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The construction of heterotic string theories in d < 10 dimensions is reviewed within
the framework of the covariant lattice approach. Methods of (super) conformal field theory,
necessary to calculate string scattering amplitudes, are described and applied to a 4-dimen-
sional model. From the calculated amplitudes we extract the (point particle) field theory
which reproduces these amplitudes in the [imit of infinite string tension.
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1. Introduction

String theory [1] is an attempt to describe in a consistent way all fundamental particles
and their interactions, including gravity. Earlier attempts at a theory of everything, which
were all based on point particle field theories such as for instance N = 1, d = 11 super-
gravity, failed because it was not possible to incorporate gravity in a consistent way. Un-
cancelled infinities which cannot be absorbed by renormalization spoil the success. In
string theory there is a new mechanism for infinity cancellation which is due to the fact
that strings are not pointlike but rather extended objects with an infinity of excitation
modes. It is now possible that the divergent contributions from this infinite tower of states
cancel, leading to a finite theory. This is exactly what happens for the superstring and the
heterotic string (at least to one loop).

There are at least two reasons why string theory has enjoyed so much popularity in
recent years: (i) it provides the only candidate solution for the problem of incorporating
gravity in a consistent way and (i) it reveals a beautiful mathematical structure whose
study is interesting in its own right. It is clear that this structure has to be understood
if contact with the real world is to be made. Admittedly, we are still a far cry away from
understanding how this contact is made, but it is nevertheless worthwhile to see whether
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it is possible to extract a semi-realistic low energy field theory: by this we mean a theory
in 4 space-time dimensions with realistic gauge group and interactions (including gravity),
chiral fermions, anomaly free, etc. That this is possible will be demonstrated here.

The paper is organized as follows: in the next Section we review the construction
of string theories in d <{ 10 dimensions within the framework of the covariant lattice
approach. In Section 3 we show how, using methods of conformal field theory, string
scattering amplitudes can be calculated. We will demonstrate this with a few examples.
In Section 4 we extract the low energy field theory from these amplitudes. The last Section
contains some conclusions and remarks.

2. Strings in four dimensions

Let us briefly review the bosonic and fermionic string theories [1]. They are described
by the following fields, which are maps from the two-dimensional world-sheet (parametri-
zed by o and 1) to the D-dimensional target space. Bosonic string: X* (commuting) and
the conformal ghosts b and ¢ (anti-commuting). Fermionic string: in addition to the
fields above, we have y* (anti-commuting) and the superconformal ghosts § and y (com-
muting). Here u = 1, ... D. The absence of a conformal anomaly on the world-sheet
requires D = 26 for the bosonic string and D = 10 for the fermionic string. If we now
interpret D as the number of space-time dimensions, we are faced with the problem of
compactifying the theory down to four dimensions. It is however possible to interpret
D simply as the “number of degrees of freedom”, of which only some, namely d < D cor-
respond to space-time degrees of freedom and the other, for instance to the maximal
torus of some group. It is possible to do this without ever making reference to D-dimensional
space-time. This has the advantage of not requiring any compactification scheme or ever
having to talk about the D-dimensional field theory limit of the string theory, which is prob-
lematic anyway [2]. On the other hand this approach will not explain the number of space-
-time dimensions, which, after all, might be just an experimental input.

If we now try to formulate the fermionic string directly in four dimensions it turns
out that while it is possible to arrive at a gauge group which is large enough to contain
the SU(3) x SU(2) x U(1) standard model this never leads to a realistic particle spectrum {3}.
The situation with the bosonic string is still unclear, the problem being the interpretation
of some of the states in the spectrum [4-6]. This leads us to consider heterotic strings [7].
Let us recall what heterotic strings are.

Heterotic strings are closed strings. For a free closed string the world-sheet is a cylinder,
parametrized by the cyclic coordinate ¢ and the euclidean time coordinate 7. The map
z = e 7 = 7% maps the cylinder onto the complex plane. In terms of the variables
z and Z the string action in (super)conformal gauge is (in units where the string tension
a = 1/2)2

1
S = —J‘dZZ((?:X O X+y Gy+§ 0P
n

+¢*8;b,, +¢20,b;; +70,B; +85;8.) 2.1
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from which we derive the following equations of motion:
0,0:X = 0> X = X(2)+X(2),
Gy=0-9p=19(0z), 0,p=0->7=7p>2

and similarly for the other fields, i.e. the analytical and anti-analytical pieces decouple.
If we go back to the original world-sheet variables, we recognize the analytical part as
the right-moving and the anti-analytical part as the left-moving component of the fields.
(It is clear that this separation will not work for open strings since there the boundary
conditions at the ends of the string mix left- with right-movers.) Heterotic strings are now
simply the combination of the right-moving part of the 10-dimensional fermionic string
and the left-moving part of the 26-dimensional bosonic string.

