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The methods used to calculate electroweak radiative corrections on the toponium
resonance are discussed. Prospects for the measurement at LEP of these one-loop effects
are examined.
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This paper discusses the methods employed in the calculation of the electroweak
radiative corrections to toponium. It is done in a very general manner with tedious specific
details avoided as far as possible. It is hoped that in this way the general techniques
which are of use in other contexts will be made clear. The work described here was the
first calculation of the one-loop electroweak corrections in a bound system or a system
where the fermion mass cannot be neglected. Contrary to naive expectation the bound
state introduces a number of simplifications. For example it will be shown that the 3-point
functions that occur can all be expressed as the sum of 2-point functions and similarly
the 4-point functions are expressible in terms of 3-point functions. Much of what is pre-
sented here appears in Refs [1, 2].

Why look to toponium as laboratory to test the Glashow-Salam-Weinberg model
at the one-loop level? It is by now well known that the best place to test the radiative
corrections to the standard model is looking for deviations from predictions for the longitu-
dinal polarization asymmetry in e*e~ — ptp~, Ag,, on the Z° resonance [3]. The polariza-
tion asymmetry s defined as,

Agy, = s 1

where oy, is the production cross section for left (right) hand polarized beams. This
however has its limitations. As a consequence of the Z° exchange graph dominating the

* Presented at the XXVII Cracow School of Theoretical Physics, Zakopane, Poland, June 3-15,
1987.

(387



388

photon exchange, it turns out that the polarization asymmetry is largely independent
of the outgoing fermion species. If polarized beams are not available, the forward-backward
asymmetry, Apg, can be examined but the relative sensitivity of the two quantities to radia-
tive corrections Is,

0Arp = 3 ArL04peL- 2)

Thus d A5 is considerably suppressed by the factor Ay, which is proportional to the charged
lepton vector coupling to the Z° The polarization asymmetry for toponium production,
ete~ - V, is also the most favourable quantity (in the sense of being most sensitive to
radiative corrections) available on that resonance. To identify the toponium state one can
look for its characteristic decays such as the 3 gluon decay mode, identifiable by its three
jet topology, and single quark decays characterised an isolated lepton, missing energy or
aplanar event structure [4, 5] (In single quark decays, SQD, a single quark within the topo-
nium decays). These modes have a sizeable branching ratio. The former exceeds 109 for
m, < 40 GeV and the la.ter eventually dominates as m, increases. When only unpolarized
beams are available one can look at the forward-backward asymmetry for muon pairs
given by,
o Nr—Np
App = 3 P
Neg+ Ny

€)

Ng, is the number of muons emitted in the forward (backward) direction. This is related
to polarization asymmetry for muon pairs by [6, 7]

AFB = Alzu‘ (4)

in lowest order but including beamspread effects. Note, however, that A4, is here not so
smalil as on the Z° resonance so that the sensitivity of Agp is less suppressed. Of course,
for both of these, interference with the continuum must be considered but for M, well
separated from the toponium mass, My, it is smaller than the corrections. Final state radia-
tion also modifies 4g, since muons can be bremsstrahlunged (apologies to German
colleagues) into the ‘wrong’ hemisphere. A Monte Carlo generator is required to take
account of this. Since parity is not conserved in weak interactions, the toponium state
is produced with some preferred polarization. The expectation value of the polarization
is directly measured by the muon asymmetry in SQD’s,
1 Ng—Ng

Sz == )
< > f N’F+1VB

(5)

[ denotes the analysing power of the leptons and in a simple model it is given by 3/8 [5].
Note also that {S,) is also related to the polarization asymmetry for muon pairs in (4)
by, {(S.> = Agr-

Experimental prospects for precision measurements of these quantities are quite
sensitive to the exact value of the toponium mass. In a recent study {4] it was assumed
that the toponium mass lies in the range 60-110 GeV and that the integrated luminosity
is 80-100 pb-* which corresponds to 80 days of running at LEP, With unpolarized beams,



389

Agy could be measured through SQD’s to 0.05. When polarized beams are available this
figure drops to 0.02. There exists a possibility that the beamspread could be further reduced
[8] or that the running time could be prolonged. The large beamspread at SLC seems to
preclude precision measurements on toponium.

