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1. Introduction

Riemann-Cartan geometry with curvature and torsion arises naturally within the
framework of the Poincaré gauge theory of gravity. The simplest example is given by the
Einstein-Cartan theory [1] in which the coupling of spin and torsion is realised in a degener-
ate algebraic manner. More general models are based on the Yang-Mills type Lagrangians,
quadratic both in torsion and curvature [2]. Classical dynamics of the Poincaré gravitational
fields is at present intensively studied (some bibliography can be found in [2, 3]). Among
other topics one should mention investigations in cosmology, in particular of the singularity
problem, search for exact solutions of the generalised gravitational equations, study of
motion of classical objects etc. Eventually the role of classical torsion is becoming more
and more clear. However, one can say very little about quantum dynamics of the Poincaré
gauge theory of gravity. In fact there exist only a few works in which the quantisation
of the gravitational gauge field is considered. Renormalisation problems are discussed
in [3-5], while in [6] an attempt is made to understand the spacé-time torsion as a quantum
collective phenomenon arising from the interactions of quantised spinor matter. The prob-
lem of unitarity for gravity theories with dynamical torsion is treated on the tree level
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in Refs. [7]. Partially, the lack of progress here is connected with enormous technical
difficulties arising in quantum models with torsion. However, the main reason seems
to be the absence of quantum version of the Einsteinian general relativity, related with
the lack of general understanding how the gravity should be quantised. Hence it is reason-
able to study at first non-selfconsistent problems in which only matter fields are quantised
while the geometrical gravitational background is treated classically. Previously this class
of problems has been thoroughly discussed for the case of purely Riemannian geometry
without torsion. The obtained results (for review see the books [8]) provided important
progress in the theory of black holes, astrophysics and cosmology, as well as in the quantum
theory of fields.

The case of the Riemann-Cartan geometry is currently under investigation. The
problem of particle production in space-times with torsion has been considered in Ref.
[9] for fermions and in Ref. {10] for bosons. In the latter case the anisotropisation effect
in cosmological models with torsion and scalar particles is predicted. Vacuum polarisation
effects and renormalisation problems are discussed in [11]. Recently, some general calcula-
tional methods for covariantly quantised fields in the Riemann-Cartan space-time have
been developed [12-13]. These techniques enable one to compute gravitational anomalies
and counterterms for arbitrary material field in space with torsion.

Present work is devoted to the discussion of renormalisation of gauge fields theories
in the Riemann-Cartan space-time. As it is well known the free scalar field does not interact
minimally with torsion. The case of the free spinor fields has been considered recently in
[12, 14]. Hence, the main attention will be paid to the interacting field models. In this
paper we discuss the Abelian models, while the case of general renormalisable non-Abelian
gauge theory will be described in the forthcoming second part.

It is well known that in arbitrary spin field theory the consistency conditions severely
restrict the minimal interaction of torsion with matter [14-15]. Moreover, the gauge fields
which are described by connections in a principal bundle, also cannot interact with torsion
directly. Hence, it becomes particularly interesting to study models with non-minimal
torsion interaction. We consider two Abelian gauge models suggested recently in the
literature, with non-minimal torsion coupling. The structure of divergences of the one-
-loop effective action is obtained and sume arising problems are discussed.

2. Preliminaries

In this section we give our notations and conventions and briefly outline the algorithm
which we use for calculation of one-loop divergences of the effective action.

The Riemann-Cartan space-time U, is assumed to be the four-dimensional smooth
compact manifold without the boundary, which is supplied with a pseudo-Riemannian
metric g,, With the signature (+1, =1, —1, - 1) and with a (world) affine connection
I3, The latter is compatible with the metric, i.e. V2,3 = 0, but is in general non-symmetric.
The skew-symmetric part is the torsion

Qe = fqu]' ¢))
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It is always possible to split the Riemann-Cartan connection into (torsion independent)
Riemannian connection and the contortion tensor,

(5 = Tt Qput 0 + 0. @

Here I'y, is the standard Christoffel symbol, constructed from the metric g,,. By a tilde
we denote throughout the Riemann-Cartan geometrical quantities (e.g. connection, covar-
iant derivatives, curvature etc.) constructed from I;,, while the usual notation without
additional marks is used for the Riemannian objects.

