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Relations amongst coupling parameters consistent with the renormalization group
are governed by a set of ordinary differential equations — the ‘“reduction equations”’. Those
are derived and then solved for a number of examples. They play a crucial role for construct-
ing theories with f-functions vanishing to all orders. In the standard model they imply con-
straints on the Higgs and top quark mass and the mixing angles.

PACS numbers: 11.15.Tk

1. The notion of reduction, reduction equations [1] [2] [3]

The aim of theoretical particle physics is the consistent description of particles i.e. of
their properties and of their interactions. Its predictive power depends on the number
of necessary free parameters. In the framework of quantum field theory the latter are given
by coupling constants and masses which are — in renormalized perturbation theory —
the number of interaction vertices of dimension less than or equal to four and the number
of elementary fields, respectively. Restrictions on their number are usually obtained by
imposing symmetries which relate different couplings or masses. The consistency problem
is in this case the question whether the symmetry survives quantization or not: the study
of anomalies for a given symmetry group. The answer to the question whether this is the
only possibility of consistent relations amongst couplings is the subject proper of these
lectures.

Suppose a model is given by its field content 4, v, v, (spin 0, 3, 1) and a set of power
counting renormalizable vertices with couplings A, 44, ..., 4,. Then it is trivially possible
to make the couplings 4, to functions of a ““fundamental” coupling g -— which could be one
of the A’s or a function thereof —

A=Ag) i=0,1,...n )
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namely at one normalization point. The non-trivial part is to check whether the same rela-
tions hold at any other normalization point. To find this out [1] one may either study di-
rectly effective couplings or proceed via the renormalization group equations — what we
shall do here. For simplicity we discuss —up to a comment — only massless theories.
We assume that for the models before and after reduction renormalization group equations
hold

(uap'}- Zﬂl(ﬂig"y‘/‘/‘)r(;‘e9 frey ;n) = 03 (2)
(10, + B0 —y* A *(g) = 0. 3)

(T is the generating functional for vertex functions.) The transition from one theory to the
other is provided by the definition

r*(g) = I'(Ao(8); -5 Aa(8))- 4)
Using the chain rule and testing on suitable vertex functions one finds
7*(8) = y(A(8); ---» 4a(8)); (5)
di .
ﬁgzgi = ﬂlp 1= 03 1) e 1. (6)

The equations (6) will be called “reduction equations”. They are not only necessary but
also sufficient for having relations (1) (see [1]). An important special case is

g = ;'0 = ﬁg = Pgo» (7)
di
i —dé =B i=1,..,n, (8)

where the model lends itself to call one coupling the “primary” one. Let us comment on the
massive case. The above derivation is valid as well — mutatis mutandis. But only if suitable
off-shell normalization conditions allow for mass-independent p-functions will the latter
define effective couplings amongst which (1) corresponds to the elimination of the scale
variable. Le. only under this additional hypothesis it is guaranteed that the relation amongst
the couplings is normalization point independent.

Before proceeding to examples let us note that solving the reduction equations is non-
-trivial since the f-functions obtained in perturbation theory vanish with the couplings:
the differential equations become singular at precisely that point where we ought to solve
them, Let us also classify somewhat the possible solutions.. A solution containing z+ 1
integration constants represents the general solution where no reduction has taken place:
The original couplings have been traded for the integration constants. If we demand that-
the 4; vanish for vanishing g i.e. we search for asymptotic solutions around zero, we shall
have put a non-trivial restriction. The strongest postulate is to ask for

g = g@®+oVg+ ...) )
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i.e. power series expansion. If such a solution exists we have a perturbative model in one
coupling constant and we shall speak of “‘complete” reduction. In practice solutions are
obtained by starting with the strongest postulate (9) and searching then for more general
ones by using stability theory.

