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A class of Dirac field models with non-linear terms in the form of fractional powers
of the scalar field invariants is discussed. The resulting equations contain a simple mechan-
ism which implies that the solutions have compact supports and form what may be called
soft or hard bags. The usual MIT bag is obtained as a limiting case (hardest bag). In the case
of interacting coloured and flavoured quark fields introduction of some terms weakly break-
ing the SU.(3) symmetry provides a simple and rigorous mechanism of quark confinement.
In several physically interesting cases this symmetry breaking may even not show up, so this
mechanism may be called “hidden symmetry breaking”.

PACS numbers: 12.40.Aa

1. Introduction

The problem of quark confinement within hadrons is still rather far from being com-
pletely solved and well understood. In order to explain apparent non-existence of free
quarks, the physicists have proposed several models starting from simple oriented strings,
rather strange potentials keeping the quarks together in white qq or qqq states, then even
more ad hoc constructed bag models, up to the most sophisticated field theory in the form
of QCD. Unfortunately, even QCD — in spite of several partial successes and its mathe-
matical beauty — does not provide a completely satisfactory solution of this problem
but rather suggests various possibilities for the mechanism of confinement.

Though QCD is constructed in a similar manner as QED or the standard model
of electroweak interactions, the physical situation of hadrons is quite different. In QCD
we are dealing with very strong interactions which make the otherwise very cffective per-
turbation expansions in general rather useless. Next, the fundamental particles, i.e. quarks
and gluons, never appear as isolated free particles and thus do not allow the construction

* Work supported in part by the Research Program CPBP 01.03,
** Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.

(203)



204

of asymptotic or scattering states. There is already enough experimental evidence for the
existence of coloured and flavoured spin 1/2 quarks with fractional electric and baryonic
charges predicted already by the first naive quark model that was based mainly on simple
group theoretical arguments. However, the evidence for the existence of the octet of coloured
but electrically neutral gluons is still weak. E.g. no glueballs or other exotic states predict-
ed by QCD have been established. The same applies to Higgsons which are introduced
in QCD to provide the mechanism of spontancous symmetry breaking and production
of non-vanishing masses.

The complex and still unclear situation sketched above justifies other attempts at solv-
ing the problem of quark confinement. Thus, in the present paper we assume that the
necessary strong interactions between quarks can be described without involving gluon
fields by suitable terms that are non-linear in the quark fields alone. Next — we observe
that the very concept of confinement contains two necessary ingredients: localization and
inseparability of the respective fundamental fields. In the mode! considered in this paper
localization means that the quark fields are different from zero only in small regions of
space occupied by extended hadrons with radii of the order of 10-'% cm. Inseparability
means that none of the quark fields can appear isolated from all the others but only certain
combinations of quark fields appear in nature in the form of “white” hadrons. It follows
that in particular the quark fields corresponding to different colours are inseparable.

Of course one can impose a priori a general phenomenological condition that all
observable hadrons be white or SU_(3) scalars. However, from the point of view of theory
such a condition is fully legitimate when applied to the imitial states, The emergence of
only white objects (hadrons) in the final state should then result from the equations of
motion and cannot be imposed as an additional requirement for the allowed final states.
In general, exact SU_(3) invariance imposed on the equations of motion and the choice
of only white hadrons in the initial state implies certainly that the final state must be also
white as a whole. This, however, does not exclude emergence in the final state of several
well separated coloured objects whose colours are so superimposed that the whole system
remains white. Thus it is feasible that not only localization but also inseparability of colours
require suitable dynamics involving even some symmetry breaking.

In this paper we shall study the attractive possibility of describing the structure of
extended hadrons in terms of solitons, i.e. non-dispersive, shape preserving wave packets
which are solutions of suitable non-linear field equations {(NLFE). Obviously, the main
aim consists in finding a suitable system of coupled NLFE which for finite values of the
charges Q and energies E have only soliton like solutions satisfying definite stability, localiza-
bility and inseparability conditions.

2. Dirac solitons on compact supports

We shall start from a possible solution of the problem of localization for a single
Dirac spinor field. Consider a Lagrangian density of the form

L = —ifdyp—pFy—bx"" gy M
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with
k=lpy, O0<b O<a<il, pu= tiu. 1)

The corresponding NLDE
—ify = W)y with W = u+abx®™! )

contain a function W(x) that can be interpreted either as the field dependent effective mass
or, equivalently, as an effective scalar potential of forces. It has the peculiar property of
tending to +o0 whenever one approaches the surface x = 0. This produces strong forces
repelling the field from such surfaces. This implies also some sort of the true “horror vacui”,
i.e. flight from the vacuum where y = 0 and formation of non-dispersive lumps of field
matter.