In the bosonic formulation of the original supersymmetric 10-dimensional heterotic
string [7], the 16 left-moving dimensions, which have no right-moving counterpart which
would allow to interpret them as space-time, are compactified on an even self-dual Euclidean
lattice!. (This is required by modular invariance.) In 16 dimensions there are only two
such lattices, namely the weight lattice of Spin(32)/Z, and the root lattice of Egx Eg;
hence the occurrence of these and only these gauge groups [8].

Even though 16 is the minimum number of left-moving degrees of freedom that have
to be compactified, it is not the only possibility. We can compactify 16+ # of the left bosonic
fields if we also compactify # of the right bosonic fields [9]. This then leads to a theory in
d = 10—n space-time dimensions. The 16+ 2n coordinates have to lie on an even selfdual
Lorentzian lattice I'1¢.,, With signature (+)'®**(~)". There is a continuous infinity of
such lattices; they are however all related by Lorentz-transformations. The resulting
theories have rank 16+# gauge groups, the particular group depending on the particular
choice of the lattice. (The gauge group is however always a product of simply laced groups,
i.e. of SU(m), SO(2m) or E, ; g factors.) This was first realized by Narain [9]. He however
treated the n right-moving fermionic coordinates independent from the bosonic coordinates
by simply decomposing them into representations of the d-dimensional transverse Lorentz
group. This leads to a non-chiral spectrum and in the case wheren = 6,i.e.d = 4to N = 4
supersymmetry. We can however go one step further and enlarge the lattice by bosonizing
the right-handed fermions, together with the super-conformal ghosts [10-12]. The idea
behind bosonization is to replace two fermionic fields by (the exponential of) one free
bosonic field such as to give the same correlation functions. For instance, two fermions
y and y* are represented by one free boson ¢ as follows?:

p=2e% yr=e (2.2)

To demonstrate that the bosonized form does indeed reproduce the anti-commutativity
of p and p*, i.e. Y(2)p*(w) = —p*(w)y(z), we calculate the singular part of the operator

1 A lattice is even if all basis vectors have even (length)?. It is odd if the lengths are integer but not
all even. A lattice is self-dual if it is identical to its dual lattice.
2 Here and in the following we omit normal ordering symbols.
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product expansion and get® w(2)p*(w) = *@e*™ ~ (z—w)1. The situation with
the ten fermionic fields ¢* is slightly more complicated. They can be represented by five
free bosons ¢'. To do this we have to give up manifest covariance and characterize
the fields by their five dimensional weight vectors 1. For instance, the ten weights
+e; = (0... +1...0) make up the vector representation of SO(10). We then have % ~ ei% - 3.
This however does not yet reproduce the anticommutativity of »** and y** for i # j.
To ensure this, we have to introduce cocycle factors ¢; whose purpose it is to introduce
the necessary factors*; i.e.

yf' = e17'$cz. (2.3)
This can now be generalized to any weight vector of SO(10), especially to weights in either
of the two spinor conjugacy classes®. This leads to a bosonized representation of the so-
-called spin fields S* and S* which are necessary to represent space-time fermions in string
theory.

The bosonization of the superconformal ghosts is however more intricate as they
are themselves bosons. We do not want to go into any details and just state the results
as needed for our purposes. We introduce one additional bosonic field, ¢4 and define
a vector (¢, ¢s) and weight vectors (4, g). Modular invariance requires the weights to lie
on an odd self-dual Lorentzian lattice I's ; with signature ((+)°, (—)). ¢ is called the ghost
charge of the corresponding state. The ghost charge can be changed by one unit by the
so-called picture changing operation [15] which however does not change the conjugacy
class of the lattice vector.

