Vol. B19 (1988) ACTA PHYSICA POLONICA No 6

DEEP INELASTIC LEPTON-NUCLEUS SCATTERING
AND MULTIQUARK STATES IN NUCLEI
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A deep inelastic scattering of leptons on a nuclear target is considered in the framework
of a multiquark cluster model and the nuclear structure functions are calculated. Analysis
of the EMC effect is performed and it is shown that the given model can describe experimental
data for the nuclear structure functions and their ratios not only in the kinematical region
x <1, but also it allows one to predict the behaviour of these quantities in the region
x > 1 which is not sufficiently well studied experimentally.

PACS numbers: 25.30.—<

1. Introduction

Processes of cumulative particle production in the hadron-nucleus and nucleus-
-nucleus collisions predicted [1] and discovered experimentally [2] in the early 70-s revealed
the necessity of investigation of quark degrees of freedom when studying the high energy
nuclear interactions. Experimental data for particle production in the kinematical region
forbidden by the nucleon-nucleon kinematics lead to the conclusion of the existence of
multiquark states (differeat from nucleons) inside the nuclei. The same is confirmed by the
behaviour of elastic form-factors of light nuclei at a large momentum transfer [3] which
corresponds to the quark counting rules [4].

Recent experimental studies of deep inelastic scattering on nuclear targets revealed
an essential difference between the structure functions of heavy and light nuclei [5-8]
(the so-called EMC-effect) and gave rise to a new interest in a quark structure of nuclei.

* Address: Mathematical Institute of the Academy of Sciences of the Georgian SSR, Z. Rukhadze
Str. 1, 380093 Thbilisi-93, USSR.

** Address: High Energy Physics Institute, Tbilisi State University, University Str. 9, 380086 Thbilisi-
-86, USSR.

(439)



440

Among different theoretical models (e.g., pion model [9], dynamical rescaling model [10],
conventional nuclear models {11]) suggested to explain this effect, the multiquark cluster
model [12] should be noted. This model makes it possible to form multiquark configura-
tions (multiquark bags) in nuclei by overlapping several nucleons of nucleus and allows
one to explain uniquely all the above-mentioned phenomena.

Most of the experiments on a deep inelastic lepton-nuclear scattering cover the kine-
matical region 0 < x < 1, where the resvits of all the mentioned theoretical models are
similar and do not differ qualitatively. One can expect an essential difference between their
predictions for the x > 1 region, because the multiquark cluster model only predicts non-
zero values for nuclear structure functions in this region.

In the present paper we consider the structure functions of nuclei in the framework
of a multiquark cluster model and show that EMC effect can be explained by taking into
account the scattering on colourless multiquark configurations in nuclei. The fit for the
experimental data in the region x < 1, as well as the predictions for the behaviour of the
nuclear structure functions and their ratios in kinematical region x > 1 are given.

2. Structure functions of nuclei in the multiquark cluster model and the EMC effect

Let us consider a deep inelastic scattering of charged leptons on nucleus 4. We shall
assume that in the nucleus, together with nucleons (three-quark bags), there are formed with
definite probabilities, the colourless multiquark configurations with six, nine, etc. quarks
(in this connection see [13, 14]), and leptons interact with the nucleus by means of the
exchange of virtual photons with quarks from these bags. We shall also assume that the
nuclear constituents contribute incoherently and that the final state interaction can be
neglected in the deep inelastic region. Then the nucleus structure function can be represented
by the sum

A
Fix) = 3, N4, K)F3(x), M
where x is the usual Bjorken variable x = Q?2mv (which in the case of scattering

.. . M .
on a nucleus varies in the interval (O <x<-?x A) , Q? is the 4-momentum transfer
m

squared, v is a transfered energy, m is a nucleon mass and M, is a nucleus mass. We neglect
the Q?-dependence of the structure functions, i.e., we shall assume an exact Bjorken scaling.
The first term of the sum (1) corresponds to nucleons (three-quark bags), the subsequent
terms correspond to the six-quark clusters, nine-quark clusters and so on. F% in (1) denotes
the structure function of a configuration which contains a 3K-quark bag and (4—K)
nucleons. The coefficients N(4, K) before these structure functions have the meaning of the
effective number of 3K-quark bags in the nucleus 4 and satisfy the following condition
of baryon number conservation

i KN(4, K) = A. )
K=1
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Obviously, quantities P§ = KN(A4, K)/4 can be understood as the probabilities of 3K-quark
cluster formation in a nucleus with an atomic number A.
We use the parametrization of N(4, K) in the form of the Bernoulli distribution:

