.

A black hole can be in a pure state if all particles that produced the hole in some
distant past were in a pure state. We now notice that when observations are made at much
later times, we are tempted to use elements of Hilbert space that are extremely singular
in the past, and decomposition of the ingoing states into outgoing modes will be made
extremely difficult because of this. Since the standard derivation of the Hawking effect
ignores these gravitational self-interactions, we believe that the resulting density matrix
¢ of Eq. (4.1) cannot be trusted completely.

Consider a black hole that was formed by a collapse at ¢ = ¢, and an observer at
t = t, has decomposed the wave function as just described, by looking at particles emerging
from the hole at various angles. If we follow these particles back in the past, we see that
for a while they stick to the “past horizon”, but then, at f & t,, they are released. By that
time they have energies roughly described by Eq. (4.4), and, coming from different direc-
tions they collide. The Schwarzschild radius corresponding to (4.4) is large, and hence
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a space-time singularity at ¢ = ¢, is now unavoidable. Thus there will be a time-reflected
black hole in the past. This is sometimes called a “white hole”.

Considering some Cauchy surface at ¢ = t,, we see that quantum mechanical super-
positions must be allowed between states that contain different kinds of black hole singulari-
ties both in the future and the past. We also see that the distinction between “primordial”
black holes and black holes that have been formed a relatively short time ago disappears,
and our view upon black holes is entirely symmetric under time-reversal.

Since the arguments presented in this Section are essentially independent of the assump-
tions mentioned earlier we believe that they provide further support to the idea that a black
hole can decay entirely into “ordinary” particles. The concept of a naked remnant singular-
ity [4] does not fit very well in this picture.

5. Black holes and orbifolds

With the considerations of the previous Section it has not become easier to set up
some Hilbert space for black holes. Although we cannot rule out that simply by doing much
more carefully all our calculations, taking all gravitational back reactions accurately into
account, a much more satisfactory, quantum mechanically coherent result could emerge,
there are reasons to suspect that the rules of quantum mechanics, whenever there is a hori-
zon, must be reformulated in a rather drastic way. One reason is that if our initial field
theory would have a U(1) invariance and a corresponding conservation law, such as baryon
number conservation, then our black hole cannot possibly obey this law. The rules do not
seem to forbid us from throwing in arbitrary amounts of baryons, yet we want a black hole
that can only occupy a finite number of quantum mechanical states. Thus, perhaps only
a finite subset of all quantum field theories allow us to describe decent-looking black
holes.

In Ref. [5] this author attempted to construct a preliminary model. First we must
ask in what way such a model will have to deviate from standard dogma. Since standard
background field theories do not provide us with any clue as to what to do with the space-
-time singularities mentioned in the previous Section (in particular how to superimpose
them), we will have to look at the information stored away in the black hole differently.

Suppose a black hole, formed at ¢ = ¢,, is observed at 7,, where now ¢, is allowed
to tend to infinity. The wave function at t = , will then be completely distorted, and a huge
singularity will completely screen all of space-time at earlier times. What is obtained is
a space-time with a natural boundary. The particles moving along this boundary are only
seen at ¢ = t,, but the shape of our space-time boundary will be completely determined
by the way infalling particles have affected the space-time metric. Of course, our boundary
coincides with the future event horizon, which is now well defined just because we allowed
t, to go to infinity.

Here we think we may have a clue on how to recover information that disappeared
into the black hole: perhaps the “shape” of the horizon determines the wave functions
of the outgoing particles. How do we detect this shape?

Consider the locus # of all points in space-time from which information can escape
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to infinity. The boundary of # is the future event horizon &. On generic points of & we
‘have the situation that information (light) can escape in only one direction. This is the
zero eigenvector of the induced metric on &. On these points & is a light-like surface.
However, there are singular regions on . These are the points from which light can escape
in two directions (a two dimensional subset of & to be called 77), and there will be a one
dimens ionalset % of singular points (forinstance boundary points) in .7, where the situation
may be even more complicated.

When wWe look at a black hole at a late time ¢, we are actually selecting one of these
light rays on &, which form a two dimensional space 2 = & | R*. Now our subset J of
& connects in a unique way fwo light rays in &. This means that  induces a mapping
of 2 into itself in the sense that pairs of points of 2 are being identified. The subset % of 7
may give some triple identifications. Thus, with exceptions at the singular points %, we
have a mapping of the form Z,. If, from a certain moment ¢ on, nothing is thrown into
the black hole, this mapping will remain unaltered, and we imagine that this Z, may specify
the particular state our hole is in. Notice that

T =22, 5.1

so that J is an orbifold. It is this 7 that depends uniquely on all information that went
into the black hole. One might conjecture that the dynamics of this orbifold determines
the black hole’s fate. :

In an earlier paper [6] we speculated that the dynamics on & could be related to string
theories. Indeed we have a two-dimensional world here, and the equations for the fluctua-
tions on J resemble the string equations very much. Unfortunately,  is Euclidean,
whereas the string’s world sheet has the Minkowski signature. Originally we thought that
this was a harmless distinction, to be made undone by some Wick rotation, but if a correct
formalism exists that connects our J space with some (super-)string world sheet it has not
yet been found. ’

6. A new Hilbert space

In what way will the shape of the orbifold F be represented in the wave functions
of outgoing particles? The details of this will be difficult to guess, but a few observations
may help.