If we now combine the lattice I'5; with the lattice arising from the left and right
moving bosonic coordinates I ;64,104 We get a lattice I'y _g;15-4,1 = I'26-g315-34 @ F;,ﬁ
the semi-colon separates left from right movers and the signature is (—)*¢ 7, (+)** 7%, (-)).

The I'a | describes the space-time degrees of freedom of the bosonized fermions. (I'¢ de-
3 2
scribes the Lorentz group SO(d).) A general lattice vector will be written as (IL; Trs 4ks 9).

Modular invariance now requires ', 4,,5-4 t0 be odd self-dual without requiring
the left (I";4_,) respectively right (I'y5.., ) sublattice to be self-dual separately. To make
contact with our discussion above we decompose the lattice as follows: I'y6_4.(5-44
= (T26-g;10-)x (I 035— ; Qr, ; J@.q The theories considered by Narain are now

those where the first factor is even self-dual and the second factor odd self-dual separately.
We have already mentioned that this does not lead to phenomenologically satisfactory
theories and we have to look for more general lattices.

3 In general, the operator product of ¢+ ¢ and R where 2 is a collection of free bosons, is
given by [8] A 0@ bW o o= i DSIWDTF@) HEFW = (7 )l ligii $(2)+ im0,

4 Explicit representations of the ¢3 can be found in the literature [8, 13, 14]. Here it shall suffice to
mention that they give rise to the covariant group theory factors in the correlation functions of chapter
three below.

5 SO(2n) has four conjugacy classes, denoted by o, v, s and c. o contains the roots (+e;+e;j), v the
weights +e; and s and ¢ the weights (+ 3, ..., £ 1) with an even and odd number of minus signs respec-
tively. The difference of any two weights in any given conjugacy class is an integer linear combination of roots,
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There is an infinite number of Lorentzian lattices with the given signature, but they
are all related by Lorentz rotations. However not all of these lattices lead to good string
theories. Severe restrictions arise from preserving world-sheet supersymmetry or, equiv-
alently, demanding space-time Lorentz invariance, i.e. the absence of massive chiral spinors
{16, 12]. A way to construct lattices satisfying all of these consistency requirements is given
in [12], and a classification of them in [17]. Their number is unfortunately huge (an upper
limit being 103® [18]). Here we want to give just one example of a lattice, which leads to
a string theory in four dimensions, which is chiral and does not possess space-time super-
symmetry. Its construction is given in detail in [12]. The lattice is (D5 X Dsx Dsx D, x D,
x D, % D)y x (D3 x D3xDj3x D, )g where D, is the weight lattice of SO(2n). However not
all conjugacy classes are present; they are restricted by the self-duality of the lattice. The gauge
group is [SO(10) x SO(4)1? x U(1) which has rank 22 corresponding to the dimension of the
left lattice. The right part gives rise to the global symmetry [SO(6)]° of rank nineS. We can
interpret the three SO(10)’s as grand unification groups (with two of them playing the role
of hidden sectors) while the SO(4)’s and SO(6)’s can be interpreted as local and global
horizontal symmetries respectively. (The U(1) factor is anomalous; the anomalies are
cancelled by the Green-Schwarz mechanism [19].) In [20] we have given a complete list
of all the massless states. Here we restrict ourselves to just one scalar and one fermion
field. They transform under the local and global symmetry groups in the following represen-
tations:

¢ ~(10,1,1,1,1+1;6,1, 1),
YL~ (16: 1’ la 25 19 15 %—; 4, 1, 1)+h.C.

These are the states that we will use in our sample calculations of the next Chapter. Other
massless states, such as gravitons and gauge bosons have no excitations in the I'g part
of the right lattice and transform in the trivial and adjoint representations of the local
gauge groups respectively.

3. String amplitudes

In order to check whether a given string theory is an adequate description of our world,
we have to calculate scattering amplitudes which can then be compared with experiment.
Or, we can look for the point particle field theory which reproduces the amplitudes in the
limit where this field theory is expected to be valid, namely in the infinite string tension limit.
In this Section we will explain how to calculate string scattering amplitudes using methods
of conformal field theory {21-23, 15, 24, 10, 13, 14, 20], and in the next Section we will
then write down the field theory which reproduces them. The techniques developed up
to now allow us to calculate on-shell amplitudes only. In addition we will restrict ourselves
to the evaluation of tree level amplitudes.