2. Examples

2.1. One Dirac spinor, one pseudoscalar field [1]

The simplest and perhaps most striking example is given by the massless model of
one Dirac spinor y and one pseudoscalar field B in renormalizable interaction:

A
Z i = gPBysy— 5 B*. (10)

The B-functions are given to one loop order by

B = s 58+ ) an
B, = 161n 5 (322 +41g2—24g%+ ). (12)

We try to solve the reduction equation
B 13 = B )

with the ansatz 4 = g2(¢'”+¢"g2+ ...) and find as the only positive solution for small g

L= 11 +V145)g% + Vg + ... (14)

The coefficients o™ are all uniquely determined. Hence we have reduced the above two-
-coupling parameter model to a perturbatively renormalizable one of one coupling. No
symmtery is known for this system, hence symmetries need not to be the only tool for
restricting couplings consistently. The general solution is given by

1= G A+V145) + 0 Vg +oPg* v e g%+ ), (15)

with ¢ = % ,/145, ¢, arbitrary and all higher order terms — namely even powers of g and
fractional powers formed with ¢ are uniquely determined. This shows how the second
coupling parameter enters the system: it vanishes asymptotically as g** goes faster to zero
than g2.

The general analysis for theories with two couplings and f-functions like the above
has been presented in [2] and [4]. A case with different type of f-functions is provided in the
next example.
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2.2. Two scalar fields [5]

The most genefal renormalizable interaction of two massless scalar fields is given by
1
L= =7 (AgAS + A, A3 +6A,ATA] +44, 4] A, +4434,43). (16)

Here no coupling plays a prominent role hence the form (6) of the reduction equations
is appropriate. They can be solved most easily by using O(2)-covariance and by regrouping
& ;. Into representations of it. By suitable redefinition of the couplings one arrives at three
solutions

, g
(l) gint = - 47(Af+A§)2’ (17)
. 1 ¢+ 414 ' 414
(1) L i = — 4_,(30141 +4443), (18)
1 At 14 ’ .
(iii) Lt = — Z{AOAl , A free field, (19)
where
A= 8% SRe) (20)
—sing cos @
and for
fes 2 1 ' 1_91
(ii) cos“p = 3+ I(I:_Q_)’ 0oy <1, ()
1
(iii) tan ¢ = g, arbitrary. (22)

Thus the only theory with “maximal” interaction of all fields is the 0(2)-symmetric one.
Reduction has produced a symmetry as solution.

2.3. Frame theory for N =2 SYM [6]

We choose a multiplet A of real scalar, B® of pseudoscalar, y* of Dirac spinor and
vi of vector fields transforming under the adjoint representation of, say, SU(2). Imposing
for simplicity R-invariance we arrive at the following invariant Lagrangian

1
YTl

F*+1 (D, A" +1 (DB
—iP*Dy" —i VA, e P(A +ys By —§ A(A2+BY +4 L(A° AP+ BB (23)

It has the field content of N = 2 pure SYM-theory in components and permits a non-
supersymmetric embedding of it. Amongst the power series solutions of the reduction
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equations (8) we find indeed that one which is in the tree approximation N = 2 symmetric
@ o = o =0 =1, (24)

but also one which does notr have this symmetry:
(ii) =1 ===, & = 75 (25)

Both power series are uniquely determined to all orders. There exist still two other solu-
tions, but they lead to negative classical potential.

Amongst the general solution there is only one for which 4; - 0 with g — 0. It has
the form

o
ll(la) — g2+ Z‘t glmdm:
1 =g +ag’+ Y dyug”,
m=4

) = g*+3ag’ + 24 d3mg™ (26)

a is arbitrary, but all d,,, are uniquely fixed. This solution is interesting because it represents

hard breaking of N = 2 beginning with the odd power g*> — compatible with renormaliza-
tion.