In covariantly quantised theory the fundamental vacuum-to-vacuum amplitude is
given by the functional integral

Z = | [dq]eStom@mtdta, 3)

where the classical action .S is assumed to be a functional of the background gravitational
fields, g,, and Q,,, and material fields¢ = @+ q (we suppress all tensor and spinor indices).
The latter, in accordance with the background field method [16], is the sum of classical
¢ and quantum ¢ parts, and S is expanded in powers of g. If S is invariant under the action
of a local gauge group, the integral (3) becomes undetermined. Then one adds to S an
appropriate gauge-breaking term, and takes into account the Faddeev-Popov ghost contri-
bution. Then the .one-loop effective action

I'qy= —ilnZg,, @)
is determined by the Gaussian integral
Zy = J [dqle'* **%(det 4y), ©)

where 4 = 6(S+Sgp)/dq* is the operator for small disturbances [16] and 4, is the usual
Faddeev-Popov ghost operator.
For the real bosonic fields g the integral (5) gives

Iy = é {In det A—2In det A}. (6)

The purely fermionic case is also well known.

However, as concerns the general boson-fermion systems, only recently [17] the correct
method of computation has been proposed. In brief, the main idea is very simple. Let the
matter fields ¢ be arranged into a column, the upper part of which are boson variables,
while the rest — fermion ones. Then the operator 4 takes the form of supermatrix

_ (..45?}??5.... Q)
2L 24)°

diagonal elements of which are respectively the boson-boson operator 4, and the fermion-
~fermion operator 4 y,. Usually the former is the second-order differential operator (Laplace



344

or D’Alembert-like one) while the latter is the first-order (Dirac) operator. The integral
(5) for (7) can be easily calculated with the help of the usual Beresin rules, to give

Zyy = [det (4p)—2KAG L)] ™ V*(det Agy) (det 4gy). (8)

Since it is rather difficult (though in general not impossible [18]) to deal with the first
determinant which depends on the fermion propagator A(F}, one proceeds as follows [17].
With the help of conjugate fermion operator AZ"F, one defines the fermionic determinant
to be

det A(F) = (det A(F)A:‘F))l/za

and then, combining the first two factors in (8), one recognises in them the superdetermi-

nant of the supermatrix
Ay 2 KA,
A = ((B ......... : !;g.), ©

which is now the second-order differential operator both in boson and fermion sectors.
Hence,

Z,, = (Sdet 45))” /?(det 4,), (10)

and the structure of divergences of the effective action (4) is determined by infinities of
determinant (9),

i ,
T = 5 {In Sdet 45y =2 In det 4y} (11)

It can be shown [17] that divergences of (11) may be obtained by means of the heat
kernel method [19], if one succeeds in finding supermatrices &, and X, such that the
former is linear in first (covariant) derivatives, the latter does not contain derivatives, and

As) = —(2,9"+X). (12)

Then divergences of I'(;, are determined by the Minakshisundaram (Seeley-De Witt)
coefficients of asymptotic expansion of the heat kernel for the operator (12), and in dimen-
sional regularisation

1 1
4 2 {B4(A(S))"2B4(Agh)}r (13)

ryg, = —-
W (4—n) 167
where the B, coefficient for an operator of the form (12) is given by

By(4s) = [ d*x v — g {155 (RupuR®" — R, R*™)Str 1
R\? )
+5 Str (X+ %-) +1% Str ([2,, 2.1 (2", 2D} (14)

Earlier [12] we have shown that in the Riemann-Cartan space-time U, the same
technique is applicable to an arbitrary field theory: one should only split the original
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Riemann-Cartan differential operators into purely Riemannian part and the torsion
dependent part. This always can be done with the help of (2).

3. Vector gauge field in U,

It is well known that the minimal torsion coupling to the vector fields in U, can lead
to various inconsistencies. By minimal coupling we, as usual, understand the replacement
of the flat space-time metric 77, and ordinary derivatives d, by the corresponding Riemann-
Cartan objects — g,, and W,‘. According to this prescription the Maxwell tensor F,, = 0,4,
—0,4,, defined by the four-potential 4,, must be replaced by

F=V,A,~V,A, = F,,+20°,4, (15)

For the massless vector field the last term in (15) evidently breaks down the gauge invariance
of the theory, and hence 4, can no longer be identified with the electromagnetic potential.
The classical dynamics of this field has been considered in [20] within the framework of the
Einstein-Cartan theory. Thus obtained model possesses some features of nonlinear electro-
dynamics, for example it predicts approximately Maxwell-like behaviour of F,, at large
distances, but modifies the vector field near the source in such a way that the classical
field energy of a point source becomes finite. However, the quantum version of this theory
faces many serious difficulties.

