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We describe a recently developed renormalization group improved version of the
program of Yennie, Frautschi and Suura for the exponentiation of infrared divergences in
Abelian gauge theories. Particular attention is paid to the relevance of this renormalization
group improved exponentiation to Z° physics at SLC and LEP.
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1. Introduction

There is currently a substantial amount of interest in testing the SU,; x U; model
to levels exceeding 19 accuracy [1] at the SLC (and LEP) on or near the Z° resonance.
Such an accuracy necessarily implies that the respective SU,; x U, radiative corrections
are known to $0.3%,. Accordingly, inspired by the Mark Il SLC Z° Mass and Width
Physics Working Group, we have developed a methodology for achieving such an accuracy
on these SU,; x U, radiative corrections [2]. This methodology is our subject in the follow-
ing discussion.

More specifically, the standard SU,; x U, model, in its minimal manifestation, uses
the parameters a, G, Mo, m; and my to describe all known electroweak physical processes.
Here, « is the fine structure constant of QED, G, is the p decay constant, My, is the rest
mass of the Z° vector boson, m, denotes the rest mass of standard model fermion f and
my is the rest mass of the physical Higgs boson ¢° in this minimal manifestation
of SU,;, x U, (we note that, at this time, ¢° has yet to appear explicitly in an experimental
apparatus). Supersymmetry considerations [3], for example, even in their most minimal
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form, would enlarge this set of parameters. It is thus a great achievement that, to date,
the minimal SU,; x U, electroweak theory has encountered no obvious disagreement
with observation.

Indeed, the theory has enjoyed the outstanding predictions of the W and Z° bosons
themselves (with masses of essentially the right value) and the attendant Z° neutral current
interactions with the essentially correct magnitude and space-time structure. The stage
is therefore set for precision checks of the. predictions of SU,; x U, theory. Such checks
are a primary aspect of the physics programs at SLC and LEP on (or near) the Z° resonange.

(b)
Fig. 1. Order « radiative corrections to the initial state in e*e” — X in QED: (a) virtual effects; (b) brems-
strahlung

The type of checks envisioned are described in some detail in Refs [1] and [4]. For
example, precise measurements of I'zo, M0 and 4,  (the left-right asymmetry for e*e~ — Z°
— X) can restrict the number of new light neutrinos, or give an eye toward possible new
heavy particles. The type of precision required ranges from a few 9 down to 0.1% for
some of the more subtle effects. As a benchmark, we may say that precision Z° physics
(at SLC and LEP) requires that the respective cross sections are known to <19, as we
have noted.

One of the main contributors to the error on ee~ annihilation cross sections is the
uncertainty associated with the respective SU,, x U, radiative corrections. Accordingly,
it has been realized by many [5] that precise Z° physics will entail a substantial improvement
on the methodology by which such corrections are performed in comparison with the
analogous methodology used at PEP and PETRA.

One can make a straightforward assessment of the situation by considering the proc-
esses illustrated in Fig. | where we show only the y exchange graphs, since they already
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characterize the size of the radiative corrections of interest to us here. Upon effecting the
familiar cancellation of the real and virtual infrared (IR) singularities in the standard
mannef, we find that the size of the order a correction to the basic Born process
for ete~ > Z° —» X is expressed by

20 s NE

— <ln — - 1) In ,

T me 2k,
where /s = total c.m. energy and k, is a typical energy resolution type (detector) parameter.
One notices that the pure large ultraviolet (UV) corrections are characterized by ¢t = (2«/n)
x (In (s/m2)—1) = 0.108 for /s = Mo and, hence, that the infrared effects are possibly
~100Y; corrections in each order of « since generally /s/2 > ko, for example. It follows
that 0.3% SU,.x U, radiative corrections in e*e~ — X near the Z° resonance involves
summing all large IR effects and summing =3 loops of the large UV effects.

