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We review the experimental status on KNO scaling and its violations in proton-anti-
proton collisions. We especially emphasize the possible solution to this problem in the parton
branching model. In this model there is a new non-scaling law for the probability distribu-
tion P, of m quarks and »n gluons, For very high energies, we can neglect quark evolution
and find the exact analytic solution for the observables such as multiplicities, probability
distribution and multiplicity moments, We fit the experimental data remarkably well with
the assumption that initial number of gluons n, increases slowly with energy while the initial
number of quarks m, decreases slowly with energy. Exciting theoretical predictions for the
Tevatron Collider energies are presented.

PACS numbers: 13.85.Hd, 12.50.Ch, 12.50.Fk

1. Introduction

Most recently we have witnessed considerable renewal of interest in multiparticle
production in hadron-hadron collisions, in particular KNO scaling and its violations [1].
In this lecture I will review theoretical background, experimental data, discuss theoretical
models and finally present the possible solution to this problem in the context of parton
branching model.

The first theoretical contribution to this problem came more than a decade ago, when
Koba, Nielsen and Olesen [2] predicted a scaling law for the probability distribution

P = w(f’;), (L.1)

where P, is the probability distribution of getting n particles with mean multiplicity # and

¥ (;) is energy independent function. Their prediction was based on assumption of validity

* Presented at the XXVIH Cracow School of Theoretical Physics, Zakopane, Poland, June 3-15,
1987.

@361)



362

of Feynman scaling for the many particle inclusive cross section. Namely, if we consider
k particles produced in hadron-hadron collision with p, ... p, momenta, the normalized
inclusive cross section ¢®(p; ... p,; 5) defined as

(%) . _ 1 dsko.incl \/P%'l'"’lf \/P]f'l'mi
¢ (pl oo Pis S)——-" d3 d2
g Py Dx

(1.2)

2 -
is a function of p,, Feynman variable x = —% and the center of energy ,/s. The assumption
s

that Feynman scaling is valid for this cross section implies that ¢®(x; ... X4, P11 .. Pes)
is energy independent function. Multiplicities can be obtained from the inclusive cross
section by integrating ¢*(p,, s) over the momentum p,

d*p
= fT;TT—nT oM (py, 5). (1.3)

The multiplicity moments defined as

K, = n(n—1) ..'.-lk(n-k-{-l) (1.4)

can be obtained by integrating ¢ over the momenta p, ... p;.

Therefore the assumption of Feynman scaling for ¢ imphes that # grows logarith-
mically with energy while the moments K, are energy independent. This can be seen if we
rewrite the multiplicities as

Y
= _jydya“’(y, 5), (1.5)
where
y=21n VStPs (1.6)
\/S—PJ.
and
5(1)(}” 5) = jdpuﬁb(l)(h, s). %))

Clearly the maximum rapidity is related to the energy by the simple relationship
Y =1m(-_ (1.8)
3 )" .
Assuming the validity of Feynman scaling (¢‘’(y, s) is energy independent) and taking
the limit when s — c0, we get
n— §0)In s 1.9)

and

n(n—1) ... (n—k+1) -» $(0) (In s)*. (1.10)
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Therefore the multiplicity moments K, defined by Eq. (1.4) are energy independent. We
also note that KNO scaling also implies that moments defined as

n
Ci= 5 (1.11)

are energy independent.

2. Experimental data

At that time when KNO scaling was proposed the available energy was 10 GeV < /s
< 30 GeV and it was hard to test this prediction in this small energy range. Going from
the Fermilab energies /s ~ 10 GeV up to ISR energies 5~ 30 GeV [3] it looked as
the scaling has already been reached. However the most recent data from SppS Collider
(200 GeV < /s < 900 GeV) show dramatic scaling violations [4]. In Figs 1-3 we see
that KNO scaling violations observed by the UAS5 Group which are manifested in widen-
ing of the probability distribution, increase of the multiplicity moments C, and the violation
of the logarithmic growth of the multiplicities. From Fig. 2 we notice that KNO scaling
violation is moie apparent in the case of higher moments.
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Fig. 1. The multiplicity distributions n 3 plotted as a function of z = — for the energy range from
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FNAL (4/5 ~ 10 GeV) through ISR (/5 ~ 63 GeV) to CERN SppS Collider (4/5 ~ 540 GeV), Ref. [4]
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Fig. 2. From Ref. [7), the multiplicity moments C4 (¢ = 2...5) plotted for FNAL, ISR and SppS energies
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Fig. 3. The energy dependence of the mean multiplicity in energy range 10 GeV < 4/5 < 900 GeV fitted
with the curves of the form s*/*, 4+Bln s+CIn? s and a + B5?. The values for 4, B and C, «, § and y are
given below Eq. (3.31)
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The UAS group also fitted their data with the negative binomial distribution [5]