For the case of massive vector field the last term in (15) seems harmless, since there
is no gauge invariance. However one can show that the wave propagation of the vector
field in U, is in general acausal [21]. Acausal anomalies disappear only when the torsion
is represented by its trace or pseudotrace. On the other hand, in the first-order description
of higher spin fields in U, the propagation of waves is causal but, instead, one encounters
(for spin 1 and higher) algebraic inconsistencies which eliminate torsion [14].

An evident way out of all these difficulties is to assume simply that the vector field
does not couple minimally with torsion. As for the non-minimal coupling, it should be
studied separately. Here we will consider a model in which the vector field interacts with
a special case of torsion in such a way, that the gauge invariance is not violated. The classical
theory has been investigated in Refs. [22], and we are now interested in the quantised
theory in U,.

Let the torsion be represented by

quv = %‘ Q[u :]’ (16)

and the trace @, =Q.,, = —3 0, be determined by a scalar “potential” g(x). For example,
exactly this kind of torsion appears in the conformal invariant version of the Einstein-
-Cartan theory [23]. Then one can easily see fhat the Maxwell tensor (15) (with (16) substi-
tuted in it) is invariant under the following modified gauge transformations

A, > A, = A, +€0,a, an

with a(x) an arbitrary space-time function.
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Despite we use formally (15) as in the minimal coupling scheme, we consider this
gauge invariant model as a theory with non-minimal interaction. The reason is that now’
the scalar field ¢ (instead of torsion) is the true dynamical variable, and its appearance
in (17) cannot be explained by the usual minimal coupling prescriptions (17,, = g,
8, — V,). There exist also generalisations on non-Abelian gauge theories [22].

Now let us consider this vector gauge model, which is quantised on the background
Riemann-Cartan space-time. The action has the usual form

S = [ d* =g (-1 F,,F™). (18)
Substituting
Fuy = V,d,~V,4,+%(Qu4,~0.4,)
into (18), one gets after simple but long algebra
S = [d'x V=g (-~} VAV A +3 (V,4) ~F 4,0V, 4°
+3 A,A[F 8V0 R~ VIO % £70,0°+$ Q")) (19)
The second and the third terms in (19) suggest us to choose the gauge in the form
P[A] =V, 4" -%0,4" =0, 20)

with the help of which we remove from the action all terms linear in derivatives. However,
one can equally choose more general gauge

P,[A] = V,4"+2Q,4" = 0, Q1)

with arbitrary parameter A. In Appendix A we demonstrate that the final result is inde-
pendent of A.

Adding the gauge-breaking term Sgp = —{d*x/—g+(V,4"—% 0,4"), we get
S+5Sgp = § d*x N/ —g {—% 4,4",4%,
where the operator for small disturbances has the form (12)
4, = ~({VV,.+X%),
with the matrix
X", = ~R{,~%V"Q,—58,0.,0°+5 3\V.,0" (22)

We can now use the standard spectral geometry algorithm (13)-(14) to obtain the diver-
gences of the effective action. One gets

[Va’ Vﬂ]{.v = Rf‘vaﬁ’ (233)
trX = —-R +% VuQu”_lg_Q Q”Ql‘, (23b)
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tr X* = R, R +42V, 0 V*Q’
+% RQ,0"—3% 0.0°V,.0" +31 (2,0 (23¢)
Inserting (23) into (14) (with tr1 = 4), we find
By(4") = [ d*x /=g {~ 755 RapuR™ +3 R, R"”
-3 R*+5V,0.V'Q" %5 0.0°V,0"
+37 RQ,Q"+3 RV,0"+37 (2,2"%). 4
The ghost operator is defined by (20) and (17),

dP[A]
da

= °[V'V,—% 0'V,].