At tree level the string world sheet is topologically a sphere. External physical states

6 The part of the symmetry group arising from the right part of the lattice is not gauged. This is required
to get chiral fermions.
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(they correspond to strings of zero length) can be inserted via vertex operators V. (The
resulting picture of a sphere with physical states attached to it can be viewed as cylinder
with N— 2 tubes branching off, in the limit where the diameters of the ends of the cylinder
and the tubes shrink to zero.) Then, in the language of conformal field theory, a N-particle
amplitude is simply given by the following correlation function:

A~ gV VY, 3.1

where g is the string coupling constant. To obtain non-vanishing correlation functions,
three conditions have to be met: (i) the vertex operators, integrated over the world sheet,
have to be primary fields of conformal dimension zero”; (ii) they have to be chosen such
that the zero-modes of the conformal and superconformal ghosts are soaked up. (At one
and higher loop order, there are other zero-modes which have to be treated carefully.)
and (§ii) space-time and lattice momentum have to be conserved. (The conservation of
lattice momentum is identical to Lorentz and gauge invariance.) '

The most general vertex operator' 1s a linear combination of expressions of the follow-
ing generic form:

i T
V, = § dzdz [] 07(X) eteez "™ ¥ w9 gllmdn 7)
i

. _i-k X 7
x H GSk(X)ekez L PR ¢L(Z)
k

= 5d_zd5VR(z) V3, (3.2)

where k is the space-time momentum, ¢ the ghost charge, and we have expressed ¢* and
S* in bosonized form. The lattice vectors Ay € I'y.4 and Ay € I'ys_, are weights of the
representations in which the state iransforms with respect to the local and global symmetries;

iperl 4. The conformal dimensions of the various components are as follows: [dz] = [dZ]
2

= —1, [6] = +1, [X] = [¢] =0, [eE ] = %ké,L = _'é'mlzt,b [e1f$] = %}:2’

[yl = +%, [e*%] = —%¢*—q and the conformal dimension of the ¢ and ¢ ghosts is — 1.

Requiring that the conformal dimensions of ¥ and ¥, are zero, we then get the following

mass formulae:

kr,L- X

%mlz. = NL+'12_IIZ‘—1»
Imi = Ne—Lq*—q+3 12 +3 -1,

= gmi+imd, (3.3)

3
i

7 A primary field of conformal dimension h satisfies the following operator product relation with

h g
the energy-momentum tensor: T(2)@(w) ~ C ) + w0 + finite, with no higher order poles.
7—

w3 (z—w)

A similar relation holds for anti-analytic fields.
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where N = Zs;, and Ny = Zr; are the number of left and right bosonic oscillator excita-
tions, respectively. (The absence of a distinguished point on a closed string leads to the
condition that m? = mg.)

To illustrate the above, let us consider the following example:

Vg = [ d2ze™ 5y (2)0X"(2)e ¥ De, (k). (3.4)

According to the above rules, this vertex operator has conformal weight 1k2, which means
that the state created by it has to be massless. If we now require that ¥, and V4 are primary,
we get in addition the condition k¥, = k’¢,, = 0, i.e. the vertex operator creates a massless
transverse 2nd rank tensor particle. When we calculate scattering amplitudes with this
vertex operator we find that it can be identified with the graviton + antisymmetric
tensor + dilaton.

On the sphere the conformal ghost ¢ has three zero-modes and the superconformal
ghost y has two, corresponding to the number of generators of the group SL(2), the super-
symmetric extension of SL(2, C), the symmetry group of the sphere. There are no b or
B zero-modes on the sphere. The ¢ zero-modes are taken care of by replacing in three of the
vertex operators the integral over the world sheet by a ghost insertion, i.e. | dzdZ > «(2)&(2),
which does not change the conformal dimension of the vertex operator. It fixes the posi-
tions of three of the vertices and the amplitude must not depend on any particular choice.
To absorb the y zero-modes we have to choose the vertex operators such that their ghost
charges ¢; add up to —2. This is possible by the picture changing operation mentioned
before, which allows one to change the ghosts charge of a given vertex operator by one
unit. We do not want to go into details of how this is done and refer instead to the litera-
ture [15]%.

