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A superparticle is defined as an object classically described by the position four-vector
and a Dirac bispinor, both treated as one-dimensional fields dependent on proper time.
When quantized, they become Bose and Fermi quantum-mechanical operators, respectively.
Dirac constraint method is used to propose two options for the first-quantization wave
equation. Two one-dimensional broken supersymmetries, both connected with the proper
time, are introduced to define dichotomic charge states of the superparticle. Then, spin-1/2
states of such a superparticle form four charge doublets that may be interpreted as four lepton
generations, The lower bound for mass of the fourth-generation charged lepton is 5246 MeV.

PACS numbers: 11.10.Qr

1. Introduction

We will call a superparticle a hypothetical physical object described classically by the
position four-vector x*(z), u = 0, 1, 2, 3, and a Dirac bispinor y,(z), « = 1, 2, 3, 4, both
dependent on the proper time 7. In general, such an object is not (and need not be) super-
symmetrical in four dimensions’. Instead, we shall introduce two one-dimensional broken
supersymmetries connected with the proper time. They will be responsible for the existence
of dichotomic charge states of our superparticle.

On the level of classical mechanics, we can specify the dynamics of the one-dimensional

fields x*(z) and y,(r) by postulating the action &/ = _( dv¥, where £ is an invariant lagran-

gian. To this end we make use of Dirac’s method of homogeneous velocities [1]. Restricting

* Work supported in part by the Ministry of Science and Higher Education within the research
program CPBP 01.03.

** Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-661 Warszawa,
Poland.

1 Such a four-dimensional superparticle may be called phenomenological, in contrast to the super-
symmetrical superparticle discussed recently by W. Siegel, Class. Quantum Grav. 2, L95 (1985); Nucl. Phys.
B263, 93 (1986) (cf. also L. Brink, J. H. Schwarz, Phys. Lett. 100B, 310 (1981); H. Terao, S. Uehara,
Z. Phys. C30, 647 (1986)), that may be viewed as a construction representing the pointlike, zero-mode
approximation to the ten-dimensional supersymmetrical superstring.
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ourselves to the case of a superparticle interacting with an external electromagnetic field
A, (x), our simple choice is

_ R . d
& = —[m+Mpy+3i FHy)* +1 APyy)’] Vit—es A+ip—v, )

where f(r) = df(z)/dr and y = (y*) = (8, Bx), while 8y = diag (1, —1, —1, —1). Here,
m, M, F and A are mass-dimensional nonnegative constants. The progress in this model
may coasist in establishing relations between these mass scales. Note that $(z)y*(z) with
P(z) = y*(z)p is a four-vector whose all components are real. The lagrangian (1) is real
up to the full derivative —Jid(py)/dr that vanishes when inserted into the Hamilton’s
principle d&/ = O with fixed ends. Here, 1 may be arbitrarily reparametrized leaving the
action invariant, so it is not necessary to have %2(t) = 1.

From Eq. (1) we get the following canonical momenta conjugate with x*(r) and y,(1):

0%
Pu= =
X
= [m+Mpy+5 FHv)’ +§ AFye)’] T‘:i +ed, @)
and
0¥
Ty = . = i, €))
The Euler-Lagrange equations are
d - 1 - 2, 1 - 2 x.u v
—{[m+Mpy+3 F(Py) +3 APry)'] = = eFux Q)
de Vx
(or p, = ex'd,A,) and
. d = 1 4= 22
i = —[M+Foy+3 A@re) ] ity =0, ®)

where F,(x) = 0,4,(x)—3,4,(x). Note that Eq. (5) implies
d d
—® = 0’ — (P = 0’ (6)
2 7Y 72 e

so that the effective mass in Eqgs (1), (2) and (4) is t-independent.
Since the lagrangian (1) is a first-order homogeneous function of %“(z) and ¥,(7), the
invariant hamiltonian

H = —p i +rgp,~% @)
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vanishes in the weak sense. On the other hand, Eqs (1), (2), (3) and (7) lead to

v Vi
m+ MPy+3 F(Pp)’ +3 A(Byy)

3 {—(p—ed)®

+[m+Mpy+3 F9)* +3 A@yp)*T*}
= —% - (p—eA)+ Vi [m+MPp+1 F@yp)*+1 AByy)?]. (8)
Thus, we get the constraint
—(p—ed)* +[m+Mpy+3 F(Hy) +1 APyp)*]? = 0 )]
or
H# = —% (p—ed)
+ViZ [m+MPp+1 F@y) +1 A@yy)*] = 0. (10)

Here, x%(z) is arbitrary. One may choose Xx2(t) = 1.