The factor (exp ¢) is irrelevant in the dimensional regularisation scheme, and the rest
can be rearranged to the form (12) with

P, =V,~30, X =3V,0'-$0,0"
As a result,
—2B,(4y) = [d*x vV —g {~% R, R¥* + 35 R, R
—3s R? =% (V0" +35 0.0'V,0"
+37 RQ,0" - % RV,0"~ 31 (2,2} 25y
Summing (24) and (25), we finally get the infinite part of the effective action

© 1 R .
o =a= 6 f‘ﬂx V8 (185 R K
+3% R, R — % R*+55 RQ, 0"
+5V,0.VH0" ~ 5 (V0 +35 (0,04} (26)

This result can be slightly simplified, if we eliminate one of the curvature quadratic terms
with the help of the Gauss-Bonnet identity Rz, R**"—4R, R*+R? = (total divergence),

afuv
and make use of Q, = —3 d,9. Then
I = - = ' V7§  RuR7 -3 RY
(4—n) 1672 #
+(0g)* —20,90,p(R* — % Rg")+(0,90"9)}, 27y

where (] = V¥V,

Since the vector gauge field is free, only gravitational part of the action is renormalised.
Divergences (26)-(27) can be removed from the total S, if we choose properly the structure
of the initial action. Renormalised gravitational action can be used then (by considering.
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its variational derivatives) to obtain semiclassical corrections to the gravity field equations,
similarly to the usual General Relativity. As a final remark we should mention sonie prob-
lems. Firstly, the form of the effective action divergences (26) is too complicated from the
point of view of the Poincaré gauge theory of gravity. More exactly, it seems unlikely that
the structure of (26) can be explained with the help of Poincaré symmetry underlying the
Riemann-Cartan gravitational theory. Secondly, as we see, the arising effective theory
leads to the fourth-order equations both in metric and ¢ sectors (see (27)) and thus its
unitarity is a problem.

4. Interacting fields in U,

Perturbative renormalisability is an important property of a quantum field theory.
An 1nteresting question is whether this property, proved in a flat space-time, is preserved
also in a curved manifold. This problem has been discussed recently for the case of Rie-
mannian geometry (see e.g. [8, 17, 18, 24]), and it was shown that the flat-space renormali-
sable theories of interacting fields remain renormalisable in curved space-times. However,
it has been long ago recognised that the minimal coupling recipe is not sufficient to preserve
renormalisability. This is clearly seen for those models which include interacting scalar
fields ¢ it is well known an additional non-minimal coupling term of the form &Rep?
is necessarily required.

The same is expected for scalars in the Riemannian-Cartan space-time with torsion.
For example, the simple analysis for the quantum theory of interacting scalar ¢ and spinor
fields y in U, with the Lagrangian

L =4 ¢"0,¢0,9+% ERQ? t fp +goPy

+itf>y"(V“+ay5Q,,)zp, 4, 8, &, o0 = const,

shows that the effective Lagrangian, determined by loop contributions, contains divergences
of the type 0,0"¢?. Hence, the latter non-minimal torsion coupling term should be in-
cluded in the bare action, in order to achieve renormalisability in the Riemann-Cartan
space-time.

As compared to the purely Riemannian case, the number of different non-minimal
torsion interaction terms (which could naturally arise in various models) is rather great.
This is connected with the well-known fact [2] that irreducible decomposition of the cur-
vature and torsion tensors is more complicated, and hence the number of independent
invariants (constructed from Q7,, and R?,,,) increases greatly [25]. For example, decompo-
sition of torsion into irreducible parts reads

Q Hy = % 5:] +£auvﬂQﬁ + Qf‘uvy

where Q, = Q7,, is the torsion trace, Qn % m,,,Q ? is the so-called pseudotrace, and
02, is the traceless and pseudotraceless reducible tensor Q',, = 0, e#Q,,, = 0, which
can be decomposed into self-dual (antiself-dual) parts.
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Therefore it would be useful to study the general problem: which types of non-minimal
torsion coupling terms do not disturb renormalisability of a given flat-space theory. Re-
cently, it has been supposed that [26] any multiplicatively renormalisable theory remains
multiplicatively renormalisable in U,, when non-minimal coupling includes for scalars
and spinors, respectively,

3 A(R, Q%97
A= gl R+ EZQ;AQ“ + é3Qqu“ + éAQapv —‘1{‘."» (28)
2Q, Py v+ PO, Py vsy, (29)

where &, ..., &, o, f are the coupling constants.

