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A generalization of the modified Thomas-Fermi (MTF) approximation to finite temper-
atures is used to calculate the optical potential for the 2°8Pb + 2°%Pb system using the energy
density formalism derived from different effective forces of Skyrme type. The nuclear optical
potential becomes more attractive when the temperature is increased. Pockets are also
predicted in the total potential (Nuclear + Coulomb) whose depths are dependent on both
the type of effective force and the temperature.

PACS numbers: 25.70.—z

1. Introduction

Several attempts have been made to derive the nucleus-nucleus potential from an effec-
tive two body interaction using €.g. the proximity approximation {1] and the double folding
model [2-4]. For spherical nuclei although the double folding predicts qualitative features
of the elastic scattering data it requires a renormalization of the strength of the real potential
to about one half of its value at the strong absorption radius to get quantitative agreement
[5]. To account for such discrepancy one may add the effect of exchange forces due to
antisymmetrization and the saturation effects.

Another method to calculate the nucleus-nucleus potential is by using a Hamiltonian
energy density derived from density dependent effective interactions [6-8]. This method
takes into account the effect of saturation of nuclear forces and the exchange effects due
to antisymmetrization [9, 10]. In the present work we use Skyrme force SK Il as an effective
interaction which has been successfully applied to many problems in nuclear structure
calculations. The usual Skyrme-forces like SK III have a too large compressibility K. This
value lies between 300 and 400 MeV. In reality we know from the monopole breathing
mode that the incompressibility is around 200 MeV. Therefore, besides SK III, we used
an extended version of it SK E which is constructed to cover more features of nuclear
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structure [11]. Besides the original Skyime type of force the last one contains in addition
a momentum dependent three-body term in order to describe wider features of the excited
states of nuclei and nuclear matter properties. In the present work we show the effect
of this momentum dependent three-body term on the ion-ion potential.

In heavy ion collisions part of the relative kinetic energy between the two nuclei is trans-
formed in excitations of the nuclei. This means that the nuclei are getting hot. By this the
interaction between the two nuclei is modified. The modification is a change of the kinetic
energy density of the nucleus in the two nuclei and also a change of the mass distribution
of the two nuclei. In addition one expects also a change of the effective interaction. The
interaction potential between two heavy ions has revealed the existence of dissipative
phenomena [12-16], e.g. fusion and deep inelastic reactions. In the deep inelastic process
the two scattered nuclei emerge after the reaction with a total kinetic energy smaller than
the initial one whereas in the fusion process the system remains trapped into a pocket
of the potential energy surface. The purpose of the present work is twofold. First of all
the ion-ion interaction potential is calculated for two types of Skyrme force namely SK III
force and SK E force, then we compare between the optical potential obtained by the
famous SK III force and its extended version with a momentum dependeat three-body
force. The second aim is to investigate in an approximate way the effects of the tempera-
ture on the interaction potential between two heavy ions for both types of force. The
method is very simple and it reproduces similar results to those obtained by other authors.
This method is based on a Taylor expansion for the total energy of the considered system
to second order of powers of T2 [17]

For heavy ions using the energy density formalism at finite temperature and the sudden
approximation it has been found that the real part of the optical potential change when
the temperature of two ions increases [18]. Here we used a generalization to finite temper-
ature of the modified Thomas-Fermi approximation [17] adopting different effective forces
of the Skyrme type to study the temperature dependence of the ion-ion potential. Specifically
we have chosen to study the 2°5Pb + 2°8P)b system. In the next Section we briefly describe
the method of calculation and in Section 3 the results are presented.

2. Theory

The real part of the ion-ion potential in the sudden approximation as a function
of the separation distance R between the centeis of the two colliding nuclei is written as

V(R) = j‘ [H(g, ©)—H(ay, 7,)— H(e,, 72)]d;s @)

where ¢; and 7, (i = 1, 2) are, respectively, the density distributions and the kinetic energy
densities of the two separated nuclei. ¢ and © are the same quantities for the composite
system. H(g, ) is the energy density functional of the composite system and H(gi, T1)
and H(g,, ,) are the energy density functionals of the two separated nuclei. In the sudden
approximation the density of the composite system ¢ = g, + ¢,. Hence, using SK III force
[19] the energy density of a nucleus may be expressed in terms of the neutron and proton
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densities ¢, and g, their gradients Vo, and f?gp, and the kinetic energy densities 7, and 7,
{201, viz:
h2
H = o (@t 1) 43 to[ (1 +3 %0)0* = (%o +3) (i +¢p)]
+ i— (t!. + tZ)Q(Tn + Tp)+% (tZ - tl) (Qnrn + thp)

+ﬁ' (‘2 _3t1)QV29+% (311 + tl) (anzen+ vazop)'*'% t3QnQpQ' (2)
The density of the 2°®Pb nucleus is represented by the Fermi-type distribution

r—R,
o(r) = 0o / [1 +exp (——;—)] ©)]

where the parameters are taken from Stancu and Brink [7]. For the proposed extension
of the Skyrme force, SK E, an extra term is added to the above Hamiltonian density [11],i.e.