We now turn to the theoretical side of the calculation. The Euclidean metric is use
throughout so that p? is negative for time-like momenta. Fig. 1 shows a general production

Fig. 1. The lowest order diagrams for ete~ — V. The lens shaped blob converts open tt into bound toponium

diagram for toponium, ete” — V. The lens shaped blob may be thought of as a vertex
that converts open tt to the bound toponium system. A prescription for calculating with
bound states is given by [9]. It will not be rederived here but an attempt will be made to
justify the prescription in a general way. The effective vertex in Fig. 1 could be expected
to have the form, Cy,0*(p—p’) for some constant C and interral quark momenta p, p’.
The y, arises because we are chiefly concerned here with the lowest lying *S; vector reso-
nance. Axial vector resonances are less important because their couplings depend on the
derivative of the quark wave function at the origin. This is closely related to v/c for the
internal quarks. The §-function appears since toponium is a weakly bound nonrelativistic
system requiring that the internal quarks be a rest with respect to one and other. Later
it will be seen that fact is responsible for substantial simplifications in the loop calculations.
Since the top quarks are bound through a point-like interaction, the constant, C should
depend on the wave function at the origin, R(0). The bound state prescription in the case
of production is that for an operator @, whose effect on free quarks would be given by
t0u, then,

M
i0u =7 V; Y Tr [0(— i P+ My)y,JE, (6)
where,
P* = — M3,

M2 = the toponium mass,

(8]
i

, = the toponium polarization,

R(O)/N M3,

>
I
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The form is not surprising. Again since toponium is weakly bound the internal quarks
may be regarded as being on-shell and replacing the external states by propagators sand-
wiching the operator ¢ we get at once,

) , B My E M
olu = C Tr[@(—;—2—+—i—)y“(z§+7)]. U

Anticommuting the i # + My, through 7, and dropping the term containing p, since E - p = 0
yields the form above. Fig. 2 shows the complete set of one-loop corrections that must
be considered. Other one-loop corrections that affect the Z and photon propagators or
the e~Ze* and e~Ae* vertex have been calculated elsewhere [10, 11]. Here ¢, and ¢ are
Goldstone bosons associated with the Z and W respectively, and H is the physical Higgs.
Note in particular that the Higgs enters in Fig. 2d and i. The diagram in Fig. 2i however
is found to contribute in the same way to both photon and Z exchange and therefore cancels
out in asymmetries. The diagram of Fig. 2d is then the sole source of Higgs dependence
apart from that occurring as corrections to the Z and photon propagators and implicit
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Fig. 2. Feynman diagrams relevant for the evaluation of one loop corrections. Permutations have been
omitted



391

in the calculated value of sin? 6. Such contributions can be tested already in ete~ — ptu-.
Fig. 2k also does not contribute to the asymmetry.

Let us consider a particular example of the loop graphs. Take Fig. 2a. After applying
Feynman rules in tbe usual way and applying the prescription of (6) an expression pro-
portional to,

J d"q F06MV+F1qqu+F2Puqv+F3qupv

i [P—ie] [(a—3 PY+ Ma—ic] [(4+3 )+ ME—ig] ®

is obtained. Here the use of dimensional regularization is signalled by the differential
d"q where n is the (complex) dimensionality of space-time. For further details see Ref. [12].
Note that since the light quark masses are neglected there is only one ‘free’ momentum,
P, in the problem and even then PZ+ M3 = 0 ou the resonance. In the integral (8) the terms
proportional to F,P,q,+Fsq,P, are dropped immediately since they will be contracted
with the (conserved) current of the massless electron. The remaining terms integrate up to,

Fob,,+F,q,q9, > Gob,,+G, PP, ]

The second term is dropped for the reasons just described. It is possible to extract the coeffi-
cient G, directly from the integral (8) expressed as a scalar integral by means of the projec-
tion operator,

1 (. PP
— (8~ P2>' (10)

Here n is again the dimensionality of space-time and 74, = n. The integrals that
are obtained in the vertex corrections (Figs. 2a-k) are in general divergent and ‘n’ must
be explicitly kept in order to properly account for this. In dimensional regularization
logarithmically divergent quantities appear as

- —y—In7. (11)

y = 0.5772... is Euler’s constant. Note in particular that as n — 4, nd4 — 44—2 not 44.

After projection,

P’q*~(P - g’
(n—1)P?