1

N(4,K) = — p(A)* T [L-p()T 5. 3)

K!(A—-K)!
The parameter p(4) determining the probability of a three-quark nucleon to get into a 3K~
-quark bag, is defined by a ratio of the bag and nucleus cross sections

p(A) ~ rg/Ry ~ A7 €y

The coefficient of proportionality in (4) has been obtained by the fit of the 4-dependence
of EMC effect: p(4) = 0.074 ~?/3(see further on). (The values of probabilities PX for differ-
ent nuclei used in the numerical calculations are shown in Table I). The same 4-dependence
of p(A4) with slightly different coefficient obtained by fitting the data on production of
n-mesons with large transverse momenta in proton-nucleus collisions, was used in [15].

TABLE 1
Nucleus {’; 1;9 ’;; 2‘:\2‘;
[+] o [+]
‘He 91.89 ‘ 7.88 0.23 0.151
Be 87.80 11.55 0.65 0.110
12 86.29 12.84 0.87 0.127
2741 81.73 16.64 1.63 0.239
s0Cy 79.30 ‘ 18.59 212 0.247
s6Fe 77.07 20.30 2.63 0.257
10744 72.37 ! 23.75 3.88 0.261
19744 67.46 27.07 5.47 | 0.264

The coefficients N(4, K)are the rapidly decreasing functions of X and the main contri-
bution to the structure function is given by the first few terms of sum (1). Therefore, in the
sequel, in the numerical calculations we restrict ourselves only to the three-, six- and nine-
-quark clusters.

Now we proceed to the calculation of the structure functions FX. In the framework
of quasipotential formalism in “light front” variables [16], it can be shown that these
structure functions can be factorized and expressed [17] via the structure functions of the
multiquark clusters F3*(x) and the distribution functions of 3K-quark clusters in nuclei
f{z), which describe internal motion of clusters inside the nucleus:

1
Fi(x) = J Sx(DF3* (5—”) dz. &)

x/A
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According to a quark-parton model [18], the structure functions F3¥ can be described
by the quark and antiquark densities

F3*() = x ¥, e2[a*5 )+ W)]-

Here e, denotes the electric charge of a quark of flavour 7, ¢** and 3** are the quark and
antiquark densities in 3K-quark cluster, respectively.

We shall consider-only three flavours of quarks (u, d, s) and assume the quark-antiquark
sea to be SU(3)-symmetric. Then the structure functions F3* can be expressed in terms of
the valence and sea quark densities

F3*(x) = g x[ud*(0)+ 3" ()] + 5 x5 (x). ©

Here 3%, d3%, 53 are valence u and d quark and sea quark densities in 3K-quark cluster,
respectively.
For the quark distributions in proton we shall use the following expressions:

xu(x) = 2.0723(1 +0.5x)x**(1 —x)°
xd,(x) = 1.1275(1 +0.5x)x**(1 - x)*
xs(x) = 0.1517(1 —x)". )

The valence quark densities are normalized to the number of corresponding quarks
in proton

1 1
fdxu x) =2, [dxd(x)=1
0 0

and the sea quark density is normalized in such a way that the proton’s momentum fraction
carried by gluons equals 55%.

The quark counting rules [4, 19] were used to determine the valence and sea quark
densities in multiquark clusters

xusK(x) ~ xl/Z(l_x)GK“E)'i'é
xdiK(x) ~ xl/Z(l__x)GK"2+6
XSSK(X) ~ (1 _x)6K+1+6‘ (8)

Here § is connected with the spin of quark and cluster and equals. 0 or 1 for clusters with
even or odd number of quarks, respectively.
The normalization condition (we assume multiquark cluster to be isoscalar)

1 1

fufk(x)dx = [dfx(x)dx =

N

2

Qo
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allows one to fix the coefficients of proportionality for the valence quark densities in (8).
Coefficient for the sea quark density can be determined from the momentum conservation
condition. Just as in proton, we shall assume that fraction of multiquatk cluster’s mo-
mentum carried by gluons equals 559%,.