In this section we investigate the one-loop renormalisability of an Abelian gauge
model with spinors and scalars, and non-minimal interactions (28)-(29). This is the spinor
electrodynamics coupled through a Yukawa-type interaction with a real nonlinear scalar
field. Its Lagrangian in U, reads

L = =3 F F"+ipy"V, p+ed, py" y—mpy

S\ o f _
+30,90"9 —3 MP¢*— = ¢" +hePy

+0Q, Py p+BO,PY'ysv +1 AR, Q)¢ (30)

Here m and M are respectively masses of spinor v and scalar fields ¢, while e, 4 and f are
the coupling constants. Electromagnetic field 4, dozs not interact with torsion, and hence
as usually F,, = 0,4,—0,4,.

In the framework of the background-field method we decompose all fields into classical
and quantum parts:

A=A 4a, ¢ =0+h y=0+n P=p+i &y

The over cups denote classical fields. However, in what follows we we will drop them, since
only background parts enter the formulas given below. The one-loop effective action
is determined by the quadratic term in the expansion of (30) in powers of quantum parts.
We compute I'(q, using the algorithm [17], which we have outlined in Sect. 2. Details of
calculations are given in Appendix B, and here we present only the form of supermatrices
2, and X which determine superoperator (12) for the Lagrangian (30). They are as follows,
with the upper-left, middle and lower-right blocks referring, respectively, to electromagnetic
field, scalars and spinors,

(32)
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1/2

—Rf" 0 s—e(iv,,w‘ *4+57°N)
i Ry
X =10 —-A+ =9 h(qulpy +1pN) > (33)
"—"'é'y""'{p"l'ﬁi;} """""""""" 7
where
N = —eA,,y“——aQ,‘y“+BQv,,y"y5 +2he—2m, 34y
R
Z =m*— T —ig" (Ee_ F,,v+ocV,,Qv) +3h%g?
—iBysV, 0" +4PheQ,"ys —28°0,0", (35y
1/2 ) .
D, =V, —ied,~iaQ,—ifo,,75Q" —ihey,, (36)
/2 0 1

and V,,V,and V, denote covariant derivatives, respectively, for spinors, scalars and vectors.
0 0

The ghost operator is much simpler: 4,, = —V*V,.
All necessary traces of X, X? and [2,, 2,)* are calculated in Appendix B. Inserting
them into (14), we finally obtain

1 1 —
«© afnv w
F(1)=(—4—_-;)‘16_?J‘d4x\/—g{ 360Raﬂu\vR # + R R“
M: m* Mt
_35’6‘ R2+% AZ—% RA—AA/12+R (—6' + —) + —é— —2m
+8m’°0,0" ~% fA(V,0,~V,0,) (V'@ —V'0")
—'% CXZ(VMQ‘,-'V‘,Q“) (V“Qv —VVQ”)_% aeF“vVuQv

) M? ”
2 ?F, F"™ +2h%6,00"p + <ﬂ7 —12m2112) ®°
f h?
+Rg’ T +88°1°0,0" 9" — % Afg?

2
(f— —2h ) @* + (2 + ) (ipy'V, v+ eA, Py
+aQ, By ) +(2¢* — h*)BO, By ysy

+(8¢*—2h*) (hopy— MW)} . (37
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Let us briefly analyse this result. The purely gravitational part is very complicated
and, like for the model of Sect. 3, it seems impossible to give any reasonable explanation
{in the framework of the Poincaré gauge theory) to this sum of curvature and torsion
quadratic terms. As concerns material interacting fields contribution, one notices a disturb-
ing term F*'V,Q,. In its absence the theory would be indeed multiplicatively renormali-
sable, similarly to the case of flat space. This term disappears only on the mass shell, when
the classical Maxwell equations for the electromagnetic field V, F** = —egy’y are used.
Elimination of divergences, which vanish on the mass shell, can be considered [27] as
a shift of a quantised field

Au - Au +8QF

by divergent contribution of the background geometry. In the second and higher loops
this leads to new complications. Hence we conclude that the model (30) cannot be consider-
ed as multiplicatively renormalisable in presence of non-minimal term «Q,$y"y. Such
a torsion coupling should be excluded in the Abelian gauge models.