Accordingly, we have used the method of Yennie, Frautschi and Suura [6] (Y-F-S)
to sum the respective large IR effects and the renormalization group method of Weinberg
and ’t Hooft [7] to sum the respective large UV effects. In this way, we have arrived at the
consideration of renormalization group improved Y-F-S theory. (The entire development
has been motivated by precision Z° physics at SLC and LEP.)

Thus, in the next Section we shall present a brief review of the elements of the Y-F-S
program. Section 3 then presents a description of the basic renormalization group improved
Y-F-S theory. Section 4 illustrates the type of application we have in mind for our theory —
the exponentiation of Monte Carlo electroweak event generators. Section 5 contains some
concluding remarks.

2. Yennie-Frautschi-Suura theory — a short review

With the ultimate purpose of achieving high-precision radiative corrections at SLC
and LEP energies, we shall review the relevant elements of the Yennie-Frautschi-Suura
(Y-F-S) theory as it relates to ete~ — Z° — X near the Z° resonance itself. We have, then,
the full SU,; x U, theory in mind.

et

e

Fig. 2. Virtual photon correction to ete~ — X. This is a typical graph
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Kn
Fig. 3. Real photon emission in e*¢~ — n{y)+X’. This is a typical graph

More precisely, consider the situations illustrated in Figs 2 and 3. In Fig. 2, we show
a typical contribution to the expansion of the full connected amplitude # for e*e~ —» X
at \/s = My, in terms of the number of virtual photon loops. In Fig. 3, we show a typical
contribution to .# which involves X = n(y)+ X', an n-real photon final state. The key
resuits of Y-F-S theory are that

H(P,, P;) = exp {aB} 3:;0 m,, )

where m, are free of virtual infrared divergences and, if m{" is the n-real photon case of m;,
x ~
[ Z my(:")lz S( S(kn)BO
n' =0
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where f ; have no real or virtual infrared divergences so that, for X' = f f and e;ep = electric
charge of f,

. ~ 1 4 .
do = exp {2a(Re B+ B)} (E;r_)—‘i fci‘*y exp {iy - (P.+P;—Px)+D}

{/30"” Zn’fH - exp 1"‘1\7 k}ﬁn} dbxd Py, (3)
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where the functions B and B are given by (here, m, is our photon mass infrared cutoff)
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with
k<Kmax 3
~ d’k ~
Z(ZB = j‘ (“];T;-m—h?)l—/—z S. (7)

Here, K., may depend on the direction of k. It is result (3) which we will use in our study
of ete” » Z° - X. In (3), all infrared divergences are cancelled in the sum Re B+ Bto all
orders in a.

As we (and others) have discussed elsewhere [2, 5], there remain large ultraviolet
effects in B, in (3). These may be analyzed using the methods of Weinberg and ’t Hooft
[71 as we illustrate in the next Section.
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3. Renormalization group improved Yennie-Frautschi-Suura theory

In this Section we shall illustrate how one uses the partial differential equation of Wein-
berg and 't Hooft to sum the large ultraviolet effects in 8, in (3). We begin by recapitulating
this equation.

Specifically, Weinberg and 't Hooft have shown that the multiplicatively renormalized
Green’s functions {I'} of a theory may be subtracted with the massless limits of the sub-
traction constants for the theory at a Euclidean scale u. The fact that the unrenormalized
theory is independent of p then implies the equation

(3 80600 5= =g 52 ”'Yr(ga)) ®)
It omg
where for simplicity we imagine we have one rerormalized coupling gg and one renormal-
ized mass a1z, In the SU,; x U, theory, we would have two couplings, ez and gyg, Where
gwr 1S the SU,, coupling and ey is the electric charge of the positron, we would have
renormalized mass parameters for the fermions in the presumed three families of quarks
and leptons, we would have the mass parameter of the W* and Z° bosons, and the mass
parameter of the physical Higgs particle (or the quartic coupling of the physical Higgs
particle), as a minimal set of masses and couplings. The physics beyond the standard model
would enlarge this set. The coefficient functions f, y,and yr are computable to in renormal-
ized perturbation theory. The detailed application of (8) to (3) for the full SU,; xU;
theory has been illustrated in Ref. [2] and will be taken-up in more detail elsewhere.
More precisely, we have shown in Ref. [2] that (8) yields the following form of (3),
where, here, we focus on the QED aspect to the SU,; x U, theory for purposes of illustra-
tion,