Since all the fields involved in the construction of the vertex operators are either
free fields or can be expressed in terms of free fields via bosonization, we onty need to
know their two point correlation functions and can then evaluate the complete scattering
amplitude using Wick’s theorem. The difficulty consists in recasting the result in a mani-
festly Lorentz covariant form, which is lost after bosonization. The elementary two-point
functions are:

X' (2)X'W)y = —g”"In(z—w)
- <eik'X(z)eik"X(w)> — (Z . w)k'k',
YWy = —g"z-w),
{e(De(w)y = "Dy = (z—-w),
(¢ (@D’W)y = =7 In(z~w)

8 We do need to mention however, that in the four-dimensional case the picture-changing operator
splits into two parts, one that operates on space-time degrees of freedom and one that acts on the internal
degrees of freedom in I'y [20].
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-¢ o A9 ei;.'-¢(w)> = (z—w)“',

{Ps(2)ps(W)> = —In(z—w)
—r <eq¢s(z)eq’¢s(w)> — (Z_W)—qq’_ (3.5)

We are now ready to give some sample amplitude calculations [20)]. The first example
is the two fermion-one graviton amplitude, where by graviton we mean either a graviton,
an anti-symmetric tensor particle or a dilaton. The string amplitude for the three cases
differs only by the choice for the polarization tensor, which is symmetric and traceless
for the graviton, anti-symmetric for the anti-symmetric tensor and pure trace for the dilaton.
In addition the polarization tensor is transverse in all three cases. In the low-energy field
theory however, the amplitude is reproduced by different terms corresponding to the
different particles. The string amplitude is given by®

A = 2 glceVEBIBA) eV PP 2)eeV(3)ul ug 6 (3.6)
where
Vi{;x}{zA} — e’és/zszs{a}eTI"X(Z)S{A)e”{k'x(g) 3.7

is the vertex operator corresponding to a space-time fermion characterized by the spinor
u,. Its transformation properties under the global and local symmetry groups is given by the
multi-indices {a} and {4}. For the specific model described in Section 2 we have for instance
{a} = 4506y and {4} = (165010, 250(4) 1/2y(1)): So {a} corresponds to a weight of length
3/4 and {A} to a weight of length 2. V"’_“;‘/‘f’ corresponds to the conjugate spinor and V**,
is the graviton vertex discussed above. The correlation functions involving spin fields are:

1

7 Yz, —25) " P2y —23) "2,

(S%2)SH(2,)9(23)) =

(§¥(z2)SM(z3)> = (2, —-29) 7 H*CW),
8™z )8¥NZ,)) = (2,—2,)72CH (3.8
The amplitude then becomes:

A = gC{Il)(h}C{A){B}u(l),yllu(l)k\]'guv(ks), (3.9)

where we have used the on-shell conditions k¥, (k) = k', (k) = 0, Ku = 0 and k? = 0.
It can be easily verified that the amplitude vanishes for the dilaton case.

® The amplitudes are normalized as follows: each vertex operator with ¢ = —1(—1/2) is accompa-

1
nied by a factor of 2(2-'/*) and each world-sheet integral by a factor of o Then the vertex operators
t 4

create states that are normalized according to particles in field theory.
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The next amplitude we want to present is the scattering of two scalars and one gauge
boson. This requires the gauge-boson vertex operator in the g = 0 picture:

Vi = [6" 4 (ke w)'l’"] T T N B h), (3.10)

where ¢, is a polarization vector and J' = JpMp™(T)™V a gauge current which satisfies
[J5, J] = if*J*. (The T"s are representation matrices.) The amplitude is then

Al = 4g(ceV M) ee vV MN(2)ee Vi 3) e,
= ge -« (ky—ky)d™(THMIW, (3.11)

The last three-point amplitude we want to quote is the two fermion-one scalar (Yukawa)
amplitude. Since all the ingredients for its evaluation have already been given, we only
quote the result:

. 1 1
- W,y [ 2 cptmhytaer Y 2 piMiy(aKB)
=2 g(u'"'Cu )( /E(I ) )( /j(l‘ ) ) (3.12)
V V
The last example we want to present is the scattering of two fermions, one scalar
and one graviton. It is given by the following correlation function:
2
A= -%t dzdZ{caV D (00)ee VBV Az, eV VM0 uDusVe,,.  (3.13)
v
Here we have used the SL(2, C) invariance (or equivalently the fact that there are three
(complex) ¢ zero-modes on the sphere) to fix the positions of three of the vertices at the
values z;, = o0, z, = 1 and z, = 0.