Let us now proceed to the definition of functions which describe the distributions
of nucleons and multiquark clusters in nucleus. These functions must obey the following
condition

1
réff,((z)dz =1 )

and the quantities
1

g 2f(z)dz = Zg (10)
can be considered as mean values of nucleus momentum carried by 3K-quark clusters.
The momentum conservation law imposes the following condition.on Zj:

A
Y ZgN(4,K) = 1. (11
K=1
The nucleon distribution function f(z) = f1(z) is connected with the nucleon momentum
distribution in nucleus gn(p) in the following way

fu(2) = [ dpon(p)o(z—p . jm), (12)

where py = po+p,.
In the case of the deuteron nucleon distribution function f x can be expressed via the
deuteron’s relativistic wave function [20] in the “light front” variables:

>

dp.

ipell—2, B 13
-2 iPr( z,p1) (13)

72z = j

The relacivistic wave function ¢y, being a function of the “light front” variable x = 1/2
+(po+p.)/(Ppo+ Pp,) and p, (where p, and Py, denote relative 4-momentum of nucleon
s internal motion in deuteron and 4-momentum of deuteron as a whole, respectively),
is normalized by the conaition

dxdp, -
N > © = 15
fx(l—x) |pr(x, P

which ensures the fulfilment of (9) for the nucleon distribution in deuteron fR.

For the deuteron relativistic wave function ¢(x, p,) we choose the relativistic analogue
[21] of the well-known non-relativistic wave function yyg(p), noting that in the framework
of the “light front” quasipotential formalism the Lorentz-invariant combination
(p? +m?)/x(1 - x) plays a similar role as the three-dimensional relative momentum squared
p? (which is invariant in respect to the three-dimensional rotations) in the nonrelativistic
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theory. For the square of the relativistic wave function we shall use

>2 2 -2 2
., m o[ pLt+m 2 2f PLtm 2
, =—C e m g2 , 1
Ipr(x, p.)I 7 {% <4x(1_x) ) + 93 (4x(1_x) m )} (14)

where 1, and y, are the nonrelativistic wave functions corresponding to s- and d-waves,
respectively and C can be determined from the normalization condition of these functions

4nC? g PPdp{vi(P)+ i)} = 1.

In the numerical calculations we use the Gartenhause-Moravchik wave functions [22].

Note that in the deuteron the contribution of a six-quark state is only a small admixture
to that of a two-nucleon state and it does not exceed few per cents (in this connection
see [23].

The deuteron structure function data [24] and the result of calculation with account
to the 59 contribution of a six-quark cluster are shown in Fig. 1. (Here and in the sequel,
the nuclear structure functions FZ are presented per nucleon).

For the nucleon momentum distribution in nuclei with 4 < 4 < 16 we shall use the
Gauss parametrization of [25]:

- 4 A—4 p? -
— 1 N — 272
ex(p) 732p24 l: + 6 pg] exp (—p°/po)

02 04 06 08 X

Fig. 1. Deuteron structure function. Data from [24]
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which leads to the following distribution function

4_AT 2,20, 5 \2 2.2/ = \2
fn(2) = 3:" {1+ 4 4[1+A m {2 %) ]} exp[— Amz =2y Z‘)]. (15)
T Do 6 Po Po

For heavier nuclei (4 > 16) the Fermi-gas approximation is valid and we shall use

the distribution function
mA 2
A =3 (—) [(—p—> -(z—zl>2] (16)
Pr Am

obtained from the Fermi-gas distribution

on(p) = %O(pF—@D,
TPF
where pg is the Fermi-momentum. (The values of pp can be taken from [26] and they are
given in Table I together with the values of p, from (15).)

The data of the iron structure function [27] and the data for the ratio of iron and
deuteron structure functions [5, 7] are given in Figs. 2 and 3 together with the results of
calculations made by formulae (1), (5)-(7) and (16) without taking into account the multi-
quark cluster contributions (dashed curves). One can see that only the nucleon contribution
even with the Fermi-motion contradicts the experimental data.

To incorporate the Fermi-motion of multiquark clusters, we shall use the expressions
similar to (15) and (16), substituting the nucleon mass m by the cluster mass M, and Z;
by zg.