Fodu,+Fiq,q, = [F0+ Fl] O+ Gy PP, (12)

It can be checked rigorously that projection and integration are commuting operations.
Thus a three denominator integral (3-point function) is obtained with no free Lorentz
indices. Passarino and Veltman [13] have shown how to reduce such an integral to the
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sum of two denominator integrals (2-point functions) plus one three denominator integral
with a ‘1” in its numerator. In the present case things are even simpler as the 3-point function
is absent. We now investigate the conditions under which this final simplification can occur.
Take a general scalar 3-point function,

Co(pys P25 my, My, my)
J' d’q 1 (13)
in® [q>+mi—ie] [(g+p)* +m3—ie] [(q+py+Dp,)* +m]—ie]

For it to reduce to 2-point functions it is enough that the numerator is expressible as a linear
combination of the factors in the denominator and hence that,

11 1

0 pi pi+p Pyl = pips—(py - p2)* = 0. (14)

O py P2 pi'P2+D2

For a general vertex with incoming momenta, p,, p, and ps it is simple to show that,
pips—(p1 - p2)* =.pip5—(py - Ps)* = pipi—(p: " Ps)*. (15)

If one of the particles has time-like momentum (as in the present case) we can boost to
that particle’s rest frame and show that all the particles are relatively at rest. This is precisely
the conditioun realized by the §-function in the effective vertex in the discription of the bound
state formalism.

The vertex diagrams just calculated are divergent. Their divergences are cancelled
by a counterterm contribution. This goes through in much the same way as for light fer-
mions, see Ref. [10], but with one qualification. The counterterm is obtained from fermion
wave function renormalization and involves the graphs shown in Fig. 3. A sufficiently
heavy top quark may decay into a W boson and a b-quark and so the graphs containing
a virtual W or ¢y, develop an imaginary part for m, > My,. However counterterms must
be real otherwise they would lead to a violation of unitarity. Careful treatment is needed
buc it transpires that the imaginary part only contributes as an O(a?) correction and does
not give trouble in the order of interest.

Turn now to the box diagrams shown in Fig. 21-n. By simple power counting they
can be seen to all be finite. Moreover, since toponium is a neutral state, soft photons de-
couple from it and there are no infrared divergences in the Z— A box diagram of Fig. 2n.
The magnitude of the contributions from the three types of box is governed by two compet-
ing effects, combinatoric factors and factors of sin? 8y,. The Z— A, Z—Z and W —W boxes
have combinatoric factors 4, 2, and 1 respectively but are suppressed by relative factors,
sin* Oy, sin? Oy, and 1 by the coupling which finally dominates. It is therefore the W—W
box diagram which gives the largest effect. In calculating the boxes we can play the same
game as for the vertices and project out the part proportional to J,, by means of the

operator,-
PP, LI
o ).
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Fig. 3. The Feynman diagrams involved in top quark wave function renormalization. The diagrams contain-
ing a virtual W boson or #w develop an imaginary part for m, > Mw (mp = 0)

where for incoming electron momentum, p,-, and positron momentum, p,-,

P = De-t+Pe+ I = (pe‘-'pe*)/z' (17)

The integrals depend only on P2 since {2 = —P2/4 and P - I = 0. There is no need to keep
the n of dimensional regularization in (16) because the integrals do not diverge. Also in
this case it is found that the 4-point scalar integrals thus obtained reduce to 3-point
functions. Explicit expressions for the box diagrams can be found in Ref. [2]. The 3-point
integrals just have to be evaluated. The general C, in (13) can be written after Feynman
parametrization as,

1 x

Co(pys p2; My, my, my) = fdx jdy[ax2+by2+cxy+dx+ey+f]'1, (18)
(4 o

with,
a=-p;, b= —pl, c¢=pi+pi-ps
d=mi-mi+pi e=mi-mi+pi-p3, f=m}i—ie
Recall that ps = —p,—p,. If m3 = 0, as can be arranged for all integrals of interest here,

we make the substitution x — xy and get,

1
1
Cy = J‘dy ————— {In [by* +(c+e€)y +(a+d)—ie]—In [ey +d —ic]}. 19)
by*+cy+a
/]



394

Note that the integrand has zero residue at the pole and is therefore independent of the
exact contour of integration. A general expression for (19) in terms of Spence (dilogarithm)
functions,

x

Sp x = —Jln (lt_t)dt (20)

0

is known, see Ref. [14], but the task of reducing the number of Spence functions in the
final answer to a minimwm remains something of an art. Two important relations, valid
for complex x and y, of use in this connection are,

Spx+Sp(—x) = 1 Sp x?, 1))

Sp i +Sp i =—%ln2 —f , x+y=1 (22)
X y Y

and the generalization of Hill’s formula for complex arguments,

Xy—x xy—
y +Spy y
1—x 1—y

Spxy = Spx+Sp y+Sp

1 1
+nl—,1—xy|lnx+n{—>,1-xy])lny, (23)
1—x 1-y
where 7(x,y) = In xy~In x—Iny = 0, +2zi but does not in general vanish for complex
x and y.