2.4. Frame theory for N =4 SYM [6]

We provide the field content of N = 4 SYM by the following set: 3 scalars 4;, 3 pseudo-
scalars B;, 4 Majorana spinors yg, 1 vector v,. All transform according to the adjoint
representation of the gauge group — for simplicity — SU(2). In order to eliminate
some couplings we require also a SU(2) x SU(2) rigid invariance, this results into the follow-
ing Lagrangian

i
P = - i F,,F*+1(D,A})*+% (DB} - 5 PRy
~ 3 VA, ek A+ 75Bi By
= % A(AJAT+ BIB})? +1 2,(A2A + BIBY)>. 27

The reduction equations (8) yield two permissible unique power series solutions with lowest
order coefficients

0 o = o = o = 1,

) o =1 o =075, .. o =0.2523... (28)
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The former corresponds to the N = 4 SYM-theory, the latter does not have any known
symmetry yielding such a relation amongst couplings in the tree approximation. It is to be
noticed that due to the reduction equations its f-functions vanish too in the one-loop
order. Hence it has also conformal symmetry in one loop.

3. An application: finiteness conditions

Supersymmetric gauge theories have interesting structural properties in addition
to those coming from supersymmetry and gauge invariance. In particular their super-
conformal covariance leads in a natural way to relations amongst anomalies which otherwise
seem to be unrelated: namely those of a ys-symmetry (the so-called R-invariance) and
the dilatations (see [7] for a systematic exposition). Since anomalies of ys-symmetries satisfy
sometimes nonrenormalization theorems one might wonder if those should not imply
consequences for the dilatation anomalies too. This is in fact true [8] and we shall now
present the results of combining this structural analysis with the concept of reduction
of couplings.

Our starting point is a general N = 1 SYM theory with simple gauge group G. It has
the classical action

-1 -
[ =Tr J ds 258 FF,++{ _[ av Z Age® TR AR [D SU(4)+ j aSud), (29)
R

with F* = DD(e”®D*¢®), ® = &;1', R: irred. repres., U: superpotential
U = j,(rs')ArAsAt, (30)

r = (R, ¢) where R labels the irrep. and g is the index in the representation space (see [7]
for more details on notation). The B-functions of such theories read

By = bog’ +0(h?), 3D

Bivse = Zrsad st Aty s+ Ay D+ 0(H?), (32)

and our aim is to find necessary and sufficient conditions operating at one loop for them
to vanish to all orders. We shall study first the necessary conditions.
Obviously

bo = 128r = 128(=3C,(G)+ Y. T(R)) = 0 (33)
R
is Tnecessary.
T(R)Y = Tr(TiT3) R’ irrep.
T(R)SY = C,(G)8"¥ = ¥ R: adjoint repr. 34

It requires a non-trivial proof [9] to show that also

y“)’s = é’aay(l)RS = erl&nv—agzé'sCZ(R) =0 (35)
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(: numerical constant) is necessary. But ) = 0 implies 4,,, = 4,(g), hence reduction
of couplings has to take place:

da al

B, d"‘ Bi.o B, d"‘ = B, (36)

The last necessary condition is less obvious. Consider the counting operator

EEDI LD YA YOS

appearing in the Callan-Symanzik equation. Assume that a linear combination of them
annihilates the superpotential

for N =D esh i N,oU =0. (38)
R,S
Then — by non-trivial proof [9]
Too = Z € RT(R) = 0. (39

Let us now turn to the sufficient conditions. Its key ingredient is the theorem alluded
to above. For the anomaly coefficients of some axial currents and the f-functions of
the theory holds the following equation:

1
= (1"2“{;? +"g) By+ri B~ Z Yoar0a T Vilkal0a- (40)

a

The coefficients r,, r,, y,, are at least of order h, r is given above and is precisely of one-
-loop order due to a non-renormalization theorem; ry, starts with the one-loop contribu-
tion given above. It is precisely of one-loop order also, if its associated operators A4,
commute with the Callan-Symanzik operator

[# 0 CS] =0 41)
and if they are all operators satisfying
‘/V.OaU(A)ll...=).m(aj =0. (42)

Here A..(g) is any specific solution of (36). It is clear that f, = B, = B; = 0 to all orders
if (33), (39), (41), (42) hold. For then (40) becomes homogeneous in S, with invertible
coefficient and vanishing Lh.s. — The simplest example is provided by the N = 1 super-
symmetric embedding of the N = 4 SYM theory, others are discussed in [9]. The necessary
and sufficient conditions for vanishing S-functions presented here constitute an easy recipe
for finding such models.
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4. Conclusions