k—1)!
(—:;(lk—_—l-)-)!- (kY + k)™, .1

P(R) =
with two parameters 7 and k. In the energy range 10 GeV < /s < 900 GeV they found
that the best fit is with parameter k decreasing from 20 to 3. This distribution was proposed
in many different theoretical models [6], but without clear understanding of the behavior
of the parameter k. Another interesting observation is that the probability distribution
has different shape for different rapidity regions, namely it is much narrower for the full
rapidity range (y < 5) than for the central region (y < 1.5) [7]. This can be seen in Fig. 4.
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Fig. 4. From Ref. [7], the nP, plotted versus z = —- for different rapidity regions. As the rapidity increases
n

the function nP, becomes wider

Recently, the UA1 group found out that the fraction of events containing at least one
jet with E, > 5 GeV (so called “mini-jets”) is increasing with energy [8]. For the SppS
Collider energies it increases from 5% to 179%. This gives a new hope for the QCD based
models. It also means that it is important to consider carefully different cuts in p, and the
fractional momenta x.
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3. Theoretical models
3.1. Dual parton model

This model [9] is based on the assumption that the interaction between two hadrons
after the collision separates each hadron into two colored systems: quark and diquark. The
chains are formed from quark-and diquark of different hadrons. Each chain corresponds.
to two back-to-back jets in its center of mass frame. In this picture, gluons mediate the
interactions, “‘dress” the quarks and produce qq pairs. In this model the KNO scaling
violations are due to the increase of the rescattering component of the inelastic collision.
This component is coming from the multiple inelastic collisions and it corresponds to the
creation of the multichains. Most recently, new semi-hard component has been added
to this model. This component corresponds to the observed “mini-jets” {10].

3.2. Geometrical models

In these models the KNO scaling is directly related to the geometrical scaling. Geo-
metrical scaling relates in a specific way the elastic differential cross section to the imaginary
and real parts of the scattering amplitude. In these models at very high energies the hadronic
elastic amplitude is decomposed into a part which is energy dependent and the part which
is a function of the high energy scaling variable 1 = —t0,,(s), where ¢ is the four-momen-
tum transfer. This implies that differential cross section scales with the variatle 7 and o,,/0,,
is energy independent. This prediction was found to be violated at the CERN collider
energies.

Yang and Chou [11] proposed an improved geometrical model in which the probability
distribution for the multiparticle production in hadron-hadron collision is the superposi-
tion of many Poisson distributions each characterized with a different impact parameter
b. As the energy increases the impact parameter increases and the process becomes more
stochastic. This prediction can be expressed in terms of forward-backward multiplicity
distribution which will be represented with the straight line at very high energies.

This model is also applied to ete- collisions in which case b = 0 and the probability
distribution is composed of two Poisson distributions [12].

In the three-fireball model [13] target, projectile and central region are formed after
the collision each producing n; particles (i = t, p, ¢). The KNO scaling violations in this
model are due to different energy dependence of the mean multiplicity of each region.
Another adequate explanation is that the violations are due to the increase of the size of
the central fireball relative to the sizes of the other fireballs. The KNO scaling function
in this model has the following form

w(z) ~ 23 le T 3.1
At low energies it is found that k = 6 while at high energies k = 2.

3.3. Models with QCD framework

In the cluster model [4] hadrons are preduced in two steps: first a far off shell quark
radiates gluons which form clusters, then these clusters turn into particles. The scaling
violation comes from the energy dependence of the number of clusters as well as the energy
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dependence of the number of particle per cluster. However this model predicts the slow
narrowing of the distribution which is in contradiction with the experimental data.

In the soft gluon bremsstrahlung model {15] the violations are due to the three-gluon
coupling which becomes the dominant process at collider energies. The multiplicities also
have contributions from quark bremsstrahlung as well as from the soft gluon bremsstrah-
lung. The ratio of these two processes is an energy dependent parameter. In the quark-
-parton model [16] multiplicities have a contribution from quark-quark collision as well
as gluon-gluon collision. The scaling violations observed at Collider energies are due to the
rising component of the gluon-gluon collisions. Multiplicities are given by
g, _ 6(s)

n=h
4 Ginai(8) y Ginct(S) ’

(3.2)

where g, is the constant part of the total cross section while o, is the energy dependent
(o, ~ In?5) introduced on a phenomenological grounds. This model can be applied to
both non-single diffractive as well as the inclusive data. The probability distributions are
obtained with a cutoff in the momenta (x = 0.03) because of the divergence of the parton
distributions at x = 0. The available experimental data are very poor in the region when
x < 0.1 especially at low O, and indeed there is no firm theoretical understanding of the
gluon distributions in this region.

Finally, the QCD jet models will be discussed in Sect. 4 in relation to our branching
model.