do = exp {Zaa) [Re BP0, ma)+ B BAD. mah) 5;—)]}

1
(2n)4jd"’y exp {iy - (P.+P;—Px)+D}
~ - 1 (T d*k ~
{BO(QO)‘*‘ Z ;,‘ JH —iy- kl’}Bn(qn)} dEx'dBPx's &)
n=1 ’ V=1
where
Fia) = FPAOBP ), kom0, ) (2D
m\4n) = n\t i s *0js iR ’ s ﬂ) (10)
eg(1)
and

D= ( i(1), mip(2), 2(4), m”) an



471

The running charge eg(1) and the running masses m,z(4) have their familiar [7] definitions;
these definitions are reviewed in Ref. [2]. The normalization of (9) is such that D , ., is the
engineering dimension of the amputated amplitude .#™ which describes the connected
contribution to ete~ —» n(y)+ X’ (see Ref. [2]). Our scale parameter A is such that

P, = (Asof2, V25 ld—m? 2),

P; = (Avs0/2, =/ 2Zsofd—m? 2), (12)
and, in 4",

PO+PY = A(Vso— Y kS), ki = Akos
i=1

I-;f"‘}-;f = —)v 2 I—éo,‘- (13)
i=1

We can always presume this in the physical region provided that A./s, > 2m; and 4/s,
> 2m,. We will always imagine that /s, > 2m, and that 1 > 1.

The result (9) is central to our approach to high-precision radiative corrections in
ete~ — Z° — X near the Z° resonance. It is a rigorous consequence of the renormaliza-
tion group equation. The detailed application of (9) to ete- —» Z° - X will be taken-up
elsewhere by the author and Jadach [8]} and the Mark Il SLC Z° Mass and Width Physics
Working Group [9]. In the next Section we wish to illustrate, in a pertinent way, the type
of application we have in mind for (9).

4. Exponentiation of Monte Carlo event generators

A primary use of a formula like (9) would be in exponentiating large infrared (IR)
effects and summing large ultraviolet (UV) effects in a way which allows an event generator,
such as MMGI in Ref. [10], to reflect the respective net effects in ete- — X near the Z°
resonance, for example. Accordingly, in this Section we wish to show how (9) would be
applied to the results in Ref. [11] for ete~ —» prp-(3), which are the basis of the event
generator MMGI. (The application of (9) to the general one-loop calculation of ete~ — X
from the standpoint of event generators is one of the details which will be taken-up else-
where by Jadach and the author [8] and by the Mark II SLC Z° Mass and Width Physics
Working Group [9].) In this way, we hope to clarify the relationship between (9) and the
results in Ref. [5], for example, and to illustrate the type of applications we have in mind
for (9).

More precisely, in specializing (9) to the results in Ref. [11], we may identify Bo(qo) as
d

o doy
(1—1oop)—2 Re («(1)B) o (14)

Bolqo) = dQ, )

where da(1-loop)/dQ,, is the one-loop cross section in Eq. (2.27) of Ref. [11] and doo/dQ,
is the lowest order cross section in Eq. (2.2) in Ref. [11]. a(1) is the fine structure constant
at \/s = 2m, ., for example.
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Similarly, the cross section B, is identified as (k = k,)

doe®? dog

31=W—()—— (15)

where do®! is given by Eq. (3.13) of Ref. [11] and S(k) is given by (7).
Clearly, the virtual infrared function B should be computed in a complete way in
order to make (14) as precise as it is desired. We find

B = B(P., P))+By(P,, Py)—B,(P; — P5)
— By(Pe = P;)+By(P. - P;, Py ~ Py)
+ €?B,(P, = Py, P; > P;, m, — my), (16)
where [2]
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where
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with
N =(Pe+PE)2’ SefE(Pe+Pf)2’
tg = (Pe_Pf)za ﬁe = (1“'41’"3/8)1/2.

e; is the electric charge of fermion f.