The examples discussed in Sect. 2 and the use of reduction of couplings made
in Sect. 3 for finding systematically theories with vanishing S-functions should make it clear
that “reduction of couplings” yields new insight into seemingly well-known theories. It gen-
erates unexpected perturbatively renormalizable models like symmetries do, namely with
less free parameters than the genuine theories. Via the study of stability of solutions it lends
itself naturally to the analysis of asymptotic behaviour of effective couplings.

5. Reduction in the standard model

The standard model is phenomenologically extremely successful. It describes better
than ever all known data. Theoretically too it is consistent and perturbatively well defined
(perhaps up to problems with the Landau ghost coming from the U(1) subgroup), but
it has unesthetically many free parameters. Hence it appears to be a good testing ground
for the idea of reduction. Could it permit relations amongst couplings and thus be con-
sistent with less parameters like the models in lecture 1? If so, could we make predictions ?
Could we find limits for the validity of the standard model ?

Let us first make somewhat more precise which model we are going to deal with. We
consider the gauge group SU(3),x SU(2). x U(1) (couplings «,, «,, « resp.), one Higgs
doublet with self-interaction 4 and » families of quarks and leptons. Their Yukawa couplings
are complex nx»n matrices G which can be decomposed as

GY = U®H, 1:Leptons
G™ = U™Hy u:up-quarks
G = U9H, d:down-quarks (43)

(U unitary, H Hermitean). For this first test of the ideas we simplify somewhat and perform
the reduction in the completely massless model, calculate explicitly to one-loop and use
these results in the tree approximation of the massive model. The tacit assumption made

here is, of course, that higher orders (two loops and more) would not change the picture
dramatically.

5.1. Reduction of gauge couplings [10]
The p-functions read in the one-loop approximation

B = Go+3ma’+ ...
B = (=& +5maz+ ...
B = (—11+%n)al+ ... (44)

The abelian coupling is infrared free, the non-abelian ones are UV-free (for n < 5).
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Trying now reduction between «, and « i.e.

o, = o +aVa+ ...) (43)
we find
@ =0, o®=-1(n=3) (46)

which is inconsistent {(« has to be positive) - this inconsistency going hand in hand with
the different asymptotic behaviour of «, and «. Clearly, for the same reason o, cannot be
reduced to «. Reducing «, to o

ay = o(a +as o+ ..) 47
we find

=%, P =0n=3) (48)

as possibilities. The latter value turns out to be inconsistent in the next order, the former
leads to a, > a, which is phenomenologically unacceptable. We conclude that reduction
of gauge couplings is impossible within the standard model, the Weinberg angle 0, is indeed
a free parameter. It is to be calculable then only in a model having more fields. This shows
the sensitivity of the method to the model.

Of course, it is still conceivable that reduction is possible in the matter sector. There
we then have to represent the gauge couplings by their solutions of the evolution equations
with initial values chosen as to fit the data. Le. we take

o 2
o, = &2 s =19 __7s 49
S 1+4+c,0, * t ca,—1 9
and fix ¢,, ¢ such that at r = My
o, = 0.1, o =0.037, o=0.016. (50)

5.2. Reduction of matter couplings [10, 11]

The above form a, = a,(x.), « = afx,) has been chosen since a closer analysis shows
that matter couplings (for » > 3) can neither be reduced to a, nor to «. Hence in accordance
with numerical magnitudes we shall put «, and « equal to zero, perform reduction of the
matter couplings to o, and thereafter take into account non-vanishing o,, « by a perturba-
tion procedure.