3.4. Stochastic models

In these models scaling is related to the general statistical and dynamical properties
of the multiparticle production. The probability distribution proposed by Carruthers and
Shih [6] is the negative binomial distribution

o (k=11 (KN K\ "k

which corresponds to k sources (clusters) emitting fields behaving as gaussian random
variables. The sources have equal strength with average multiplicity A/k. In the large n and
7 limit APY#) approaches the scaling function:

kk
) = & e (34)

nP, - w(z =

&

It is easy to see that the negative binomial distribution is the Poisson transform of y(z):

n

_ (za)" _;
P() = j =~ eT7g(2). (3.5)

The origin of the Poisson transform can be seen by looking at the density matrix formalism
{17]. Namely, the probability distribution can be expressed as a diagonal element of the
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density matrix

P, = {n|eln), (3.6)
where p is the density matrix given by
d*o _
e=\5- (o) loy ol 3.7
¥4
The coherent states |a) are defined as:
> = el j “ . (3.8)
-ox/n!

The function ¢(«) is a dynamical weight function. If we identify (z) as:
i(d L
@) = = | 22 p(a = o Vzm) (3.9)
2z ) 2=n

then the probability distribution is just the Poisson transform of ¢(z). As an example,.
let us consider the following single weight functions:

$1(@) = 5(x—p),

"IQPIN
¢2(a) = N s
o 12=BI2IN
¢3((Z) = T . (3.10)‘

The corresponding probability distributions are [18]:

1 N
Py= — BV, Py =
=i P A+ Nyt
N" - s 2
P, = _ i, (= ), (.11)
{(1+N)" N(1+N)

In the case of k oscillators of equal strength each having the same weight function

P (3:12)

the probability distribution is:

, Kk N [(—KkiB*N
N ottt n ( ZEPLIAY 3.13
Ps(Na 1ﬂ| ) ( N)"+ke kLo ( 1+1\l'/k ( )
e
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with the corresponding multiplicity
i = N+|p|*. (3.14)

The probability PX(¥, |]?) given by Eq. (3.13) is sometimes referred to as a Glauber-
-Lachs formula. In the stochastic picture proposed by Carruthers et al. [6] the parameters
1812 and N are coherence and incoherence respectively. In the limit when |${2 — 0 the proba-
bility distribution becomes the negative binomial distribution, while for the case where
N — Oand k = 1 itisthe Poisson distribution. The fact that the ratio of N and || changes.
the shape of the distribution in the way described above has been used to explain the widen-
ing of the distribution as the increase of the incoherence (noise) with energy in the hadron-
-hadron collisions. The Glauber-Lachs probability distribution is used as an alternative
for the negative binomial distribution even though the number of stochastic models with
the negative binomial distribution as their prediction has enormously increased in the last
year as a consequence of the remarkably good fit to the experimental data done by the UAS
Group [5]. However there is still no understanding of the behavior of the parameter k which,
according to the fits, decreases with energy. In the model of Giovannini and Van Hove
[19] & is the ratio of cascading and partial stimulated emission and it is rapidity dependent.
However the dynamics is missing and k is just a parameter fitted to the data. They do not
obtain the energy dependence of k. An alternative model is a statistical model based on

10 102 103 104
/3 (GeV)

Fig. 5. From Ref, [7], the multiplicity moments C, (g = 2...5) plotted versus energy for the total rapidity-
region and for |y| < 1.5. The scaling violations are more expressed for the restricted rapidity region than
for the whole rapidity region
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analogy with the Feynman-Wilson “gas”. In this model we have shown that the onset
of KNO scaling is an indication of a phase transition [20]. We have argued that this phase
transition corresponds to the transition of the hadronic matter to a quark-gluon plasma [21}).
In this model the probability distribution is very similar to the negative binomial distribu-
tion (moments C, are the same!) and the parameter k is related to the coherence length.
It is also possible to explain the rapidity dependence of the moments C, observed by UAS
Group [4] (See Fig. 5).

3.4.1. The Fokker-Planck type evolution equations in the stochastic model

In the context of the stochastic model the multiparticle production is a stochastic-
-dissipative process that can be described appropriately by the time evolution equation
of the Fokker-Planck type. This approach was developed by Carruthers [22)]. The Fokker-
-Planck equation for the KNO scaling function y(z, t) was found to be

oy _ 17 2h ( 2b y 7} ‘ 315
E(Z,t)n-—E[Z(*é'— —EZ—Za—Z"l/)(Z,[)], ( )

where
SO = Qée—t) (3.16)

and Q is the noise strength, f(¢) is a fluctuating force and b, h, y are the parameters.
The corresponding Langevin equation is:

d
T;“ = hz—bz'* 421 (1). (3.17)

This is actually the rate equation for the number populations when f(t) is described
by gaussian white noise. The stationary solution (long-time) of the Fokker-Planck
equdtion is:

'(p(z) = Nz(2h/Q"1)e—(2sz/Qv)' (3.18)

When y = 1 and k = 2b/Q = 2h/Q this u(z2) is the I' distribution defined by Eq. (3.4).
With a similar approach Biyajima and Suzuki [23] obtain the following Fokker-Planck
equation for w(z, t):