2. Quantum superparticle

On the level of quantum mechanics (or the first-quantization level), the dynamical
variables x*(1), p,(r) and v,(z), P,(r) become in the Schridinger picture the t-independent
operators x*, p, and y,, P, satisfying the following commutation and anticommutation
relations:

[xue pv] = "'iguv’ [xu’ xv] =0 = [pw Pv] (11)
and

'{Wan V_)ﬂ} = 6aﬂ’ {'pa’ 'Pp} =0 = {V—’as ‘T)ﬁ} 12)

(note that {y,, w}’ } = B.p). In this picture, the state vector ¥(z) fulfills the state equation
d

i—Y() = #P0) 13)
dz

but, in fact, it is r-independent, being subject to the “Klein-Gordon-type” constraint (cf.
Eq. (9)

{—(p—eA)’+:[m+MPy+3 F(Py)* +§ AFyy)*1*:}¥ = 0 (14)
or, alternatively, the “Dirac-type” constraint (cf. Eq. (10) with vx2(t) = 1)

HY = [~Pyy (p—ed)+m+MPyp+3 F:(py)*: +5 A:(@yp)*:]¥ = 0. (15)
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Here, in the latter case, we postulated? that the dynamical variables x*(r) became the opera-
tors {Py”y. Then, we get consistently
i = [x*, #] = ipy'y, (16)
because p, = id, when the position representation is used (where ¥ = ¥(x)). Similarly,
we obtain
ip, = [p,, #] = iePy'pd, A, a7
and

ip = [y, #] = [~y (p—e)+M+Fpyp+3 ATyy) - v]v, (18)

where, of course, x*, p, and y, are quantum dynamical variables in the Schrédinger picture
(in the Heisenberg picture they become t-dependent and then the dot denotes the real
derivative d/dr). Note that the form of Eq. (18) differs from classical Eq. (5) (based on the
lagrangian (1)) due to our “Dirac-type” postulate leading to the constraint (15). The forms
of Eq. (17) and classical Eq. (4) are identical if we invoke Eq. (16).

The constraint (14) or, alternatively, (15) is the proposed wave equation for our super-
particle. Here, the wave function ¥(x) can be represented in the “intrinsic Fock space”
[2} whose basic vectors

<01,
<al = <0ly,,

’ 1 1
Kayty| = —= {0iy,, Ya,»
V2!

! ' 1 i
i = E4pyu3as 73:; 09, Ya, Yoy
€0 ! 0] (19)
= gma“a‘—‘: Ay Faz ¥ayz ¥rs
T

correspond to the possible consecutive Fermi excitations n = gy = 0, 1, 2, 3, 4 resulting
into,spins s = 0, 1/2, 0, 1/2, 0, respectively (spin 1 turns out to be excluded by the anti-
symmetry of {a, o,| in the bispinor indices «, and a,). Here, (0|, = 0, so the vector 0|

2 The classical formalism for our superparticle (especially for that of the Dirac-type where x“(z)
= p(Dy*p(v)) requires Grassmannian bispinor coordinates «(t) in order to properly introduce Poisson
brackets involving spin degrees of freedom. Notice that in the classical formalism for the usual Dirac particle
(thus without intrinsic spin excitations) Grassmannian pseudovector and pseudoscalar coordinates (rather
than bispinor ones) are needed to go over, after the first quantization, into the Dirac matrices ys»* and ys
being in this case spin quantum coordinates, cf. F. A. Berezin, M. S. Marinov, 4nn. Phys. (N.Y.) 104,
336 (1977) (I am indebted to Iwo Bialynicki-Birula for calling my attention to this pioneering paper). Thus,
in some sense, one may adopt Dirac’s point of view that spin 1/2 has no classical analogy. However, there
exists for our superparticle a level of the zeroth quantization, where y,(t) is a number-valued wave function
for one spin excitation (within a superparticle) and p* are spin quantum coordinates (cf. Appendix).
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is the vacuum bra with respect to Fermi excitations created by the operators v, when
acting on <0| (note that {«|f> = B,, and hence Z la)B,s<B! is the unit operator in the