5. Asymptotic properties of coupling constants

Recently [28, 29] renormalisation group equation technique has been generalised
to the case of quantum field theory in curved space-time. Since the momentum or coordinate
scaling cannot be prbperly introduced in general non-flat space, one studies behaviour
of the Green functions under the scaling of the metric tensor g,, — S-2g,, with the constant
parameter S. Large S corresponds to the case of large curvature (high energy or short
distances) limit. In [28] the opposite low-energy (large distance) case has been discussed
for the scalar field theory with quartic self-interaction. In particular, it was shown that
asymptotic value of mon-minimal scalar curvature coupling constant equals 1/6. Here
we present analogous analysis of renormalisable Abelian gauge field model in U,, discussed
in the previous section. In accordance with the above discussion we set o = 0 and suppose
that the structure of puarely gravitational bare Lagrangian is defined by (37). One-loop
divergences (37) can be eliminated by renormalization of fields and coupling constants:

2- 2. L -2
es =4 2Ze, (A)p=p? Z)%4, (Z.2Z)/*=1) (38.1)
wB = ﬂz— —ZZst 17)8 = ”7 Mzzwiﬁ, ?nB = Zm'na (382)
g = pZ Zi¢, ME=ZuyM?,  fy=u*T"Z,f, (38.3)

2- 2 . .
hg = 2Z;h, (E)p = Z:&w 1=1,2,3,4, [flz= Zpﬂ- (38.4)

Here the subscript B denotes bare quantities (the renormalized ones are without additional
marks), p is an arbitrary mass scale parameter which makes the action dimensionless in
dimension n # 4. Formulas (38) give renormalization of the material gauge theory (30).
As for renormalization of the gravity action, it is trivial and we will not write it out explicitly.



352

From (37) one easily obtains renormalization constants 6Z = Z—1. Denoting
& = 16n%(n—4) we get

1
0Z, = — " 402, (39.1)
- 1 2
0Zs = — 4h?, (39.2)
-4
1
82, = — (—3f*—8h>f+48h%), (39.3)
&
1
M2Zy = — [24m*h? — M?(f+4h%)], (39.4)
€
- 3 1 z 1 2
§10Zy, = — " (& —5) (f+4h7), (39.5)
1 2
0Zy, = 02y, = — — (f+4h), (39.6)
1
£30Z,, = -~ [168%h* — &,(f+4h)], (39.7)
1 1
6Z, = — (2 +h?), OZ, = — (6> —3h*), (39.8)
& &
- L 2 2
8z, = - (6€* —5h?), (39.9)
1
8Zy = — — 20~ (39.10)
&

With the help of (39) we can now obtain the curved space renormalization group
equations [28, 29] for effective (running) coupling constants as a function of the scaling
parameter ¢ = In S. For the gauge charge &*(t) one gets

de?

167 — = L (40)

Integrating this with the initial condition &°(0) = ¢ we see that the theory is infrared-
-stable, and the effective charge

eZ
52(1) = —
& be*t

16n2

(41)
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goes to zero when t » —o (S — 0), since b = 8/3. Hence (analogously to the case of the-
pure scalar field theory [28]) we can analyse the long-distance (small curvature) asymptotic
behaviour of the effective charges, using the perturbation theory results. Since in view of
(41) the limit S - O coincides with & — 0, it is convenient to consider all coupling con--
stants as functions of 2. More precisely, let us make a change of variables

h3(1) = ke (D2(1),  J(1) = ky(DE(1), (42)

and introduce a new scaling parameter 7, defined from (41) by

1 be’t
T='[‘;hl 1—‘]—6;["2— . (43)

For S=1 (t = 0) we have 1 = 0, while for S - 0 (t > —oc) we get 1 - 0.
Then the renormalization group equations are as follows:

ky, = —10k}4+%2 k,, (44.1)

ky, = —3k3—12 k,+48k3, (44.2)
6 = —o(ky+4k,), (44.3y

B = —4k, B, (44.4).

&y = —&y(ky+4k) + 16k, B (44.5)

Here the dot denotes derivative with respect to 7, and o(z) stands for &, —% or &,, or &,.
The system (44) can be easily integrated. Indeed, let us nofice that in the physical
region (k, > 0, k, > 0) equations (44.1), (44.2) possess the stable fixed point kT = 22/15,
* _ 8(J1133 _|)x 5. Hence, for arbitrary initial conditions integral curves {k,(),
k,(7)} asymptotically (r — o) approach (k}, k3). Thus the Yukawa and quartic self-.
interaction effective coupling constants (42) are asymptotically zero at large distances,
and this fact supports the use of perturbation theory results for the study of renormaliza--
tion group equations.