It is natural to suppose that each constituent of the nucleus is on the average carrying

. . . M . . .
the momentum proportional to its mass, i.e., Zy = 1 Zﬂ( , where n is a dimensionless
m

coefficient. Then the momentum conservation condition (11) takes the form

A
M
n 5 N(4, K)— = 1. 17
Am
K=1

If we suppose that the multiquark clusters masses are equal to those of the correspond-
. . K
ing number of nucleons M,y = Km, then with account of (2) we can get Zx = Yl and

n = 1. The results of calculations exploiting this assumption are presented in Figs. 2 and
3 by dot-dashed curves and show a qualitative agreement with the data. Better agreement
can be achieved by supposing that the masses of multiquark clusters M,y are larger than
Km. By introducing the parameter 4:
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Fig. 2. Tron structure function. Data from [27]. Dashed curve — calculation with account of only nucleons
and their Fermi-motion; dot-dashed curve — with account of multiquark clusters (4 = 0); solid curve —
with account of multiquark clusters (4 = 0.25)

Fig. 3. Iron and deuteron structure functions ratio. Data from [S] — @ and [7] — O. Designation of curves
is the same as in Fig. 2

from the conservation conditions of baryon number (2) and momentum (17) one can find
for #:
T 1A= N(4, 1)j4)

n

The fractions of the nucleus momentum carried on the average by nucleons and multi-
quark clusters equal to Z, = 5/4 and Zx = n(1 +4)K/A, respectively. Generally, parameter
4 should be K-dependent, but we neglect this dependence. Obviously, putting 4 = 0 leads
to the case discussed above (M,x = Km). The results of calculations with 4 = 0.25 are
given in Figs. 2 and 3 by solid curves.

The experimental data [6, 7] for the cross-section ratios o /oy, and the theoretical
results for the ratios of structure functions F5/Fy for the different nuclei with an atomic
number varying in a wide range are given in Fig. 4. Here are given both cases: 4 = 0
(dashed curves) and 4 = 0.25 (solid curves). It should be mentioned that more correct
comparison of the theoretical results with the experimental data requires the contribution
of the structure function F, to be taken into account [28].
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1 1
02 - 04 06 08 x

Fig. 4. Ratio of structure functions of different nuclei to that of deuteron. Data from [6] — O and [7] — @.
Curves correspond to the calculations in a multiquark cluster model with.4 = 0 (dashed curve) and 4 = 0.25
(solid curve)

3. Kinematical region x > 1

As has already been mentioned, kinematical region x > 1 may turn out to be critical
for different models suggested for the explanation of the EMC effect. The preliminary
data [29] for the carbon structure function in the range 1 < x < 1.4 seem to indicate the
existence of the multiquark states in nucleus. The region x > 1 was investigated, earlier
in the processes of cumulative particle production. In [30] the possibility of deriving infor-
mation about the quark parton structure functions of nuclei from the data in a cumulative
pion production in the hadron-nucleus collisions was noticed and in [31] the similarity
in the x-behaviour of the ratio of pion production cross-scctions oa different nuclei and the
ratio of the deep inelastic structure functions of the same nuclei was pointed out.

We have calculated the behaviour of the nuclear structure functions and their ratios
in the region x > {. The results are presented in Fig. 5 together with the iron structure
function data [27] and preliminary data [29] on the carbon structure function. One can
see that the nuclear structure function calculated by taking into consideration only nucleons
and their Fermi-motion (dashed curve), rapidly decreases for x > 1 and vanishes for
X = l+pg/m. Accounting of the multiquark clusters contributions overstates essentially
the value of the structure function in this region. The results obtained with 4 = 0 (dot-
-dashed curve) and 4 = 0.25 (solid curve) values differ considerably in the region and the
version of the model with “heavier” clusters fits the data better.

In Fig. 6 the model predictions for the ratios of the iron and deuteron structure func-
tions in the range 0 < x < 2 is drawn. The versions of the model with 4 = 0 and 4 = 0.25,
being in a qualitative agreement in the region x < I, predict quite different behaviour
for the structure functions ratio in the x > 1 region. Hence, the experimental investiga-
tion of a deep inelastic lepton-nuclear scattering in the kinematical region x > 1 is of great
interest — it can both confirm the multiquark cluster approach, based on the suggestion
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Fig. 5. Nuclear structure function in the region 0 < x < 2. Data from [27] — @ and [29] — O. Designa-
tion of curves is the same as in Fig. 2
Fig. 6. Ratio of the iron and deuteron structure functions in the region 0 < x < 2. Designation of curves
is the same as in Fig. 2

of the existence of multiquark states in nuclei, and distinguish between various versions
-of the model as well.
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P. N. Bogolubov, S. B. Gerasimov, T. I. Kopaleishvili, V. A. Matveev, L. A. Slepchenko
and F. G. Tkebuchava for the interest in this work and useful discussions.
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