“intrinsic Fock subspace” of one-excitation states n=1).
Restricting ourselves to the case of the “Dirac-type” wave equation (15) and making
use of the representation (19), we reduce this equation to the set of three nontrivial com-
ponent wave equations corresponding, respectively, to n = 1,2, 3 and so s = 1/2, 0, 1/2:

[y (p—ed)+m+M]PP =0, (20)
[—(1+72) - (p—eA)+m+2M +F+§ Ay +7,)° —A]P® = 0, (21)
" - (p—ed)+m+3M +3F—AJ¥® = 0. 22)

(Note that for n = 0 and n = 4 the kinetic term Pyy * p in Eq. (15) vanishes.) In Eq. (21),
y% and y; are two commuting sets of Dirac matrices, so that f* = L (y{+y%) are the
Duffin-Kemmer-Petiau matrices [3] (but spin 1 does not appear because of the anti-
symmetry of ¥® in the Dirac indices a; and «,). In Eq. (22), y*T are the transposed Dirac
matrices: y*T = —C-'9*C, where C*+ = C-! and CT = —C. Notice that there are no
transitions between two spin-1/2 states ¥ and ¥, since [Py, #] = 0 and thus n = Py
is conserved. This conclusion is true for any gauge interaction if introduced into Eq. (15).

In the case of a free superparticle where 4,(x) = 0, we obtain from Eqs (20)—(22)
the Klein-Gordon equations (p2—m®*)¥®™ = 0, n = 1, 2, 3, with the masses

m*) = m4 M, 23)
m®? = A m+M+LIF-2AEm+M+LF+14), (24)
m® = |m+4+3M+3F—A). (25)

W im+M+3F > 1 A, we get the real m®. Otherwise, m® is imaginary and, then, the
tate n = 2, s = O cannot physically exist (e.g., if m > 0, M =0and F= 0 but 4 > 0,
Ise have such a case).

3. Superparticle with dichotomic charge states

Now, we would like to extend the model of our superparticle by introducing dichoto-
mic charge states of such an object. To this end we engage one-dimensional Fermi annihila-
tion and creation operators,

0 1 . (00
‘3=(0 0)’ 4 ‘(1 o>’ (26)

satisfying the anticommutation relations

{¢,6*} =1, {4, a}=0={a*a"}. 27
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Then, we define a new wave equation for our superparticle by making in the wave equation
(15) the following substitution (for a comment cf. the passage preceding Eqs (48) and (49)):
e—é=eN® I,
A-A= Aﬁ@f,
M—>'M = MN®N,
F - F=FN®N. (28)

T __ oAt A 00
N—aa—<0 1) (29)

is the Fermi occupation number operator with two eigenvalues N = 0, | corresponding
to the eigenbras <{u} = (1, 0) and <{d| = (0, 1), respectively ({u| plays here the role of
vacuum bra with respect to the Fermi excitation created by 4 when acting on <u|: {u|d
= {d]). In this way we introduce four-component wave function with two up-down degrees
of freedom,

Here,

satisfying our new wave equation. This equation can be split into the following set of four
wave equations for four components of ¥(x):

(=Pyy - p+m¥,, =0,
[—-Pry (p—ed)+m+§ A:(Pyy)’:]Pa = O,

(—Pyw - p+m)¥, =0,
[—Pry - (p—ed)+m+MPyp+: F:($y)’: +% A:(Fry)*: ]¥u = 0. @D
In particular, the dd wave equation is identical with Eq. (15). Other Eqgs (31) can be also

identified with Eq. (15) for specific formal choices of ¢, A, M and F.