Vo, = e ¢ pimes “N(z)pMe ) (3.14)

is the vertex operator for a space-time scalar transforming in the vector representation
of the internal symmetry group. For the model discussed in Section 2, we have {m} = 64,
and {M} = (1055;0y £ ly(iy)-

Vy = [axu —214(k : w)] e “X(2)aX e Ve, (k) (3.15)

is the graviton vertex operator in the ¢ = 0 ghost picture. The various correlation functions
are easy to evaluate with the results given above, the only new one being
L s

2(1 )Zl . (.116)

The z-integration can be done using the following general formula [7]:

4%z . 5 o m+"1"(1+n+ a)I‘(l:fm-% ﬁ)[‘(—l—-n—rm——z—(a%—ﬁ))
JT‘Z“I‘Z“(I“) = O T T oI prQ ek @A)

(S@NS" (YY) = —3
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which is valid for integer m and . Introducing the Mandelstam variables s = —(k,+k,)?,
t= —(k;+k,)? and u = —(k,+k3)* we finally get

S I3 u
= 2 8 8 8 ) (I'tmladtel (pMiyl4xB)

T

1 1 1
X [— (ksekHuPCcu® — Y Kk, kGu My u e, — 5 k”lk%u(”y“y"u(z)euv:l. (3.18)
S ’ u

All other amplitudes can now be calculated in a similar way. We have calculated all three-
and four-point amplitudes for the model of Section 2 and refer for the results to [20].
Most of the results given there are in fact model independent and apply to any model con-
structed from a covariant lattice. This concludes our discussion of string amplitudes.

4. Low energy field theory

We now want to find the point particle field theory Lagrangian that reproduces the
results of the previous Section in the limit of infinite string tension. (The Lagrangian is of
course required to be invariant under all the symmetries of the theory.) This will also
allow us to relate the field theory coupling constants to the string coupling constant g.
Our strategy is as follows [25]: we first try to reproduce the three particle amplitudes with
a field theory Lagrangian % ;. The four particle amplitudes can then be partially repro-
duced by Z 5, either by direct couplings or via exchange diagrams. The remainder then gives
rise to new interactions £ ,,. Let us illustrate this with a few examples.

The two scalar-one gauge boson amplitude Eq. (3.11) is reproduced by

Lip = 7 /88" (D, )" ™D, o)™, 4.1)
with

(D, D) = §, "M _ g, 4POW g,

where g, is the four-dimensional gauge coupling constant. Comparison with the string
result gives g, = g, i.e. the gauge coupling constant for each simple factor of the gauge
group is equal to the string coupling constant. Likewise, the two fermion-one graviton
amplitude Eq. (3.9) is reproduced by the kinetic energy terma:

L2 It = \/ E q’““’“’(l'p)a(a}u), (4-2)

where #‘]‘ is the gauge and general coordinate covariant derivative acting on the spinor V.
To verify that this indeed reproduces the amplitude we expand g,, = 7,,+2Kh,, to find
the two fermion-one graviton vertex [26). (x, is related to Newton’s constant x, = /87G.)

Comparison with the string result gives x, = g\/ibz—', where we have re-introduced the
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string tension. Above expression does however not reproduce the two fermion-one anti-
symmetric tensor part of the amplitude. For this we have to introduce a new term

— 1) ~{a}{b} ~{A}(B} ,—cD
$3pt - lg )C ¢ C i }e € ql{a}(A}ynveW(b}{B}Huva’ (4'3)

where H,,, is the field strength for the antisymmetric tensor B,,, given by H,,, = OreBuny
K _—

+ Chern-Simons terms. Comparison gives A" = —23 = % \/22. A comment on the dilaton
coupling is in order here. Four dimensional conformal invariance requires a factor e°(! **)?
in front of each term in the Lagrangian with conformal weight w. The conformal weight
is determined as follows: g,(7,) and g, (") have conformal weight +1(+1/2) and
~1(—1/2) respectively and ¥ has conformal weight — 1/4; all other fields have conformal
weight zero. The constant ¢ will be determined shortly.