In this calculation one finds for u = M2/M2,

29

Vi-du+1 )
— g,

M%CO(%P'*'L '—P;Oy MZ; MZ) = _1n2(
Vi—du-—1

2 1 1
M2Co(l, A P=1;0,0,Mp) = 2| = —Sp(1—= — ) +Sp(— —1+ie)|, (25
4 2u 2u

n2 1
M2Co(l, % P; 0,1 My, M) = 3 ~Sp <1“‘ I) (26)

The expression for the Z— A box possesses a logarithmic divergence as My — M.
This can be regulated by incorporating the toponium binding energy, E,, and the Z° decay
width, I';, into the results.

So far no attention has been paid to QED and QCD corrections. Since toponium
is neutral, final state radiation can be ignored. Initial state bremsstrahlung is constrained
to be very soft since the toponium width is small and the emission of a hard photon will
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shift off the resonance. Its effect therefore is as an overall factor which cancels in asym-
metries. QCD corrections can be safely ignored to O(x). The correction of order «, affects
only the overall normalization. Corrections of order oo, arise from two distinct sources.
Some originate from QCD corrections at the toponium vertex together with electroweak
corrections at the electzon vertex or to the boson propagators. These again essentially go
into the normalization. The other source is simultaneous QCD and electroweak corrections
at the toponium vertex. They are not enhanced by large logarithms and thus are truly
of order o /n relative to those evaluated here.

The course of the calculation in practice runs as follows. The values of a, M5 and G,
(the muon decay constant) are taken from data since they will be the most precisely meas-
ured quantities at the time toponium measurements start. The value of sin® fy (and hence
M) consistent with these data is then calculated using formulas due to Sirlin [15] accurate
to O(a) plus leading logarithms from higher orders. The result will depend on the assumed
value for the Higgs mass and also on the top quark mass. The value obtained is then used
in the calculation of all further loop corrections. Since there is no physics that is unique
to the toponium system in the calculation of sin® 6y, we define the lowest order asymmetry
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Fig. 4. a) Prediction for the polarization asymmetry as a function of the toponium mass for My = 100 GeV

and Mz = 94 GeV. Solid line: Full one loop correction. Dashed line: difference between first order and

lowest order prediction; b) Value of sin? fw used both for lowest order and one loop corrected prediction.
for different values of My
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Fig. 5. Change in the asymmetry arp(My) —ar (100 GeV) for a Higgs mass of 1000 GeV (solid line) and
10 GeV (dashed line), a) including the variation of the Weinberg angle, b) fixing the Weinberg angle to the
value calculated for My = 100 GeV

‘to be the asymmetry obtained from tree graphs for the asymmetiy, Fig. 1, but with the
calculated valge of sin? 6. The first order corrected asymmetry is the asymmetry with
.all corrections included. This asymmetry along with its difference from the lowest order
-asymmetry is displayed in Fig. 4a. The difference is free from universal and large logarithmic
corrections from sin® 8y, and we are left with the purely electroweak corrections that
.are of real interest. The variation of the calculated value of sin? 8y, with My and M is shown
in Fig. 4b.

Unfortunately the contribution of the diagram in Fig. 2d, which was the only place
‘we might hope to have seen effects from the coupling between the Higgs and a fermion,
is at most 0.001 for M, < 160 GeV. The Higgs once again eludes us. There remain
‘however loop diagrams in the Z propagator which contain the Higgs and as mentioned
previously there is dependence in sin? fy on My. In Fig. 5a the two effects are plotted
together and in Fig. 5b with a fixed value for sin® 8y,. The difference between extreme
-choices of the Higgs mass may be up to 0.025.

The size of the box diagrams is illustrated in Fig. 6. The change in the asymmetry
is shown when the W — W and Z— A box diagrams are dropped. The Z— Z box contributes
less than 0.001. Note that in the high mass region the W —W box contribution would be
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Fig. 6. Change in the asymmetry if the W—W or the Z— A box diagram is dropped. The corresponding
change for the Z—Z box is below 0.001

Jjust observable by itself but it conspires with the other corrections in such a way that
the overall correction is substantially smaller. This type of thing happens in many other
cases and one might speculate about a ‘Law of Cussardness’ for radiative corrections.

To conclude then we see that the effects of electroweak radiative corrections to topo-
nium are small but may just be observable at LEP if polarized beams are available. However
the Higgs-fermion coupling escapes detection.
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