In the representation (19), each of the wave equations (31) reduces to a set of three
nontrivial components corresponding to # = 1, 2, 3 and thus s = 1/2, 0, 1/2. These com-

ponent wave equations can be easily obtained from Eqs (20)-(22) by formally specifying
e, A, M and F. In this way we get four spin-1/2 charge doublets (all with charges 0 and e):

(5). (58) (4) (@) -
wip) \eid) i) o)

When m — 0 and 3M+3F > A, their masses are (cf. Eqs (23) and (25))

(g) ’ (81) ’ (?w> (2M+3F,_A>’ (33)
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respectively. There exist also one spin-0 neutral state ¥¢¥ with mass 0 (spin-O charged
state P2 develops an imaginary mass) and, when M+1F > 1 A, one spin-0 charge

doublet
TL 2)
(g,gg,) (34)

with masses (cf. Eq. (24))

0
<(M +EF—5 DM+ F+5 A)‘”) (33)

(and charges O and e).

We can conclude that our superparticle with two up-down degrees of freedom and
so with two pairs of dichotomic charge states described by Eqs (31), may be interpreted
as an approximate model for three known lepton doublets (v, ), (v,, p) and (v,, v,
predicting one extra lepton doublet which we will call (v, ©~). Then, m, =0, m, = A
and m, = M, implying m, = 3M+3F— A = 3F4+5246 MeV > 5246 MeV (here, 0 = m
< A < M and, presumably, M < F). In addition, there should appear one neutral scalar
with mass 0 and one charge doublet of scalars with masses 0 and (M+1 F—1 )" *(M+L1F
+1 A)"? > 1797 MeV (and charges 0 and e = — |el). To summarise, in the case of spin
1/2, each of two pairs of dichotomic charge states is split into two charge doublets n = 1
and n = 3 due to the Fermi intrinsic excitations created by y,. It results into four spin-1/2
charge doublets (all with charges 0 and e).

Note that the new Fermi operators given by Eq. (26) lead to the Pauli matrices

2= d+d", %, =—(4-a4%), *t,=1I-2d"g (36)

and thus to the familiar up and down projection operators

T(+2y) = aa*, L(I-%)=d"a (37

The conventional weak isospin is here given by the operator
T =Gt@D4(1+ys), (38)
when acting on the component wave functions ¥™(x) with n = 1,3 and thus s = 1/2.

One may try to consider the term M@py+ % F: (fy)?: in the wave equation (15) or the
dd wave equation (31) as a part of a “neat” operator like, for instance,

1
M: B Py: = M[Fy+i:(Fy) o A--w v+ —A (ww) ]

= Myl +14" "1, (39

where n = gy = 0, 1, 2, 3, 4 when acting on basic vectors in the representation (19).
Here, A > 0 is a number. For this particular example, m, = M always, but m, =3
x(14+2)M—A > 5246 MeV ‘depends on 4. If e.g. A = 1 or 2 one gets m, = 21.30 GeV
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or 48.06 GeV, respectively®. If A = 1.31, one obtains the relation

mey—m, - m,—m,

~ 16
m,—m, m,—m, (40)

and then m, = 28.5 GeV.

4. One-dimensional supersymmetries

Now, we should like to emphasize that by the substitution (28) we implicitly introduced
to the model of our superparticle two commuting sets of generators satisfying the following
superalgebraic relations [4]:

{Qs Q+} = 2K’ {Qa Q} =0= {Q+a Q+},
[0.R]=0=[0", K] (1)

and
{R,R*} =2R, {R, R} =0={R* R"},

[R,R] =0 =[R",K]. (42)
Here, the Fermi generators are
0 = @D (ipyy - p+m), @' =(a" @D (—ipyy - p+m) (43)
and
R=I®a) pyy p+m), R* =UIQ4")(-ifyy p+m), (44)

while in both sets the Bose generator is
K =D [(pry- p)*+m*]. (45)

Since our wave equation (15) after the substitution (28) can be written as #Y¥ = 0
with

# =D (~Fyy - p+m)+(NQN) [MPyp+1 F:(py)*:]
+(N®D) [ePyy - A+% A:Byp)*: ] (46)

it displays in the formal limit of e - 0, A - 0, M —» 0 and F — 0 two one-dimensional
supersymmetries generated by 0, 0%, K and R, R*, K, respectively. It is so, because then