Wah_ 2 [g(z) ('—‘—_—1 k- 3) vz, r)]
z 2

ot —6—2 z

bl k— &
- [g(z) (~—‘ —k) + a—g-(i))] e 0+ 5 [g@wE 0], (3.19)
z oz 0z

0z

where g(z) = Aoz
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After taking the Poisson transform of this equation we can get the evolution equation
for the probability distribution:

oP
61" = — AoAnP,— Ag(A+k)nP,— Agiik P, + Agii(n —1)P, _ .
+ig(A+k)y(n+1)P, |+ AgitkP,_,. (3.20)
This equation can be solved for different initial conditions. If at t =0
Pn(t = 0) = 6»,09
(n+k—1)! [k\* AN
P(t=0= —7-——1{=])[1+= )
( ) ni(k—1)! \# 7
e "
P,(1 = 0) = ()" o (3.21)
then
n"e™" (n+k—1)! [k\* AN
P(1) = , P =——-"(-)[14- ,
) n! 2 nl(k—1)! <ﬁ> * 7
n _ nmpet{A-B)t = (A~Bht
P,(1) = _f_;ﬁe TiFe [ED( - o€ , (3.22)
1+ ol +a)

where A = Aof, A = Aofik, B = Ao(i+k) and o = njk.
The corresponding multiplicities aie

A
= (A-By _4
i [A—B(e )],

A A
= (A—B):_l n (A—B)t
. [A—-B(e )] e AT

A
{n) = e B4 B (4P -1). (3.23)

In the large n, 7 limit

. kk 2 N ,f_:—z_l _k(ii({;_B)t) 2k _\/2e(A"B);
"Pn(Z, t) N (1—e(A—B)t)k A B € (23 Ik_l l—e(A—B)t

kk
k—1 _ -—kz

The energy dependence of the multiplicities in all stochastic models has to be put in by
hand and it is usually taken to be a simple power law

i~ st4 (3.25)
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This power law for the multiplicity first arose in the context of the Landau hydrodynamical

-model and was extensively used by Carruthers and Zachariasen [24]. However this power
law is probably of more general validity as it can be derived in a naive branching model
of fireball decay. If we start with one “fireball” (cluster) of invariant mass w that splits
into two smaller “fireballs” (clusters) with equal mass w/c then after v steps they will reach
energy w, and hadronize. Then the final multiplicity is

i~ 2 (3.26)
where
1 w

v = - In v (327
Therefore

i~ (wiwo) 2/, (3.28)
If ¢ = 4 then

i~ (wiwg)'/2. 3.29)

We compare this power law with data in Fig. 3. We note that the multiplicity does not
increase as fast as a power law. Furthermore it also rises faster than expected from the
hypothesis of Feynman scaling adopted by Koba, Nielsen and Olesen (7 ~ In s). Therefore
it seems reasonable to regard the power law as an upper bound and the original In s as
a lower bound. The multiplicities from 10 GeV up to 900 GeV were fitted with the following
formulas:

i ~A+Blns+Cln’s (3.30)
and

i~ a+fs, (3.3

where A = 2.7+0.7, B = 0.03+£0.21, C = 0.167+0.016, «a = —7.0+1.3, f=72+£1.0
and y = 0.127+0.009. The enetgy dependence of the mean multiplicities in energy range
10 GeV < /5 < 900 GeV fitted with the curves of the form s'/%, 4+BIns+Cln*s and
o+ fs’.

4. The parton branching model

4.1. Introduction

In this Chapter we examine the problem of hadronic multiplicity distributions in the
parton branching model [25]. Our motivation is to understand analytically how dynamics
affects multiplicity. We derive the probability distribution P,,, of m quarks and n gluons
and show that it does not obey exact KNO scaling law [25]. The violation of the scaling
is due to the fact that gluons can produce quarks by converting into quark and antiquark
pair and quarks can produce gluons by bremsstrahlung. We assume that the dynamics
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of QUD processes comes in three steps. First there is a collision of leptons or partons which
gives an initial number m, of quarks and n, of gluons. The dynamics in this step is contained
in the parton distribution functions and interactions, if the colliding particles are hadrons.
Second, the initial m, and n, partons (quarks q or gluons g) undergo branching, g — gg,
q - 28, g — qq, with probabilities 4, 4 and B respectively. For this step, it is possible
to write an evolution equation for P,,, the probability of finding m quarks and n gluons,
which incorporates the dynamics of the branching probabilities. In the third step the
partons hadronize at energy Q, according to the dynamics of fragmentation functions.
We focus on steps one and two, and we assume that the final number of observed hadrons
is directly proportional to the final number of partons. The evolution equation of step
two leads to a solution which displays KINO scaling violation. However, the initial condi-
tions for step two arise from step one and they can also give KNO scaling violation, as we
discuss in Sect. 4.2.3. Due to the increase of the activity of the gluons inside the hadrons
we find that the widening of the probability distribution will stop at some asymptotic
energies, which in our model corresponds to Tevatron energies [26].