NLFE with such a form of the effective mass have been first proposed and studied
by the author some time ago [1, 2] for both the Dirac and Klein-Gordon egs. (NLKGE)
in the ordinary 3+ 1 dimensional Minkowski space. Several physicists investigated the
properties of such types of NLDE and NLKGE finding some explicit solutions for NLKGE
in 1+ 1 dimensions and performing interesting numerical calculations [3-8]. Of particular
interest is the paper by Morris [3] who gave a rigorous proof that all solutions of such
NLKGE corresponding to finite values of Q and E are nondispersive. Unfortunately, no
similar proof has been given for the respective NLDE.

If the solution y of (2) is supposed to describe an extended particie of definite spin
in a rest frame, it must transform irreducibly under rotations. Because of the non-linearity
of the Eqs. (2) this condition can be satisfied only for j = 1/2. Moreover, since we are most
interested in finding shape preserving solitons we shall restrict our search to stationary
solutions. Thus the Dirac spinor that satisfies both these conditions must have the following
general form

—ig(r)y

w7, 1) = {57 exp —iwt (3)
7f(r)x

c ] 1
r= (J)’ lel2+1d)? = 1.

The radial functions g and f satisfy the Egs.:

where

g +(@+p)f+abig>—f3*"f =0,

[+ ~f—f—(wﬂu)zﬁabigz—f’i"’lg =0. 4)
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Both the numerical calculations as well as the physical discussions become much simpler
after performing a scaling transformation proposed by Mathieu and Sally [9]:

o — 122 w—p\ /2
G(R) = . g(r, FR)= e G &)
with
o+
R = (o—p)r, ~,'=~—‘u, 0 <o # (5"
w—u

The rescaled functions depend only on the dimensionless variable R and satisfy somewhat
simpler egs.

G +9F+a/G*—F*"'F = 0,
F'+2/RF-G+alG*—F**"'G = 0. (6)

Instead of four parameters a, b, y, w which appear in (4) the Egs. (6) contain only two
parameters: a and y. Therefore, whenever necessary we shall write G, F,,. It is to be noted
that the dependence on b of the original functions g, f is contained in the scaling factor,
and that for a given model determined by the values of a, b and i # 0 the choice of the
value of y # 1 fixes the value of w in a unique manner. For models with ¢ = 0,1.e. y = 1,
the frequency is arbitrary, and hence in this case the dependence of g and f on frequency
1s also described explicitly by the scaling factor.

Explicit solutions of (4) have been found by the author [1] for arbitrary y < 0, and
1/2 < a < 1 but only for definite w = —pu >0 and definite b = b(u, a). Expressed in
terms of G and F they have the form

Goi(R) = Cyu(1— RZ/RS‘,)“/(Z - 2a)
Foa(R) = R/Ro,Gou(R) (7

for R < R,, and vanish for R > R,,. Here
ROa =TT, COa = (3‘"2&)1/(2—20). (7’)

This means that the Dirac field described by this solution is different from zero only within
a sphere of radius
3-2a

roalt) = ——— (7

0a(tY) 2u(1-a)
and thus has a compact support. For the whole indicated range of a the radial functions
vanish for r — r,, and thus can be matched continuously with the vacuum solution
G = F = 0. However, for models with g < 2/3 the first derivatives become infinite at the
surface of the sphere.
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Numerical solutions presented in {9] for y = 1, 10, 100 and several fractional values
of a show a similar behaviour. They all have compact supports specified by definite radii
r,o(1) at which they vanish. The value of a at which the sharp drop of the radial functions
occurs, depends on y but the general properties remain the same. The models for which
the first derivatives at the surface are finite (including zero) will be called soft bags, and
those with a sharp drop at the surface will be called hard bags. For a given value of y the
bag is the harder the smaller is the value of a. Furthermore, the quoted numerical solutions
show that for a fixed value of y

lim r (1) = + o0 (®)
a1
as expected, because a = 1 means a linear DE with dispersing wave packets as the only
possible finite energy solutions.

Since the functions G, F depend on a smaller number of parameters the discussion
of physically interesting properties of the solutions of (4) is simpler. Of particular interest
is the fact that in the limit ¢ — 0 one obtains the MIT bag (as the hardest bag). Although
the radius of the bag turns out to be finite even in this extreme case, the radial functions
become discontinuous. However, @y is, in all cases considered, continuous and non-
-negative for r < r,,. Generalizing these results we shall assume that all finite energy solu-
tions of (4) have compact supports and have non-negative values of Py.

The relations to the MIT bag model can easily be seen from the form of Q and E valid
for stationary solutions

Q = [(g*+f)d*, E = wQ+b(l1—a)f(g*—f)d*. ©)
For a = 0 one obtains
E = Qw+bV.,, (10)

where V., is the volume of the bag characterized by the value of y and . This volume
energy is the most characteristic part of the MIT bag. In this limit the coupling constant
b acquires the physical meaning of some pressure. A more detailed discussion of this
limiting case for different values of ¢ and y and in particular the possible energy spectra
will be presented in another paper.