4 4
3 If requiring for the operator (39) the normalization (n) = Z cnexp(An):/ z rexp(dn): =1
n=0

n=0

4
where n = py, one gets A = 2.618. In this case m, = 69.95 GeV. Here, 2 = z rexp(dn): = (1/2)
n=0

4
X[(1+2)°—1]and 8Q/3) = z tnexp(Any: = (1A [AA-1D A+ %+ 1]sothat > = 9 InR/64 (4 > 0).
n=0

Then, the parameter A is an analogon of (u—é&)/kT.
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the hamiltonian 5 — (I ® I) (—Pyy + p+m) commutes trivially with all above generators.
Of course, both supersymmetries are explicitly broken by those terms in 3 that depend
on e, A, M and F. Both are connected with the proper time 7 via their common Bose genera-
tor K, since it can be defined by the hamiltonian # — (I ® I) (—Fyy - p+m) generating
t-translations. In fact,

IRDHL[(#-m)i+m?] > K (47

when e - 0, A -+ 0, M - 0 and F- 0.

Finally, it is perhaps worthwhile to stress that the substltutlon (28) displays an evident
asymmetry between the first and the second up-down degree of freedom of our super-
particle. Thus, solely on the aesthetic grounds, one may tentatively speculate that the
hamiltonian ¥ in the wave equation (15) should be supplemented by the term

ePyy - A +F A (Fyy)’s, 4%
where the substitution
e - é =elenN,

A

A > A =AIQN (49)

should be applied, completing the previous substitution (28). Here, 4,(x) is a new Abelian
neutral gauge field (treated in our considerations as an external field). Due to the sub-
stitution (49), the field 4,(x) is coupled only to the down states with respect to the second
up-down degree of freedom i.c., to the states ¥{(x) and ¥{(x), n = 1, 2, 3. The term
proportional to A’ contributes only to the states ¥)(x) and ¥{7(x) with n = 2, 3. In the
case of our lepton interpretation of the spin-1/2 states ¥™(x), n = 1, 3, the new field
A;(x) couples to the lepton doublets (v,, T-) and (v,, @), while the term with A’ gives
additional masses to (v,, ®), resulting into their total masses

Ai
<3M+3F—A —A’) 50)

(it is natural to assume that here M » A’ and, perhaps, A’ ~ A). Thus, in the case of the
supplement given by Eqs (48) and (49) a new Abelian neutral gauge interaction should
appear already for the known leptons of the third generation, v, and t-. However, its strength
o' = ¢'*/4n would be a priori unknown (though, perhaps «’ ~ a would be preferred on the
aesthetic grounds).

So, in this paper we discussed our superparticle on the level of quantum mechanics.
Of course, one may go over to the level of quantum field theory describing all Fock-space
configurations of the superparticles interacting with quantum gauge fields. Then, radiative
mass corrections appear for the spin-1/2 and spin-O states considered in this paper. The
masses discussed here may play the role of some effective masses. It seems to be especially
true for the spin-1/2 states where radiative mass corrections are under control of the broken
chiral symmetry.
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APPENDIX
Is there a zero-quantization level for the superparticle?

As is well known, the quantum field theory may be also considered as the second-
-quantization level of the general quantum theory. In this case, classical fields (which
after quantization become quantum fields) can be identified with the one-particle wave
functions of the quantum mechanics representing then the first-quantization level of the
general quantum theory. )

At this point an intriguing question arises, whether some of the classical dynamical
variables ascribed to a particle (which after quantization become its quantum dynamical
variables) might be considered as wave functions characterizing a new, very primitive
level of the general quantum theory. Such a level could be called the zero-quantization
level [5], because its relation to the first-quantization level would be analogous to the
relation between the first- and second-quantization levels.

In the case of our superparticle, the virtual candidate for such a zero-quantization
wave function is the classical one-dimensional field v ,(7) for which, however, the normaliza-
tion P(r)y(r) = 1 must be then imposed. Such a zero-quantization wave function y,(z)
would describe one Fermi intrinsic excitation of spin 1/2 (within a superparticle), giving
the probability amplitude for measuring the value a = I, 2, 3, 4 of the bispinor index
o ascribed to this excitation (and determined by the eigenvalues of the operators o3 = ysy%y®
and ys = iy%ply3p3® or B = y° treated as two zero-quantization commuting observables).
Recall that « = 1, 2, 3, 4 becomes, on the first-quantization level, the bispinor index of the
component wave function ¥{(x) = <0|y,|¥(x)> where n = Fyp = 1.

