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Second Born approximation corrections to electron scattering by nuclei with arbitrary
spin are considered. Explicit integral expressions for the charge, magnetic dipole and inter-
ference differential cross sections are obtained. Magnetic and interference relative correc-
tions are then investigated in the case of backward electron scattering using shell model
form factors for nuclear targets “Be, '°B, and *N. To understand exponential growth of
these corrections with square of the electron energy K3, the case of electron scattering by
SLi is considered using monopole model charge form factor with power-law asymptotics.

PACS numbers: 25.30.—c

1. Introduction

Elastic and inelastic electron-nuclei scattering is a useful tool for studying nuclear
structure. Usually, for light nuclei the first Born approximation (FBA) well describes
clectron scattering. Improved precision of the experimental data available enables one
to take into account different corrections to FBA. One of the very important among them
is the second Born approximation (SBA). These corrections in the case of Coulomb scatter-
ing were computed by Dalitz [1}, and for extended nuclei they were investigated by several
authors {2-5]. In all of these works the static and dispersive corrections were studied for
spinless nuclei only, in order to simplify the problem as well as to search for these corrections
in the most sensitive range of ¢2 near the diffraction minimum or to explain the nature of
this minimum [6].
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In the present study, the case of electron scattering by nuclei with arbitrary spin is con-
sidered. The formulas are obtained for second Born correction which contain pure electric,
pure magnetic and interference terms. The last is absent in the FBA, and was first considered
in our earlier paper [7].

In the case when the nucleus possesses charge and dipole magnetic moment only we
give an explicit expressions for all of these three types of corrections through appropriate
nuclear form factors. The formulas obtained are very simple and can be used in straight-
forward way to fit the experimental data.

2. Differential cross section

Neglecting excitation and recoil of the nucleus in the intermediate state, we write
the differential cross section of elastic electron-nucleus scattering as the sum of the first
and second Born approximations:
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Here, n = 1+2(K,/m,) sin? (6/2) is kinematic recoil factor, K, is energy of the incident
electron, m, is nuclear mass, 8 is electron scattering angle; 7 is nuclear spin with M;, M;
and M, — its projections in the initial, final, and intermediate states. The FBA and SBA
amplitudes are given by the following expressions:
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Here, the electronic tensor E*'(x) is given by:

E¥(x) = G(K')y(k+m.)y"u(K);
and the hadronic tensor H*'(¢,, 4:; Ko):
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In the above expressions the following notations are used: K = (Ko, K) and p = (p,, P)
(K’ = (Ko, K') and p’ = (py, p')) are the 4 momenta of electron and nucleus in the initial
(final) states; ¢ = K— K’ = p’ —p is the 4-momentum transfered to the nucleus; x = («,, ¥)
is the 4-momentum of the electron in the intermediate state; ¢, = K—x, ¢, = x—K’,
q = q1+4q,; Ze is the electric charge of the nucleus; « = 1/137. For current matrix ele-
ments the following multipole expansions are used (n = g/|g)):

a’(q) = ?:azm(liil)Yzm(ﬁ),
a(q) = fx\: bR (g YR (h). @

The current conservation allowes one to exclude the longitudinal multipoles b{, ¥, and
with the account of T-invariance the nonzero expansion coefficients are given by the follow-
ing expressions:
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After appropriate summatjon and averaging over the spin projections in (1), the SBA
cross section can be represented as the sum of electric (E), magnetic (M) and interference
(EM) terms:

do® = do{P+do\ +dofiy. (5)

Taking into account only the charge and magnetic dipole moment of the nucleus we get
the following formulas for each of the three terms in (5):
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Here, F¢ and Fy, — charge and magnetic dipole form factors of the nucleus, u; —its
magnetic dipole moment; P = K+ K, A — screening parameter (the problem of Coulomb
singularity factorization when A — 0 have been discussed, for example, in [1, 4]). In (6b)
and (6¢) we have introduced also

oy = ¢k —2AKg)K', Ty = @R+2AK' DK,
. p? p?
®o = PX(k*—K3)+ (— —(Pic)) (— —(Pr)+2x? +2K2)

P12 = 7°(*—K3)+(99,.1) [4K0+(442 Dl

We must stress here that expression (6b) is free of sharp singularities at points g7 = 0
or g2 = 0 mainly due to well known relation between MI-reduced matrix element and
corresponding form factor <7 || M{?[| I> oc qFy(g?). This fact leads to noticeable suppres-
sion of the pure dipole magnetic contnbutlon do(?) in comparison to pure Coulomb do{?’
or interference do(z) contributions., This suppression must be much greater in the cases
of higher nuclear multipole moments Q2 or M3, so in what follows we may neglect them
altogether.