4.2, QCD branching
4.2.1. The coupled quark-gluon equations

In step two, some initial numbers m, of quarks and n, of gluons produced with a prob-
ability distribution P(myg, 1) in step one, undergo branching. We study the evolution
of these partons through three branching processes with averaged probabilities at the
vertices: g — gg with probability 4 (3-gluon vertex, gluon bremsstrahlung), g — qg with
probability 4 (quark bremsstrahlung) and g — qq with probability B. These probabilities
in perturbative QCD satisfy 4 > A > B in any energy range. In the leading logarithmic
approximation these probabilities can be obtained by integrating splitting functions

2N, NZ-1 Ny R
Pg—»g = . , Pq-.g = ,N;; , Pgdq = E— (x +(1 -—x) ) (41)
) i NI-i
over the fractional momenta x. We note that — = SNT

Our evolution parameter ¢ is the “natural” QCD evolution parameter

6 in Q*/u®
t = In 55
1IN, —2N;  InQg/u

(4.2)

where N, = number of colors, N; = number of flavors, Q = parton initial invariant
mass, @, = hadronization energy, and p = scale parameter of the running coupling
constant.

The probability P, for m quarks and n gluons satisfies the evolution equation

aPmn
ot

= _Aann_Bann_Amann+A(n_I)Pmn—l

+2mpmn~1+B(n+1)Pm—2n+l' (43)
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Assuming that P, is a smooth function of m and » using a Taylor series expansion (for
large m and n) in the continuous variables m and n, we keep terms of order P and (m or
n) 0P/d(m or n) to obtain the differential equation

dP(m, n) _ - 6£(m, n) _

1) o [A=B]POm, n)+ [~ (A~ By dm] u 2201

2B

(4.4)

Since m and n are large we do not keep higher order terms. We solve Eq. (4.4) by the
method of first integrals to get the form of P(m, n, m, #, M, Ay) given below in Eq. (4.9).
It simplifies notation to define

(10 = A—‘B,
aE = f’-29(1i\/ 1+84B/ad). (4.5)

Then the mean multiplicities m and » mix via the equations

dm .
—— = 2B#
dt
and
dn i+ Am 4.6
—— = ohl m, .
dt 0 )
with solutions
2B A _\ .. Ag( 2B )A:I
Moo= e | | Flp+ =~ Mg | € '+ — [ fg— — 7 ) e™ ' |,
J1+84B|d} [( A5 °> 2B\ A5 °
1 A .~ 2B -
n = ~—_;———,_~—.——é [}.3— <Flo+ F mo> elo t—A (mo— o 7—10) elo t:l . (4.7)
J1 +8A4B/ag . Ao 4o

Since 43 >0and 15 < 0, the e*°”* terms vanish for large ¢. Also, if glhuon bremsstrahlung
dominates, so that 4> A, B, then 17 — ao — A, Ay — 0, \/1+84Bja — 1, and

- = = A
i = fget + = mge™

S N

and

2B
m— I ﬁ+r70. (4.8)

The mean number of gluons then dominates the mean number of quarks as expected.
Equation (4.8) says that the contributions to i are from the initial number m, and from
pair production (B), while fi comes from branching of the 7, initial gluons and quark
bremsstrahlung (4) coming from .
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The solution to Eq. (4.4) is

<ﬁ
_ 2B _ 2B A _ A
. A_(_)t mo—-gno m—iojn '+/‘Em n+I(—);m
2B _ 2B ’ A4 ’
m—l—o;n n+;?37m

where ¥ is an arbitrary function. The new non-KNO scaling law that we get for this prob-
ability distribution is (dropping constants i, and i,) {27]

4.9

2B . A
~ m-— — n e
2B A Ad Ao
(r‘n’— = ﬁ) <ﬁ+ = m) P(m,n) = ¥ L ° 1. @410
Ao Ao

We see from the first line that Eq. (4.9) has the KNO scaling limit of Eq. (1.1) when A
and B are set to zero, in which case m = W = m,.

We do not have an exact expression for ¥ in Eq. (4.9). We can however define the
generating function G(x, y, t),

G(x, y,1) = 3 X"y Pp(t). 4.11)

Equation (4.3) for P,,(1) gives the evolution equation for G,

G G . G . 8G oG oG
— = —(A+B)— +Ax — + Axy — +Ay? — +Bx? — 4.12)
at ay ox O0x ay dy

which can be solved analytically only in the special case when 4 = 24 [28]. The explicit
form of G is determined by the initial conditions. For the two cases m, = 0 or no = 0

we impose the initial conditions G(x, y,0) = ™ or x™, respectively. With these two
different initial conditions,

G0l Xs ¥, 1) = [1 +(y/x2 —_ l)é—B!]nO
[1+(1/x* = b/(A+B)~ Ay[(A+B)x")e" + A[(4+ B) (y[x* = De™™]™™,  (4.13)

I B Ay \ ., A [v o
G oono= N=|1+|{ - — — —— e+ ——| 5 —1]e™" .
mouma=0(X: J» 1) [ <x2 A+B A+Bx2> A+B\X?

or
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In Ref. [28] Giovannini obtained these for n, = 1 and m, = 1. Even in this special case,
Eq. (4.14) is intractable for extracting P,,(t). However, the generating function can be
used to obtain moments of P,,, which are the quantities usually obtained experimentally.
The x or y derivatives of G(x, y, 1) at x = 1, y = 1 give the moments

JG(x, y, t
K = (x, 5, 1)

r

=m(m-1)...(m—-r+1),

ox’ x=1,y=1
°G(x, y, t
K, = “(—5}'2 =nn-1)...(n—s+1). (4.15)
6y y=1,x=1

When A # 2A4, so that the explicit form of G(x, y, t) is not known, Eq. (4.12) gives differen-
tial equations, the same as Eqs (4.6), for # and #; but equations for higher moments are
too complicated.