21

22

Similarly, we note that the real infrared function B which cancels the infrared singulari-

ties in ReB may be represented as
B(P,, P;, Py, Pp) = By(P., Pz, m)+By(P,, Py, m,, m)— By(P; — Pf)
—B,(P, > P)+By(P. - P:, P, > Pp)

+ef2§1(P° ~ Pg, P; = Pg, m, —> my),

23)
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where, for a spherical cutoff X, for the photon momentum magnitude,

~ —2m2 1n 2K e/ 1 1
TCSBe l_ﬁe 1+ﬁe
(S_zmi) lnﬂe

- In 2K,,,,/m.)1 , 24
5B ( /m,) In 45 (24)

B,(P., P, mg) = 1n(2K /m)( 1 1 )

e Fgs Mg, Mg) = max
Aot ! nsﬂ "\1-p 145

ef e 1 1
+ nsﬁel (21’<m/my)(1 5T 1+ ﬁe)

(sef - ’ng - mt?)ef In (2Kmax/my)
4”((mf Mg — o) 4+ mi(see—2(m? + m)))'/*

See—2(mZ +mg)—(mf —mZ —1,)|2— (M} — m? — 1) |4+ m2(se = 2(m? +mP)))!/?
(Mg —md —1)[2 +((mF — M7 —1.0)*[4 + m2(s.e— 2m? + m2)))'/?

{m

=2(m’ +md)—(mf —m?Z—t.)[2+((mF — M2~ t.)* |4+ mZ(sc— 2(m? +m2)))'/?

~ln " (mf —md —1.0)[2—((mF — m? ~1,0)*[4+ m (s — 2(m? + m))'/* } ’
(25)
where (note that (1/(1—B)—1/(1+8))/sBe = 1/2m?)
Be = (1—4m¢[s)'/2. (26)

Hence, we have completely specified B, and B,; we now turn to ﬁo and ﬁ,,.

Considering first 50, we have (the B; in (14) and (15) contain a standard phase space
factor relative to those in (9))

Bo = A72Bo[P(1), Pi(1), Pu(1), Pi(1), M puyslds My nyel s a(A)], @7
where /s, = 2my, oy and
P1) = (Vsof2,  ZpN'sold—minjiP), f=e8 i, (28)
with 2, = —2; = 2~and z, = —Zz; Here, A = Mzo[2m, ...
Similarly, for B,, we have
ﬁl = A"Bl[Pi(l), My onysl Ay Ky/A, a® - a(l)aZ(A)]. (29)

This, then, completely specifies 50 and [)71.
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Thus, in our example Ey, = P? +P? , f’x, = ﬁf+f’g and we have

do = exp {2(1) (Re B+B)} fd“y exp {iy - (P, +P;— Px)+D}

@n)*
d3k —1 k
{ﬁo(‘Io)‘i‘ J YHB, (41)} dExd’Px., (30)
where.
Bk
D= J (6™ *— (K max—k))S. (31)

We note that, as one may check from (16)-(26), Re B+ B does not contain infrared singu-

larities.
The effect of e” in (3) has been discussed in detail by Jadach in Ref. [12]. The basic
result is that, for Monte Carlo simulation, one should write (30) as

dO' = eXp {2(1(1) (RC B+E(Pt(1)’ miR()')’ Ey,max/;{))}

Kmax

[5(\/ s—Ex )/?0(\/ s) f o(e)de' +0(c— max)ﬁo(\/— (o ( )A4)

(3/ E y,max)u( ! )A] dE X’