Concluding our discussion of the NLDE of the form (2) we may say that they provide
a rather satisfactory answer to the problem of localization. Choosing different values of the
parameters a, b and p one obtains a great variety of field models of extended objects. The
fact that in the limit of vanishing a one can have the MIT bag model seems to be very
encouraging, because this ad hoc constructed model had scored several successes but
definitely lacked a more profound field theoretical derivation. Though from the computa-
tional point of view the hard bag models with ¢ = 0 may be simpler that those with a # 0,
they do not have the important advantages of true field theoretical models with continuous
solutions. Thus it seems that the soft bags may be more useful for the description of extended
but well localized non-dispersive hadrons and hadron-hadron interactions.
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3. Inseparability of colours

Let us now investigate the second necessary condition of quark confinement, i.e. the
requirement of inseparability of 3 quark colours. We shall make a tentative assumption
that both the internal structure of hadrons as well as their interactions can be described
by a suitable set of classical NLDE for the fundamental quark fields

wcf(x)’ ¢ = 1’ 29 3: f: 1: s 69 (11)

where ¢ and f are respectively colour and flavour indices. In principle some sets of NLDE
involving only quark fields may emerge at least as approximations of QCD after suitable
elimination of gluonic fields. It is also a priori not excluded that the coloured vector currents
constructed from the quark fields alone may simulate the presence of an octet of quasi-
-gluons.

As the starting point let us take the Lagrangian of the strong interactions in the form

L = ; 5; (= iPefY 0uter — HyPesPer — U Pes¥er) (12)
with
K = I;g:'l—‘cf%ﬂ
that is invariant with respect to SU_(3) and 6 Abelian U(1) groups which guarantee con-

servation of each flavour. Inspired by the results concerning the problem of localization
for one Dirac field we take tentatively U(kx) of the form

U(x) = br*~ .. (13)
The resulting egs. of motion
Diy,=0; D;= iyaé”’—}-yﬂ-abh“"i (14)
imply 9 x 6 conservation laws for the vector currents
Joer = BV Wers  Oudees = 0. (15)

As a direct consequence of (15) we obtain the respective conservation laws for the
observable white currents

0.j3 =0, Guje=0, 8,j;=0, (16)
where
.’; = ZJ:cfa jf; = ;j;a .’Z = ;efj;-
The remaining conserved octets of coloured currents are redundant from the experimental

point of view because they have been never observed as isolated objects. Coloured currents
may appear within hadrons but then there is no reason for them to be conserved.
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In the considered class of models, involving only quark fields, the rigorous SU.(3)
symmetry allows for creation in-the hadron-hadron collision of several coloured isolated
objects provided that the final state remains white as a whole. For example, suppose that
only one quark field, say y,, is different from zero in some region of space and time, all
the other fields with ¢ # 1, f # 1 being equal to zero. Then the set of NLDE (14) reduces
to one NLDE of the type (2) discussed in the previous section. This means that well local-
ized, isolated, non-dispersive solutions representing one quark or antiquark carrying
a single colour can appear in the final state.

This undesirable resuit follows from the assumed rigorous SU_(3) symmetry and
cannot be removed by choosing another form of the non-linearity. Therefore, we must
conclude that at least for the models that involve solely quark fields the only way out of
this difficulty is to break the rigorous colour symmetry.

In order to achieve this goal we shall add to the Lagrangian a symmetry breaking term
that has to fulfill two important conditions: all the conservation laws for the white currents
must remain valid and the resulting equations of motion should imply inseparability of
colours.

Consider the following additional term that breaks the colour symmetry:

L' = A+B, (17)
where
A= h/4z Z ({chy)cfwu-}c'fQ/)c’f)zs

J g

B = Z Z dcc’lﬁcfwc'f’ (17')

T oFo
dy, = dy3 =dy = id, d..=df, d>0.
It can easily be seen that %’ violates SU(3) symmetry but conserves all flavours. Thus the
new field eqs. acquire the form
Dyyyy = h2Q2P ;910 — PayPar — Par¥ap)Pis +id(Yar— yay)- (18)

The other two egs. can be obtained from (18) by cyclic permutation of the colour indices.
We shall prove now that the modified Egs. (18) imply inseparability of colours. Con-
sider a finite compact region of space and time, e.g.

S={(x):reS; tySt=to+4t,

where At is a small but non-vanishing interval of time and S¢(¢) is the interior of a sphere
with radius ¢ whose centre may move.