HW; = 717 td[—QnQpV Q-3 vazgn F) QnV22p+2TQnQp
+ 1,02+ 7,02+ oV, - Voo +1 (Ve ++ eu(Ve,)*]. @

The parameters used in the present work for SK III, and two types of SK E, namely, SK El
and SK E2 forces are listed in Table I

TABLE 1
The Skyrme force parameters
to f t2 fs fo Inc%rgﬂres-
MeVfm® | MeVfm® | MeVfm® | MeVfm® | MeV fm® Xo I:‘( 1\‘4 ‘e:’/ )
SK I ~1128.75 395.00 —95.00 14000.00 0 0.450 356
SK E1 -1272.76 806.08 —30.40 15065.68 | ~11727.51| 0.158 230
SK E2 —1299.30 802.41 —67.89 19558.96 | —15808.79 | 0.270 200
For the kinetic energy density instead of using the usual TF functional
=3(3%)"e}® q=n,p ©)]
we used the modified TF functxonal [21] which is written as
T, = a(4)e; > +B(Vey)* /ey (6)
with

a(4,) = a(co) tanh /573 (4,—2)*%, (o) = 3(37%)*7,

p=3(% +1),
m
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where m*/m is the value of the effective mass at the saturation point of symmetric nuclear
matter. Equation (1) defines the interaction potential between two ions at zero temperature.

To extend this calculation for higher temperatures, we will follow the same method
of Barranco and Treiner [17]. Hence each term in Eq. (1) will have a correction to be added
to it, i.e.

{ H™(g, ©)dr = | H(g, 1)dr+aT?, )

where H™(p, 1) is the energy density functional at temperature T and

’ a(A,) 2m; .
‘=7 Z a(o0) e(r) h2KE ar,
q

Kp, = [3a’0,]"">, ®
and the potential at finite but small temperatures would be defined as
V(R, T) = [ [H"(¢, ©)— Hi(e1, 1)~ H3(e2, 12)1dr- )

R is defined previously as the vector joining the centers of both nuclei.

The main approximations here for the nuclear part of the ion-ion potential are as
follows:

({) We have used the energy density formalism and the modified Thomas-Fermi
expression for the kinetic energy density. The MTF method allows one to obtain densities
with a realistic diffuseness.

(ii) We used two effective interactions of the Skyrme type SK III and SK E which
are assumed to be temperature independent as a first approximation.

The Coulomb potential between the two 2°8Pb nuclei is calculated using the double
folding model. The six dimensional integral has been transformed to a term which contains
one dimensional integrals using the procedure presented by Rhoades-Brown et al., [4].

3. Results and discussion

To illustrate the temperature dependence of the 2°%Pb + 298Pb optical potential we
have considered two types of the Skyrme force SK Il and a modified version of it with
two sets of parameters SK El and SK E2. The reason for taking the last two sets is that
besides their good reproduction of the excited states.of finite nuclei they also produce
good values for the compressibility and effective mass in nuclear matter. The calculations
are performed at four different temperatures: T = 0, 1, 2, 3 MeV. The results are presented
in Figs 1-7.

One can observe that the optical potential becomes more and more attractive when
the temperature of the nuclei increases. This is in agreement with previous calculations
[18, 22]. The convergence of the expansion in Eq. (7) has been tested and then it was found
that the second term is generally lessthan 1% for T = 1; 4% for T =2and 9% forT = 3
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Fig. 7. Same as Fig. 5 for the Skyrme force SK E2

such that a 7% term is not needed in this calculation. We notice also that the depths of the
pockets produced in the total potential vary with the temperature. We also note here that
we neglect the temperature dependence of the effective interaction. ‘

In Fig. 1 we compare the nuclear potential for the three different Skyrme potentials
SK I, SK El and SK E2 at T = 0. It is noticeable that the minima are shifted towards
smaller R and are getting deeper for the three potentials SK III, SK E1 and SK E2, respec-
tively. Also the potentials are wider for SK E2 than SK El and for SK El than SK III.
The same results are obtained at T" # 0. Figs 2-4 display the nuclear potentials for SK III,
SK El and SK E2 forces at different temperatures. For each force it is clear that the higher
the temperature the deeper the minimum, i.e. more attractive potential. A similar trend
has been also observed for lighter nuclei [18]. Also we notice a shift of the positions of
the minima towards small R for respectively SK III, SK E1 and SK E2. In Figs 5-7 we
present the total potential (Nuclear + Coulomb) for the three forces. Pockets are observed
at zero and finite temperatures whose depths change for each force with the temperature
as well as with the kind of Skyrme force. The depth becomes larger for higher T values
and is generally larger for SK El and SK E2 than for SK I
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In conclusion we notice that the extended ansatz for the Skyrme forces reproduces
the nuclear compressibility in a better way. So it is interesting to see how this modified
forces, SK E1 and SK E2, affects the ion-ion potential, here in the case of the spherical
system 2°8Pb 4 2°8Pt. Whereas, the calculations using the conventional SK III force yield
only very flat pockets, the results for SK El and SK E2 are in good agreement with the
renormalized double folding model [23] predicting deeper minima. The often neglected
question of finite temperature effects are discussed and applied again to the same system.

It is a new feature to see that increasing temperature deepens the potential pockets
and shifts the position of the minima to smaller distance of center values R. So, for tempera-
ture T = 3 MeV, the predicted results nearly reach those derived by a phenomenological
ansatz [23] combining the liquid drop and the double folding model which is expected
to yield good results for interaction processes including overlap of two systems.
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