4.2.2. The decoupled gluon equation

From Eq. (4.8) we see that #/ii — 2B/A for high energy. We also know that B < 4,
that is, pair production is suppressed. Therefore P,, — P,, which implies that it is a fairly
reasonable approximation to count only gluons and neglect those which come from pair
produced quarks. We look at this simplified case to investigate further the approach to
KNO scaling. With m fixed, Eq. (4.3) becomes

opP,
ot

which by Taylor series expansion can be put in the form

= —AnP,—BnP,— AmP,+ A(n—1V)P,_+B(n+1)P, i +AmP,_,  (4.16)

oP P opP (o —dm) opP L 0P a, %P N @17
— = —qoP—agn — —AMm) — + —h —5 — =~ e .
o1 of Tdolt T T on 2" on® 2 on?
where
ap=A—B, a, = A+B, a,=A-B—Am. (4.18)
The a, term is smaller by 1/n and can be neglected. We define new variables in Eq. (4.17),
2 -4
a:l——, c:u, y= do n (4.19)
o (01/2) (a1/2)
and find the solution
P(n,t) = | diw()e™*'¥(a, c, y). (4.20)
1]

Here ¥(a, ¢, y) is the confluent hypergeometric function regular for large y, and w(4,)
is an unspecified weight function. For large y,

(4.21)

—c+1
P(n’ ‘)ylarge = J‘dAW(A)e_M [1 - {1(? °r )] y—a.
0

y
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The first term in the integrand is a KNO scaling piece and the second term is a nonscaling
piece suppressed by 1/y ~ 1/n. The first term scales by the following argument. If we can
show that

nP(n, t) = f(ne™ "), (4.22)
where f is an arbitrary function, then
P(n, t) = e”*'g(ne” ™", (4.23)

—apt

where g = fIne” °®. The mean multiplicity is

(1) = | dng(ne”*") = Noe™, (4.24)
0

where the constant N, is the integral | dxxg(x). Combining Eqs (4.23) and (4.24) we have
1]

A(t)P(n, 1) = Nog <N0

S S

) (4.25)

which is the condition for KNO scaling. What remains is to show that the first term in
the large y expression for P(n, t) in Eq. (4.21) satisfies Eq. (4.22). The definitions of y and
a in Eq. (4.19) lead to

Y 2 Alag
nP(n, 1) = 2“—‘ Idiw(/l) <%’ ne““m) , (4.26)
Adg 1
0

50 the right side of this equation is a function of ne”“*, and the dominant part of P(n, ¢)

scales. The nonscaling term in Eq. (4.21) is
—c+1
-~ f diwye WD
]

e8]

A L 24Am\ P!
- - jdlw(/l)e‘“ [(- —1) (i - "’)
s Qo do a )|

0

d? a, — Am\ /e
— | digw(ig)e™ ™ [y — + ( —) . (4.27)
Of o dy* a2 )]

2a4n et
° ot in

Since y = , the left side tells us the nonscaling piece falls off as 1/n. The e
a,

the integrand suppresses the large 4, contribution to the integral. Although there is an

overall minus sign, the quantity in square brackets on the right side may not always be

positive, since it contains A,, which ranges from O on up. In the range 0 < 4o < aq it can
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be shown that the quantity in square brackets ranges from 24m/a, to 0, always positive
when we insert known values of 4, 4, B and assume m > 1. (4/4 = 4/9 is a standard
leading logarithmic value.) When 2, > a,, the quantity is positive if 4 < a,/2. This limit
is only safe when m = 1, but then for larger 4, the condition on Am is relaxed, plus e™**
takes over. The KNO limit is thus approached from below for nearly all values of 4 in
the integral, and for all values if m = 1. For high z, say z > 2 or 3, the condition on m can
be relaxed and KNO is approached from below for all values of A,.

