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It is argued that the gauge symmetry can be broken spontaneously in the infinite di-
mension limit.
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- The mean-field approximation provides a useful tool in analyzing various lattice
models. It is also known or believed to become exact in some limiting cases as for example
the long-range [1], many component [2] or high-density [3] limits. The gauge models pose
special problems. For example, the many-component limit of the gauge Potts model can
be accurately described by the mean-field theory only after some gauge-fixing [4] or by
allowing slightly larger class of trial measures [5]. The reason is that usual choice of trial
measures in the form of the product of independent measures for each degree of freedom
explicitly breaks the gauge invariance. Such breakdown manifests itself often in the viola-
tion of the Elitzur theorem [6] stating that the gauge system cannot magnetize spontane-
ously, whereas meanfield approximation allows the spontaneous magnetization. In spite
of this confusing state of matter the mean-field method gives surprisingly good results
in the case of gauge theories [7] and it was strongly advocated by Droufle et al. {8] who
proposed also the method of circumventing the above difficulty. Roughly speaking this
method consists in representing the mean-field approximation as a saddle-point approxima-
tion and summing over all degenerate saddles resulting from the gauge symmetry. This
procedure restores the gauge symmetry and the validity of the Elitzur theorem is granted.
On the other hand, it must be remembered that the mean-field theory can be exact only
after some limit has been taken; it is not clear whether the Elitzur theorem survives this
limit.

The crucial point in the proof of this theorem [6] is the assumption that the local gauge
transformation in one site affects only finite number of degrees of freedom. This is obviously
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not the case in the limit of infinite number of internal degrees of freedom: “large N*’ or
the limit of infinite dimension. In fact, in the former case it was shown [9] that the gauge
symmetry can be spontancously broken. We argue below that the same holds true in the
later case. We consider the d-dimensional hypercubic lattice A consisting of N sites i, Nd

links, N(‘zi) plaquettes p etc.; the periodic boundary conditions are imposed. We define

the Z, gauge theory as usual: o, is the spin variable sitting on the link / and taking the values
+1; the gauge transformation reads o, — ¢,0,0;, where the sites i, j are the endpoints
of I and ¢, 0; = +1. We define the free energy per one degree of freedom as

1
F,= lim — —logZ, 1
d a T Ndp g (N

Z= % exp(=pHo), B=(kD"
a=x1
here H, is some gauge invariant hamiltonian, i.e. the function of plaquette variables,
6p = [] o, and the free energy in the limit d - o
lecP

F, = lim F,. @
d-> o

For the above limit to exist the coupling appearing in H, must be scaled appropriately.
Typically if any link couples with the strength J to ~d neighbours, we must replace J by
J/d etc. Let us consider the fixed set of all gauge equivalent configurations. It is completely
determined by choosing the set of frustrated plaquettes (6, = — 1) and can be characterized
as follows: choose the Cayley tree T in A and fix the gauge by 6, = 1 for any /e T’; then
solve for other links / determining finally the representative configuration {,}. Any other
configuration under consideration can be written as

oy = Qi&lgj' (3)

To break the gauge symmetry we couple each o, to the external magnetic field 4. The
hamiltonian becomes

]

Notice that h need not be scaled'. Let {(o,), y4 denote the expectation value of ;. Elitzur
theorem states that

lim lim (6, )ynq =0 &)

h=0 N~

for any d. We argue below that at low temperatures

lim lim lim (o )ynq4 # 0. )
20 d-xw N-x

' For h < 0 we choose all o; = —1, and the conclusions remain unchanged.
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Consider first the simplified model. H, is such that there is an infinite energy gap between
the ground state {op = | for all P} and the first excited state.
The general expression for the partition function which can be written in the form

Z =} exp [—BH(a)] Z exp [Bh ). oi0ie;] ()
{an} e}
reduces to one term corresponding, according to our prescription, to ¢, = 1 for all /. The
mean value reduces to the correlation function of the Ising model with the coupling /# and
with no external field

CGinva = 27 exp [~ BHAD] T exp [Bh Y, 0i0/]eueso = COutiii (8
{e:
This will vanish if we let 2 — 0 after taking N — cc. Let us however take the N - o and
then d — oo. It is well known [10] that if we take the limit d — oo for the Ising model we
should scale # or 2 by d~*. In other words, in the case under consideration the limit d — «©
corresponds to the infinite coupling or zero temperature. But then {g;0;> — | (this
is proven rigorously in the Appendix). Taking finally the limit # — 0 we get

lim lim lim (o, >ynqs =1 ®
h=>0d>o N~w
Although this result concerns a very simple model it is not quite trivial because as we
stressed above the Elitzur theorem is valid for any gauge-invariant hamiltonian. So we have
shown that in the limiting case d — oo the validity of this theorem does depend on the
choice of the gauge-invariant hamiltonian. Moreover, it is easy to see that Elitzur theorem
is true for any gauge-invariant set of configurations not necessarily all. Let us consider
now the conventional Z, gauge theory. The hamiitonian reads

Hy = — ;ap, op =[] o: (10)

iedP

We have (taking /;e T)

Oonng = Z° Z exp [~ ﬁHo(O'x)] Z exp [Bh Z qu- i0@jo ()

{en

For any fixed gauge-invariant configuration {c,} we are now dealing with the spin system

described by Z exp [BA Z 0,0;0;]; it is now no longer purely ferromagnetic and there are
{e1}
some anti ferromagnetic couplmgs corresponding to o, = — 1. However, as the tempera-

ture lowers, we expect the configurations with small fraction of frustrated plaquettes to dom-
inate. With our conventions concerning the choice of the representative configuration
{o)} this corresponds to the small fraction of links with &, = —1. The corresponding
spin system becomes then ferromagnetic and one can expect that again after taking the
limit d — co the correlation function points to the positive value independent of A. If this
scenario works, the infinite dimensional gauge system magnetizes spontaneously at low
temperatures contradicting the Elitzur theorem. Let us note that the above results do not
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contradict those of Drouffe et al. [8]. To carry through their argument concerning the
summation over the degenerate saddles (which is obviously invalid in the case of global
symmetries) one has to introduce small symmetry breaking field and essentially repeat
the Elitzur’s argument. Also the contribution from the degenerate saddles is of the

1
order — [8].
p (8]
I would like to thank Dr P. Kosinski for many important comments and stimulating
discussions.

APPENDIX

We prove here that if {6,6,) , 4 ; denotes the correlation function for the Ising model
on d-dimensional hypercubic lattice A with the coupling J then

llm Iim <0a0b>A,d,J = l. (12)

d=w A

Let / be the link with the endpoints @, b and P the set of 2 (d—1) plaquettes having / as
a bordering link. Consider the hamiitonian H’ defined as follows

H' = - Z J;G'io'j, (13)
]
where

J = J if I belongs to the border of some plaquette from P
' 7 ]0 otherwise.

One can easily calculate the correlation function for this mode! hamiltonian

[ (1—x3 2(d-1) 1 —x3\2¢-D

1—{—= +x| 1+

, 1+x3> ] [ (l+x3) ]

<0aab> = r 3\ 2 7' 3 (14)

1—x\26-1) 1 —x\2E-
1+ [ —= +x|1-
(e -G

where x = th fJ. Now, it follows from the correlation inequalities that

<%%>A,d,1 = 0,0p)

and

lim <Ua%>4,d..r 2> 0,0

Ao

Using the Eq. (14) and taking the limit d — oo we get (12).
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