If the classical one-dimensional field y,(t) could be identified with the one-excitation
wave function mentioned above, the classical equation of motion for ¢,(r) would be the
zero-quantization wave equation*. This classical equation of motion for y,(r) can be read
of from the quantum relation (18):

d
<i 5 7 (p—e)= M—F(py)—3 A@yy)- v) p =0, (A.1)

where p,(t) and y,(7) are classical one-dimensional fields and 4, = 4,(x(7)) (in Eq. (A.1)
we chose x> = 1). Here, we can consistently put #(z)y(r) = 1 since. Eq. (A.1) preserves
the norm P(r)y(r) (note that also [P(r)yy(r)]* is preserved and is equal to 1 because of
x"(t) = P(r)y"y(1)). Moreover, the normalization #(z)y(tr) = 1 corresponds, on the first-

4 Strictly speaking, there is a formal difference between the classical one-dimensional field y,(z) that
should be a Grassmannian bispinor (¢f. Footnote 2) and the zero-quantization wave function y.(7) being
a number-valued bispinor. This difference, however, is perfectly consistent with the fact that the zero-quanti-
zation wave function y,(7), fulfilling the normalization condition 9(z)y(z) = 1, describes (quantally) one
intrinsic excitation with spin (1/2)5, whilst the classical field 1,(z) should describe (classically) all such excita-
tions with total spin (1/2)9(¥)oy(r) which should satisfy the correct spin algebra realized through Poisson
brackets.
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-quantization level, to the states ¥"(x) where n = $y = 1, for which the terms F: Pw)*:
and A : (Pyy)?: vanish effectively (cf. Eq. (20) as well as Eqs (32) and (33)). Thus, in order
to describe the classical counterparts of the first-quantization states ¥(x) where n = 1,
it is natural to put F = 0 and 4 = 0in Eq. (A.1), getting in this way the linear first order
differential equation

d
i w(0) = {—y " [p(1)—eA(x())]+M}p(v) (A2)

that can be interpreted as a wave equation for the zero-quantization wave function . (1).
Here, y,(7) describes one Fermi intrinsic excitation of spin 1/2 (within a superparticle
in a state n = 1) interacting with the classical “field” p,(t) — ed (x(z)) defined along the
world line of the superparticle. Given the phase-space trajectory x* = x*(r) and p, = p,(1),
Eq. (A.2) can be used to calculate y,(r). On the other hand, there must be

Pl p(r) = XH(1), (A.3)

where x%(t) = 1. In particular, for a superparticle at rest p,(1) = g, and A, (x) = 0,
so then the general solution to Eq. (A.2) is

(1) = (L +AP(O)e MM 1L (1~ By(0)e M+, (A4
where f§ = y°. Here, for y,(t) within an electron e=: M = 0, i = m, = m, and for y,(1)
within a tauon t~: i = m, = m+ M (cf. Eq. (23)), thus M—m = —m in both cases.

Since [p(r)yw(1)]? = 1, we get from Eq. (A.4) the conditions #(0)fy(0) =1 and
B(O0)y3(0) = 0 (beside F(0)y(0) = 1). Hence, 1 (1—p)(0) = 0 in Eq. (A.4).
Concluding, in the description of our superparticle there is some room for the zero-
-quantization level of the general quantum theory.
The following summary may be useful to compare the three levels of quantization
for our superparticle (in the Schrédinger picture):

wave function for . .
physical object

level uantum coordinates ) .
9 one physical object i

Zero p P(1) = (p1)) spin-1/2 excitation
¥.(x)
fist X, p = (y,) P(x) = | V0, () superparticle
qlat1a213(x)
¥ ()
second P(x) = | ¥,,.,(%) Vs [P 1) field of superparticles
Yjﬁ;az\’a(x)

where ¥y, ([¥(%)], 1) is a normalized functional of all histories of the quantum field of
superparticles W(x) (this wave function can be represented in the (external) Fock space
of superparticles).
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