4.2.3. The exact analytic solution of the decoupled quark-gluon equation

In the limit when the quark evolution is neglected we obtain the exact analytic expres-
sion for the probability distribution, multiplicities and moments [26]. In our parton
branching model we assume that hadron-hadron collision takes place in three steps. In
step one, partons from hadrons collide. (Their collisions are assumed to be 2 — 2 processes.)
There are total of m, quarks and n, gluons involved in collision (since my and n, are the
average initial numbers of quarks and gluons involved in the collision, m, and n, need not
be integers). After the collision, in step two, these quarks and gluons branch and loose
their energy. Finally, in step three, they hadronize. The schematic parton branching model
representation of hadron-hadron collision is shown in Fig. 6 [30]. Here we consider steps
1 and 2 and, as usual, we assume that the hadronization process does not alter the main
features of the hard process. Due to the fact that as the energy increases the activity of
gluons inside hadrons increases and the contribution from gluons to the cross section and
multiplicities increases with energy [29], we assume that 7, increases slowly with energy
while m, decreases with energy. Therefore at some asymptotic energies only gluon-gluon
collision will contribute to the multiplicities. The probability distribution at these energies
will be pure gluon branching distribution [30]. This implies that the widening of the distribu-
tion and increases of the muitiplicity moments have upper bound [31].

HADRONS

i=aq,9
i=a,9
i;=a,9
j;=a.9
i,=a.9

Fig. 6. The schematic parton branching model picture of hadron-hadron collision
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. . m P4 .
As noted before at high energies — ~ v <1 and we can neglect quark evolution
n

(m = m = m, = const). The evolution equation (4.3) then becomes the evolution equation
for the probability P,

OP(1)
ot

= —AnP,+A(n—1)P,_, —BnP,+B(n+1)P, .y +AmoP,_,— Am,P,. (4.28)

Assuming #, initial gluons and m, initial quarks we get the following probability distri-
bution

A —a-no—k BnoAn
Pt =]1+ (4-By_ 1 (A-B)t__qfnotn
(® [ (A—-B)( ) [e ] A5
(n+ne+k-1)!
m, 2Fi(—n, —ng; —no—k+1, u), (4.29)
0
where
L - Am,
A
and

(A B)z {A-B)
u = Ty (4.30)
It has been shown that this distribution approaches exact KNO scaling in the large n and.
i limit only in the case when ny and m, are energy independent [25]. By rewriting Eq. (4.28)
in terms of the generating function defined as G(y, t) = Zy"P,(t) we can solve this equation
with the initial condition G(y, 0) = y™. The solution is

A B)r(y ) ng

k
G(y, t) = [1— .._i,m (e(A—B)t-—I) (y___l):l 1+ —o “71_7
(TP =D (y-1)

(A—B)
 (4+B)
(4.31)

Clearly, the multiplicity 7 and moments C, can be obtained by taking the g-th derivative
of the generating function and setting y = 0. We get

"=k AB) (€475~ 1)+ noe 4, (4.32)
B —ng(1 —a)? 2nqaf
Co= 14" —0 1- ,
z 52 T 52

3[/30: —ny(1—a)?] 2[a3ﬁ+no(l—a)3]
8% 53

Cy=1
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N 1 - Po(30—6n4) —3no(1 —a)? N 6noocﬂ(1—2a)]

F 52 PE

1 3angf(2+a2k) 6o Bng[noa+(1 —x)B)]
=2 I:I - 52 + 53 }

-+

St

N 1 [—3a2kn0ﬁ . 2n0a3ﬁ(,82—n§)]’

] 52 5°

6[“2ﬁ —no(l— “)2] 8[“35 +ng(l— “)3]
52 + 53
L 3ot —a)*(no—2) +a*B(B+2) —2Bn (1 —a)’a’]
5* -
1 [6+ 18ng(1 —a)> — 12n,af + 18>

-+ —
i 8

C4=1+

+ 1208 +2no(1 —a)® —2noa* ]+ 12n,(1 —o)®
53

12n,B[nea’(1 — a)* — fo’(1 — o) +(no—2) (1 —a)’ —*(B+ 2)]
+ 5 ~

1 [7 N [6noBa’(11o—B) + 7> = Tno(1 — ) = 36mofe]

T 52
[36n,af(1 -2} + 24n0 21 (1 — o) + 240> n3f]
+ 53
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54
24n2o’(1 — a)p? —6noa’ fLnZ(1 —a) +a2f32]]
+ 5
1 [ 14noaf +18noBa2(B—no)  8noa’ (B —nd)+36n00> (1 —a)B +noa]
+|1- 2 + 3
n é 0
12n2a®B*(ng — B) +24n,a> B[ nd — (1 —2)B]
+ 5
1 7 2n - 12 3 2_ 2
+ = [ no% f;g"o B " no ggﬁ no)

n
4 6noa*B(ng — )+ 3nda* B2 (n + B2 — 2"018)]
5 ’

(4.33)
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A
(A-B)
displayed because of its length.