The Hermitean factors H, in (43) can be diagonalized

Hy = UAhUUZ ’
Hyp, = UghpUs, (51)
and the diagonalizing unitary matrices give rise to the Kobayashi-Maskawa matrix

KM = U U, (52
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The reduction equations read (n = 3)

dH}
—140? —X = 3H} +3H2 Tr (..),
2 dHy 43 (g2 132 2/
"‘14&5 d = 3HU—T {HD’ Hu}+2Hu(Tr (...)_8(15),
as
2 dle) 4 3 2 2 2
—140(5 d = 3HD—”2‘ {HD, HU}+2HD(TI‘(...)——8&S),
as
— 1402 = 6A%+44 Tr(...)—8 Tr (H{ +3HE +3HY),
1
Tr(..) = Tr (H:+3H3 +3H}Y). (53)

Hence they restrict Hy, Hp, and thus constrain in principle the couplings (- masses)
and the mixing angles.

As usual we first look for power series solutions

H? = (A9 + AV, + APa2 + ..) (54)
We find
H} =0, KM =1, (55)
and as only reasonable solution
0
H3 =0, H}= 0 Ut .. (56)
2/9
Taken at face value this means
m =0 1:leptons
my =0 q # top, q:quarks
m; = 90 GeV
my = 50 GeV &)

and no mixing. Calculating by the above mentioned perturbation procedure weak and
electromagnetic corrections while keeping the mixing angles zero [10] one finds

m, = 81 GeV, my = 63 GeV, (58)

and the other masses can be fitted.

Let us now study the general asymptotic solution around (55)-(56) [11]. The stability
analysis yields the possible fractional powers of «,. They turn out to be rational and the
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solutions have the form
HIZJ = q (% A(0)+A(1)a51/21+A(2)a2/21+ )
s s wir)s
H} = a (Bl + B®g221 4 ) (59)
without logarithms. The general form of the matrices 4, B is the following

« [0
A, B: 0. (60)

0 o
Hence no mixing between family 3 and families 1, 2! Arbitrary coefficients are: a'}, a7,
a$y, a), by, b, b, bSY, bY. They are sufficient to fit all other quark masses. The
Cabbibo angle is also unconstrained. The above value of the top is changed only by a negli-
gible amount (same for Higgs). We have not yet calculated the weak and electromagnetic

corrections to this solution.

The reduction equations (53) permit also the trivial solution Hy = Hy = Hp =0
and we have to check how it is related to the nontrivial one above. The general asymptotic

solution around zero turns out to have the form

HY = a(AMal T+ ADa27 4 ),
H} = a(BWa!" + BPa2" 4+ ) (61)

(again without logarithms). 4 and BY) are arbitrary, all other A®, B® i > 2 are uniquely
determined. Hence there are enough free parameters to fit all quark masses and mixing

m, [Gev]

x|1||l|||l]|||]q
0O 10 20 30 40 50 60 70 80

m, [Gev]
Fig. 1

angles. The Higgs mass is a function essentially of the top mass (see Fig. 1). Since the non-
-trivial reduction solution provides a limit for the range of the solution around zero there
should exist bounds for the parameters in 4, B,
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5.3. Discussion

Experimentally the top mass can still lie anywhere above 45 GeV, the Higgs mass
is essentially unconstrained [12], hence we can play with different assumptions and check
their implications. Suppose one finds the top mass to be above 90 GeV. Since we estimate
the uncertainty in (58) to be about 10-15%; and 90 GeV would be above the upper limit
for m, our calculations would imply that more particles are needed e.g. a fourth generation.
If the top is found with m, < 90 GeV, the value of the Higgs mass decides on whether the
three family model is appropriate. If it lies on its curve (see Fig. 1) there can be little doubt
that other particles — not foreseen in the standard model — have to be very heavy. If it is
far away from its curve, again, one needs additional particles nearby in mass. E.g. a fourth
generation with m, & 110 GeV could ecasily afford a Higgs mass of 220 GeV.

We conclude that the concept of reduction reveals also in the standard model interest-
ing structures in the solution space of the effective couplings. If its favoured solution,
(59), (58), would be realized one could start speculating on the physical mechanism which
was its cause.

It is a pleasure to thank the organizers for the invitation to this interesting school.
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