Now let us consider the large-distance behaviour of non-minimal curvature and torsion
-coupling constants o, B, &. From (44.3)-(44.5) we see immediately that all of them tend
to zero when v — o (S - 0). In fact, as soon as k,(r) and k,(z) are known, equations.
(44.3)-(44.4) can be directly integrated to give

o) = o(0) exp { - [ [k +4k,()]ekr )

. . be 1 dky*tka?
~ ¢~ RTHRT (1_ 67 ) b - 0, (45)

T+
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B*(z) = B*0) exp (— [ 4k (z))d7)
0

- 88 be?t \- 'L
e =(l~ 16 2) oo (46)
T

T 00

A little bit more complicated is integration of inhomogeneous equation (44.5). Here the
solution can be find in a form &,(t) = n(1)B*(z), where the function n satisfies
n = —k,n+16k,.
16k*

¥ )
2

Thus, when t > o0 we haven — ¥ = and hence for large © the coupling &, behaves

like B? and also tends to zero.

Finally, one can find (analogously to [28]) that in the limit S — O (r — o0) effective
masses (t), M2(tr) become infinite. The dominant term, which determines their behav-
iour, comes from the naive scaling properties of masses, and it is present already in flat
space-time (see [28] for the relevant discussion). Massless case is an exception, then
m(t) = M?*(z) = 0.

In conclusion, we have analysed the asymptotic behaviour of the effective coupling
constants in the Abelian gauge field model (30) in the Riemann-Cartan space-time. In the
limit of large distances the model becomes infrared-free in all coupling constants; &2, b2, f
tend to zero when S — 0. As concerns the gravity-matter non-minimal coupling constants,
it is seen that the interaction with torsion becomes asymptotically weak for all types of
couplings (&,, &5, €4, f), while scalar curvature coupling constant &; asymptotically
approaches the conformal invariant (for M? = 0) limit value 1/6.

An interesting problem is to make the renormalization group analysis of asymptotically
free non-Abelian gauge field models, in which asymptotic properties of £; and § could
be studied in the limit of small distances (high curvature).

6. Conclusion

In this paper we have started the discussion of renormalizability properties of quantised
gauge field theories in the Riemann-Cartan space-time U,. Two Abelian models with non-
-minimal torsion coupling were considered. Our results correct some shortcomings of Ref.
{26]. In the forthcoming paper we will consider generalisation on the case of renormalizable
non-Abelian gauge models.

One of us (Yu.N.Q.) wishes to thank Professor A. Trautman and Institute of Theoreti-
cal Physics, Warsaw Univetsity, for warm hospitality.

APPENDIX A
Let us consider the calculation of the effective action for the vector model (Sect. 3)
in general gauge (21). The gauge-breaking term Sgg = — | d*x/—g % (V, 4" +41Q,4")?
does not eliminate in (19) terms which are linear in derivatives, and hence the operator



for small disturbances 4,*, reduces to the form (12) with
LA
(@a)’xf = 5€V¢+ '3—+ 5 (5ng“—Q"gav)’
Xf‘v = "R”v-}'%é‘:ana'}'('{—%)V”Qv
+ +/1+42 8,0.0"+ | 3 2 _ A o
3 a 3+ 3 5‘ Q Qv'

After long and tedious algebra we get the basic traces

LtrX? = 1 R,R"+3V,QV"0"~ ( 2) RY,0"

2

A A :
+ (%— = ~4—) RQ,0"+} (¥ ~$) (7,07’

12 i\2
+a (3" +%) 0.0V, +} (%+ 5) @,
R? 1 A A2
6 6 3
. . i
25 t0 (9 .1 [9% D) = v Ry R ( ) V.0

171 4 w11 }'2
talst; RV, 0" +3 3t3 RQ,0*

2 1 ;'3 @ u 1 '14 2
- <§+ i) 0.0°v, 0" — (34' 5) (2.0

Summing all these, when using (14), one gets

B4y = fd‘x V=g { — 785 Rop R +43 R,,R®
A‘. 2
- R +37,070+0,07 | -4+ (-5 |
1 j’ I3 A’ 1 3 a M
+ —9“—‘6‘ RV,,Q +2 5'—'5 Q.0 VuQ