We note that the parton branching distribution given by Eq. (4.29) is very similar
to the very popular negative binomial distribution. Namely, in the limit when o = 1 and
& = k (or ny) we get the negative binomial distribution (or simple gluon branching distribu-
tion). The probability distribution, multiplicities and moments are given by

L as DA A
n@e—-n! \ & i

where o = , B=k+n, and & = ka+n,. The analytic expression for Cs is not

G=1+t+l oo is +2+1 342 :

2T I BT aE 0T T

C_1+6+11+6+1 ] 18+12 WOTAYE
S I N A S ] R Wy R i

10 35 50 24 1 60 110 60
C5=1+—+“"+—+”—if 10+-:+‘72‘
: R o d 0

R S R
LN PRI LU IS S E I 1y 5
i? s e TR +1‘T‘*L 6]

The negative binomial distribution was first proposed by Knox in 1974 [32] and recently
considerably improved and extended in many stochastic models [6]. This distribution
has been widely used by UAS Group to fit the experimental data even though
in all stochastic models there is no physical understanding of the behaviour of the param-
eter k (which is interpreted as the number of independently emitting sources and it de-
creases drastically with energy from 20 at /s = 10 GeV to 3 at /s = 900 GeV). In our
model, k is related to the average number of initial quarks and for the Collider energies
200 GeV < \/ s <X 900 GeV) it decreases from 3 to 0.9 while the average number of initial
gluons n, increases from 1.3 to 2 in the same energy range. We also give theoretical predic-
tions for the values of the parameter k at Tevatron Collider energies.

Assuming that the average initial number of gluons n, increases slowly with energy
while the average initial number of quarks m, decreases, we fit the data for the multiplicity
moments C,, C;, C, and Cs in the energy range 30.4 GeV < ,/s < 900 GeV (Table I
and Fig. 7). Since B » A at high energies, the parameter o decreases with energy approach-
ing 1 at /s = 900 GeV. The fact that initial number of quarks is large at low energy
(/5 ~ 30 GeV) indicates that our approximation of neglecting the quark evolution is not
good at these energies. We need to consider the probability distribution P,,, which is a solu-
tion of the evolution equation (4.3). However for the high enough energies (/s ~ 200 GeV,
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Fig. 7. The theoretical predictions for the moments C,, C;, Cs and Cs plotted as a function of energy and
compared with the experimental data in the energy range 10 GeV < \/3 < 900 GeV. Theoretical prediction
for the moments C, for the Tevatron Collider energies is included

k = 3, my, = 6) we can safely neglect quark evolution and our distribution describes the
data remarkably well. The values for 7 in Table I are taken from the experimental fit [2]
(i~ 2.7-0.031n 5+0.167 In? 5). In order to satisfy our assumption that & decreases with
energy while n, increases with energy we find that the best fits for the moments C, are
obtained with k ~ 11.4—1.51In /s and ny ~ —0.00740.2951n ./s. The values for the
moments C;, C, and C; are calculated with these values of k and n,. Extrapolating the
energy dependence of parameters k and n, (Fig. 8), we predict that at \/s ~ 1700 GeV
4100 GeV (the solid line in Fig. 8 corresponds to \/5 ~ 1600 GeV, while the dashed line
corresponds to /s ~ 1800 GeV) the average number of initial quarks is zero and the
widening of the distribution stops.
This gives the following upper bounds on moments C,:

Comae < 14640.02,  Cypax < 2.85+0.13,

Camx < 6.7940.52,  Cypar < 17.224+1.95. (4.35)
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Fig. 8. The theoretical parameters k and n, plotted as a function of energy with the assumption that the

initial number of gluons increases with energy while the initial number of quarks decreases with energy.

Extrapolating values for k and n, to higher energies we find that k approaches 0 (m; approaches 0) at

4/5 ~ 1700 GeV + 100 GeV (the solid line corresponds to 4/5 ~ 1600 GeV, while the dashed line cor-

responds to 4/s ~ 1800 GeV). This implies that at this energy the probability distribution reaches its maxi-
mum width. It also sets the upper limits on the moments C,

The upper (lower) limit of the C, ., is determined using the extrapolation of k(/s) given
by the solid (dashed) line and the extrapolation of n, given by the dashed (solid) line in
Fig. 8. The theoretical uncertainty in these predictions is comparable with the experimental
uncertainty in the measurements of the moments C, in this energy range. From Table I we
see that the experimental uncertainty is larger for the higher moments and higher energies.

As energy increases from /s ~ 1700 GeV +100 GeV up the contribution to the mul-
tiplicities is only coming from gluons. The probability distribution is the pure gluon branch-
ing distribution given by Eq. (4.34). The initial number of gluons n, will continue to increase
resulting in the narrowing of the probability distribution which is in agreement with other
QCD based approaches to KNO scaling problem in hadron-hadron collisions [33]. We
differ from other QCD based models in considering the evolution of both quarks and
gluons. At /s ~ 200 GeV we can neglect quark evolution, but gluons are still produced.
from quarks by quark bremsstrahlung as well as from gluons by gluon branching. This
results in widening of the probability distribution up to Tevatron Collider energies which
is in agreement with the experimental data. Ones the contribution to the multiplicities.
is coming only from the gluons (at Tevatron energies), the probability distribution starts.
narrowing. We give predictions for the multiplicities and moments C, for the Tevatron
Collider energies [26] (/s ~ 1600 GeV, /s ~ 1800 GeV, /s ~ 2000 GeV in Table I and
Fig. 7) indicating the slow narrowing of the probability distribution in this energy range.
We also predict the values for the parameters k and n, for the Tevatron Collider
energies [31}.
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