3. Electron scattering by light nuclei

The formulas obtained can be applied to investigation of SBA contribution using
both methods of numerical integration [7] and analytical computation in the framework
of definite model for nuclear form factors [5, 8].

First we consider shell model nuclear form factors with a harmonic oscillator poten-
tial [8]
bq? Pred

Fc(‘?) = (l—acéz)e_ ER FMI(Eiz) = (l—aM?iz)e_ z, @

which are commonly used in analysis of the electron scattering data for target nuclei
with mass numbers 4 << 4 << 16 [9]. Inserting expressions (7) into formulas (6a)-(6b)
one can show [8, 10] that SBA to FBA relative contribution grows rapidly as exp (bg>/4).

This feature is connected directly to Gaussian nature of the form factors in harmonic
oscillator model, and restricts validity of the SBA corrections to incident electron energy
not higher than several hundreds MeV.

Fig. 1 serves as fair illustration to this point. We consider here backward electron
scattering, because of the FBA cross section in this case is caused exclusively by magnetic
effects for electron energies K, = 50 MeV. The SBA contribution is given now by only
magnetic and interference corrections for which compact analytical expressions can be
obtained [10].
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Fig. 1. Energy dependences of the relative SBA corrections Rgym (solid curves) and Ry (dashed curves)
in backward electron scattering for shell model form factors: I — °Be, 2 — 1°B and 3 — “N, Dash-dot
lines show the region of diffraction zeroes of the form factors Fum

The energy dependences of the ratios
Ryem = da;:,)EM/da(i)
plotted in Fig. 1 were computed using following parameters of the form factors involved:
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Here, a, is oscillator parameter, rj = 0.427 fm? is proton rms radius. The nuclei considered
are characterized by:

°Be:Z =4, I=23/2, a,=167fm, «,=—1177, R, = —0.38,



=3, a5=142fm, «, = 1.8, R, = 0.32,
a, = 1.61fm, «, =0.404, R, = 2.48.

One can see that main contribution to SBA corrections arises from interference term,
which oscillates and increases rapidly in absolute value with electron energy.

The relative magnetic correction also oscillates, but its contribution for K, < 400 MeV
does not exceed 19%.

Exponential growth of the relative SBA corrections mentioned above is connected
with the fact that Gaussian form factors do not satisfy the axioms of the local field theory.
Such a growth is absent in the case of form factors with a power-law asymptotics.

To clarify this point let us consider phenomenological monopole model [5] for the
charge nuclear form factor
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Fig. 2. Angular dependences of differential cross sections for charge electron scattering by ¢Li in monopole
form factor model. Solid curves — FBA +SBA, dashed curves — FBA; /| — K, = 500 MeV,

2— Kp = 800 MeV
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One can show that (9) will have appropriate quark counting power-low asymptotics
Fq») = (1g*)" "' only if g, = Cy181+Ci282, k = 3,4, ..., n, number of quarks, n > 4 and

b2 — b
R N A
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Evidently, normalization to unity F(0) = | fixes one more parameter, namely g,, so that
for equidistant pole approximation b7 = bg+(k—1)h* we have only three free model
parameters: b3, h%, g,.

Form factor (9) can be fitted to experimental data available on charge electron scatter-
ing to fix the values of these parameters. Using data on °Li for K, = 200 MeV [11] we
get in FBA: b3 = 24fm™ %, h? = 42fm™?, g, = 14.7 with ¥* value 11.09.

Straightforward integration of (6a) along with form factor (9) yields a logarithmic
expression for pure charge SBA correction. This behaviour is consistent with field theory
expectations.

Fig. 2 shows influence of the SBA correction on the differential cross section of the
electron charge scattering by °Li. The calculations were performed in the framework of
monopole model and include not only interference of SBA and FBA amplitudes (6a) but
also square of the SBA amplitude.

We may conclude now that SBA corrections to elastic electron scattering shift the
position of the cross section diffraction minimum in the direction of smaller ¢*. This shift
results in reducing of the cross section below and in its picking up over the minimum point.
Such a deformation of the cross section will change the values of the form factor parameters
extracted from experimental data approximately by 109 in magnitude.
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