Let us compare two states in Hilbert space. The second is the same as the first, except
for one extra particle going in at ¢ = ¢,. That portion of the horizon & that corresponds
to times ¢ < ¢, in these two states is not in exactly the same position. The displacement
can be accurately calculated [3]:

u(Q) = f(Q, Q)p;n(Q), (6.1)
M) 31— 4)f(Q, Q) = 87G8(R, Q'), (6.2)

r
Q= (6, (P); AQ = 5§+Cot 969"“ maé, (6.3)
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and p;, is the momentum of a particle coming in at solid angles €', in some suitable units;
u is a Kruskal coordinate (the other Kruskal coordinate will be called v). 6(€, ') is a two-
-dimensional Dirac delta.

Let now p,,, be the momentum of an observed outgoing particle. Then naturally the
displacement (6.1) will give its wave function an extra factor

— iPout(2)5u(£2)

e — e_ipoul(ﬂ)f(ﬂ’gl)ﬂin(ﬂ’). (6‘4)

If we suppose that the shift Ju is all information we will ever get back from the ingoing
particle, then (6.4) must give the amplitude for the process. What have we found out?

The fact that 7 is an orbifold rather than a manifold has not been used here, but
let us first describe the Hilbert space in which (6.4) is an acceptable amplitude. We have
functions p;,(0, ¢) describing the ingoing momenta, and p,, (0, ¢) for the outgoing mo-
menta. These are operators depending on 6 and ¢. The angles 6 and ¢ are continuous,
but we will quickly replace them by a dense but discrete lattice in Q space. This will be neces-
sary in order to make our expressions well-defined. Thus, the Dirac delta will have to be
thought of as a Kronecker delta on some dense lattice.

In the usual Hilbert space of particles we expect

[pin('Q)’ pin(gl)] = 05 (65)

and the same for the outgoing particles. The conjugated ;operators are 0;,(Q), #,,(Q),
with

[Pin(2), via(R)] = —i5(2, Q). (6.6)

Now we see that Eq. (6.4) suggests

Uou(2) = = [f(2, Q)pin(Q)*Q, 6.7
l’in(g) = jf(Qi Q’)poul(Q’)dZQ,J (68)

obtaining
{Pou(Q) [P;n(Q)) = Ne™ HPou@I@20pinl@04000 (6.9)

where N is a normalization factor.

Notice that (6.9) is an entirely acceptable unitary “‘scattering matrix”. Unfortunately,
the Hilbert space generated by (6.5) and (6.6), in which this matrix acts, is quite unnatural.
It resembles a bit the Fock space of in- and out-particles in a mixed coordinate-momentum
representation where the transverse coordinates Q and the longitudinal momenta p, are
specified for each particle. What is unusual about it is that at every pair of values for the
angles 0 and ¢ we must have exactly one particle!

As physicists we might not be too much worried about this situation. After all, we
already suspected that the black hole will be surrounded by particles, possibly swimming
in a Dirac sea. Suppose we had a dense lattice in Q-space. Why not reshuffle those particles
a little bit so that there is exactly one for each point in this Q lattice? The answer is that
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it is not so easy to link this special Hilbert space to the space of real particles in the real
world. In particular the situation far away from the black hole will be difficult to handle.
Also, any such procedure will depend delicately upon the Q cut-off procedure used.

There is another reason why the need for an @ cut-oft should not surprise us. Tiny
values 42 can only be detected by particles with large transverse momentum. But these
particles will not only shift the horizon as given by (6.1) but also cause shifts in the trans-
verse direction. A difficulty here is that these shifts will produce more complicated forms
of curvature in space-time. As long as we cannot handle this situation precisely we will
stick to more crude Ansitze for a lattice cut-off.

A simple one-dimensional model for a quantum mechanically “coherent” black hole
is constructed in Ref. [5]. A single Dirac like particle bounces back and forth against the
horizon. It is found to display a discrete set of energy levels of the form l

v = 2nN/In (Ng/m?), (6.10)

for large N, where g is a “‘gravitational” coupling constant.
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