A\? A\
+ro,0[-4(3-3) | +@erit (3- ) ]
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(A.1)

(A2)

(A.3)

(A.4)

(A.5)

(A.6)



356

However, one easily sees that the ghost operator is now
oP,[A
—AR = '%ET] = ?[V'V,+(A—2)0"V,], (A7)

and it also reduces to the form (12) with

A
G, =V, + (5 ——;—) 0, (A8)

4 u_ 1 A z u
X =(3-3)v.e- (3-73) Q0" (A9)
“234(45?) = jd4x \/ g { 9 0 RaﬂuvRaﬂ‘”'l' 90 uvR“v

) i\ 2
“'31—6R2+ (g )Rquﬂ (__ %) RQ,,Q" ( g) (VuQ#)z

A 3
+2 <—— —) 0.0V, 0"~ (—~ -) (2.9 } (A.10)

With these we obtain

Sum of (A.10) and (A.6) evidently is independent of A and gives the final result (26) for the
divergent part of the effective action of the Abelian vector gauge model.

APPENDIX B

In the mod¢l (30) it is most convenient to choose the standard Lorentz gauge V,¢* = 0.
Then, expanding the Lagrangian (30) with the help of (31), one obtains the operator for
small disturbances 4 in the form (7), where the boson (vector-scalar) part is

11 ;
V.Vig” —R¥0
4@y = Ooof """" , (B.1)

the fermion operator is

1/2
A = YV, —m+edy* +aQy" +BOy"ys + he, (B.2)

and boson-fermion (fermion-boson) off diagonal terms are

K= ( -------- ) L= [ yihy]. (B.3)
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With the help of
1/2

Ay = Y'YV, +m+ed,y* + 000" + 0N Ys +ho, (B.4)
one gets for the square of the Dirac operator
Al = —(D,D"+2), (B.5)

where D, and Z are given respectively by (36) and (35), and as usually ¢** = 3 G =9"y).

Now the supermatiix (9) is completely constructed and with a little effort one can
prove that it can be reduced to the form (12) with &2, and X as given in (32) and (33).
Evidently,

1 1
str[2,,9,)? = [V, V,))—tr[D,, D,
and

[D,, D,] = 3 0¥ R,p,,— ieF,,—ix(V,0,—V,0,)
+2iByso [n?vv]éa +2ihy, V0 + 2840, 0% v~ O {;:vi]Qva)
| —2h*@%0,,— 4iBhge,, ;0. (B.6)
Then after a long computation one gets
58t ([9,, 2,1 (9", 2"]) = —F5 Rypn R
~% BR,0"0" +3 B’RO,0" - % BV, Q.V*0"
2
=3 V0 +8550,0 4 S PP + 200,00
+5 eaF*'V,0,+3 «*(V,0,—V,0,) (V'Q" - V" Q")
—2 h?g?R—48%h2¢*Q,0" + 16h* ¢*. (B.7)

For the traces of the matrix X we obtain
1 2 1 v R 142 2 M* 4
3Str X*> = 3R, R"— < +1A2—AM?* + 5 —2m*+m?R
—28°R0,0" - 86%(0,0") +8m* 0,0 + 28*(V, 0"

- az(quv - Vqu) (V”QV - V"Q") - 4edF“'VuQv - eszvF’"

e M?
+568°1*9*Q,0" +3h*Re* — 5 fAP* + ¢* (‘-z—f - 12m2h2)
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f? L _
+o* (; —18h* ) +(2€* + 1*) (ipy"V,,p + e A, Py p +aQ,FY'y)

+(2e2 — )P0, Py ysv +(8e” —2h) (hgpy— mipy), (B.3)
LRStr X = —1 AR+% B*RQ,0"

+1RM?—4m?) + ({5 —2h2) R¢>. (B.9)

Inserting (B.7)—~(B.9) into (13)-(14), we get the final result (37), where one must keep
00

in mind that Str 1 = 1, and the ghost operator 4,, = —V,V* gives contribution
"2B4(Agh) = 5 d4x ‘/ -8 { _313 RzzﬁuvRaﬁ”v +Tlo— RuvR"v—ﬁ% Rz}- (B'IO)
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