Definition: The three colours are called separable if there exists a region S where
for any flavour only one or two of the coloured quark fields are different from zero, while
the remaining coloured fields vanish in S, i.e. if either

I: p,{x)#0 for some xe§ and some i

Yo;(X) = pa(x) =0 for all xe S, and all j and K
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or
I: p(x) #0, w,i(x) #0 for some xe S and some i,j

wi(x) =0 for all xe S and all k.

Conjecture: All finite energy solutions of (18) corresponding to integer values of the total
charges of the system have compact supports.

If this is so, one can always find a region § or several disconnected regions of this
type which have the property that the quark fields can be different from zero only within
these regions.

Consider now the form of our eqs. of motion (18) in these two cases:

Case I:
A= h;(@u'/)xf)za B =0,

Dyw,;=0, 0= —dAy,, O0=Iiddy,, =0.
Case II:
A=h ; i(lf’lf%f)z“*‘(@zf‘/’zf)z'“(@’1]1/"1f) (Basw20)ls

B=id ; (Prs¥2r—P2s¥1p)s

Dy = h2Q20, w1~ P2iw20) ¥ 1+ idy s
Diya; = h{2Q2P 92— P 1) ¥2i— idy
0 = id(y;i—v;)

It can easily be seen that in both cases our assumption that one or two colours can be sepa-
rated from the remaining ones leads to contradiction. It follows that our modified equa-
tions (18) indeed imply rigorously inseparability of colours provided that our conjecture
that all solutions corresponding to finite energies and finite and integer charges have com-
pact supports is correct. We do not claim that the proposed way of achieving localization
and inseparability of colours is the only possible or the best one. The main aim of this
paper was to show on an explicit example that quark confinement can be described by
a set of classical NLDE without involving gluons and quantization of fields.

1t is interesting to note that if all solutions of (18) have compact supports the presented
proof of inseparability of colours is valid for arbitrarily small symmetry breaking terms, i.e.
for arbitrarily small but non-zero values of the constants 4 and d.

The Eqgs. (18) have an interesting set of solutions which obviously satisfy the insepara-
bility condition and moreover make the SU (3) symmetry breaking terms vanish:

‘/’1/(") = Pyp(x) = 1}’3f(x) = V’f(x)- (19
In this case the Eqgs. (18) reduce to the SU.(3) symmetric form

(iy¢6“+uf+abfc”—1)1pf =0 with & =3) gyl (20)
f
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For any solution deviating from the symmetric form the right hand side of (18) that implies
inseparability of colours does not vanish and must be taken into account.

Consider now the general expressions for the charges Q, and the energy for the sym-
metric solution (19)

Qs =3[ yry,d’r, (21)

E=({i3Y oy, +b(l—a)"" '3 §,9,}dr. (22)
! !

The Eqgs. (20) have stationary solutions ¢, = @(r) exp (—iw st) with frequencies w , which
in principle may be different for each quark appearing in the considered hadrons. Hence,
for stationary solutions one obtains

E =% w0,+b(1—a)3 [} Fppi "t Y Fp,dr. (23)
7 7 7

Again we see that in the limit @ — 0 one obtains the characteristic volume term of the hard
bag. Of course the sum over f'is to be taken cum grano salis, i.¢. it has to be extended over
such flavours that are contained in the considered hadron with the possibility of repetition
of the same flavour. In fact in the case of A*+, A-, O~ which contain 3 quarks of the same
flavour the set (20) reduces to one NLDE of the form (14) but with a rescaled value of the
coupling constant. However, this presents no problem and onc can take advantage of the
explicit or numerical solutions known for one NLDE of the type (14) which were discussed
in the preceding section. Further discussions of the more complex hadrons containing
several flavours will be given in another paper. Unfortunately, there is rather no chance
for finding explicit solutions of (20) in all cases of interest and one must resort to the use
of computers.

4. Summary

Let us sum up the attractive teatures of the class of field models discussed in this paper:
1) They allow for a field theoretical description of both the internal structure of hadrons
as well as of hadron-hadron interactions. 2) The solutions have compact supports (soft
or hard bags). 3) They include the conventional bag model as a limiting case (hardest
bags). 4) For some special subclasses some explicit solutions are known (apart from nu-
merical solutions). 5) The models involve strong forces which keep the fields well localized
and have a simple physical interpretation. 6) They satisfy the necessary energetic stability
conditions [6]. 7) The set of NLDE for coloured quark fields allows for a rigorous proof
of quark confinements if SU(3) symmetry is weakly broken. In physically interesting cases
this symmetry breaking may even not show up.

We should like to remark that several authors have tried to describe extended particles
as soliton solutions of various NLFE. However, it seems that none of these models has so
many features that are desirable for the description of hadrons as those discussed in this

paper.
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