The Yukawa amplitude is reproduced by the following term in the Lagrangian:

&z = 1 ;’§h €%Dcfﬂ (I‘M){a)(b) (F(M}){A})B)
3pt Z 4 \/2 \/E
X ‘P“{a)(A) ‘Pﬂ(b)(a}¢m{M}, (44)

and we get b, = /2g,, i.e the Yukawa coupling constant is expressed in terms of the gauge
coupling constant.

It can be shown that all possible three-point amplitudes are reproduced by the Lagran-
gian in Eqs (4.1-4.4), with the exception of the ones involving only gauge and gravitational
particles. They require

{1 2 ,
Lo =2 {272 R—% e *’H,, H""*~% (V,D) (V*D)
4

—~Le PP (F MF’”)} + other terms 4.5

where ‘other terms’ stands for various higher derivative terms.

Let us now look at the four-particle amplitude, Eq. (3.18). Here we have to distinguish
three different cases. In the case of the graviton, there is no direct four point interaction
coming from Eq. (4.4). (The term linear in the graviton field arising from the expansion
of /g = 1+, vanishes due to the tracelessness of an on-sh=ll graviton.) However the
terms in %5, give rise to exchange contributions. There are three diagrams: an s-channel
diagram with the exchanged particle being a scalar, and a ¢- and u-channel diagram via
fermion exchange. 1f we add the contributions of all three diagrams, we reproduce exactly
the string result, i.e. no new contact terms are needed. The second case involves instead
of a graviton an antisymmetric tensor particle. Again, there is no direct interaction arising
from #,,,, but as in the previous case &£, suffices to reproduce Eq. (3.18) for this case,
namely through fermion exchange in the ¢~ and u-channel. Finally, the two fermion-one
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scalar-one dilaton amplitude is completely reproduced via a contact term arising from
Eq. (4.3) upon expanding the exponent to first order in the dilaton field. Comparing this

2
- K, Which is valid

d—2
in d dimensions. So far we have not been forced to add new quar\t/ic terms to the Lagran-
gian. In fact most of the four-point amplitudes can be reproduced by #;,, in general
as a combination of direct couplings and exchange contributions. There are however
contributions to Z,,,. They arise (to lowest non-trivial order in «’) from examining the
four scalar amplitude, the four fermion amplitude and the two fermion-two scalar ampli-
tude and they can be found in [20].

To summarize, we have extracted from the string amplitudes a field theory Lagran-
gian, which reproduces them and we have related all coupling constants to the string coupl-
ing constant. The effective Lagrangian countained the Einstein-Hilbert Lagrangian, as well
as the Yang-Mills Lagrangian and bosons and fermions coupled to gravity and Yang-
-Mills theory. We have also found interactions among the matter fields, such as quartic
scalar and fermion interactions and Yukawa couplings. The Lagrangian has all the basic
ingredients a successful field theory Lagrangian is believed to have except for may-be
a mass term for the scalars, but they can either be produced by string-loop effects, or if we
find some other-stringy-mechanism to break the gauge symmetry may not even be nec-
essary.

with the string result also allows us to fix the constant ¢ to ¢ =

5. Conclusions

There are many open problems in string theory that have to be solved in order to turn
itinto a fully acceptable theory of the fundamental particles and forces. But it is encouraging
to see, that we can make at least formal contact with the real world by being able to show
that we can construct from string theory an ‘acceptable’ field theory. We have tried to
demonstrate how this is done within the framework of the covariant lattice approach,
in which all the calculations involved are rather straightforward (even though tedious at
times).

Two immediate problems come however to mind. The value of the cosmological
constant and the rank of the gauge group. There is hope to find a satisfactory solution
to the first problem, even in non-supersymmetric theories. (In the case of supersymmetric
theories it is solved automatically by boson-fermion cancellation on each mass level.)
This is based on the recent discovery [27] of a symmetry of the string integrand which arises
in the evaluation of the cosmological constant. It is identically zero in the supersymmetric
case. The integral over moduli space can however vanish if the integrand shows what
is known as Atkin-Lehner symmetry. The second problem, concerning the rank of the
gauge group might be solved along the lines of Refs [28, 29] by dividing out discrete sym-
metry groups. Work on this is in progress.

We would like to thank the organizers of the School for giving us the opportunity
to present our work. S. T. acknowledges the hospitality extended to him in Zakopane.
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