+exp {2(1) (Re B+ B(P(1), mn(A), Ey,max/A)}

Kmax

347
B.(K') o {5(8—k') ‘[ ¢'(¢' —kd(e — k')
0
a(1)A4 [ e—k' \*V4
0(e—k'—K —_ dEy.,
+ (8 max) S—k, <E;,max> X (32)
where we have introduced
a(1)4 = 20(1)BP 1), mir(D), Kmax/D/In 2K /2, (33)
¢ = \[s—Ex = /s—E—Ej, (34)
and
a()A [/ & \ V4 , a(DA[ ¢ V4
o(e) = . <Ey,max> , 0= s \E » (35)
with

(s—2K' \[s—4m})
252K

Ey,max = \/E/z_szz/\/E, E';,max = (36)
(Note that f = p in (30).)

Hence, here, K,,,, is the maximum energy of a photon which cannot be detected by
the respective detector. In order to implement (32), one proceeds as follows. One uses’
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o(e) (o'(e—k")) to choose a value for e(e—k’) by standard Monte Carlo methods. One
sets the number n of Yennie-Frautschi-Suura soft photons equal to 0 if ¢ << K, (e —k’
< K,,.,)- For ¢ > K,.,(e—k' > K,,,) one picks n according to the Poisson distribution

e—"(")n ' _ (_ e—k'
P,_, = , n=aAnEK Jin=0)Aln|— R 3
P Th (DA In (¢/K o) M (Kmax» (37
where the n— 1 variables that generate P,_ in Ref. [12] may be used to choose the photon
energies ki, ..., k, such that Z k= e(z k; = e—k’). The angular distribution of the » pho-

tons is then chosen, by standard Monte Carlo methods, according to S(k)d3k/k. In this
way, a one-loop event generator based on results like those in Ref. [11] may be rigorously
exponentiated.

We have used Ref. [11] as a pedagogical example. The method illustrated by (14)—-(37)
applies to any electroweak Monte Carlo event generator.

Currently, there is an effort by Berends’ group [13] to create an order a* event generator
for ete~ annihilation into pp—(y, yy). Thus, it is of some interest to record the analoga
of (14) and (15) at order o*. In (14) we would use

_do(a*) da(oc3) (2 Re (2(1)B))* da,
Bo(d0) = a0, —2Re(x (1)3) o, 2 aq, (38)
and in (15), we would use
do_Bl( 4-) daBl(ocs) - v
Bi(k,) = 0,45 ey, —2Re (“(U@m —S8(k1)Bos (39)

where do®'(«*) is the cross section for single bremsstrahlung through order a*; the analogous
definition holds for do(«"). In addition, to order «*, the cross section B,(k;, k;) may be
identified as

Bz=

do®? . - do
Sk )S(ky) =

AQ(dkJky) (Pkyfky) o, —S(k)Bi(k2)—S(k)Bi(k;),  (40)

where do®? is the respective order o* double bremsstrahlung cross section. Formulas
P g

analogous to (27)-(29) may then be used to obtain ﬁo, ﬁl and [;‘2. The steps leading from
(30) to (32) may then be repeated. The net result is to add to (32) the term

Bk, k") &K' a3k

exp {2a(1) (Re B+ B(P(1), mig(1), Er maxl )}

2 Kk
Kmax
{5(8"‘]‘;”"(“) J\ Qll(gl_kl_kll)d(sl_kl_kll)
1]
DA _k/___k// a(1)4
+9(8_ K _k“—Kmax) a~(/) ’ <e 1 > } dEX" (41)
e—k'—K'\ Emmx
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where (here k' - k" = K'k" —k' - k'’ so that k® = |k| = k for all k)

e (5—K =K'+ +ED(s=2 s (K'+k')+2k" - k' —4m?)
yomax As=2 s (K'+K")+2k" - k') ’

2"'(8) = 0(&)|Ey pmax=Eypmmus' 42)

Thus, it is clear how to extend (32) to order «* input. (We ignore, here, the processes -
ete- » prp~+ff, f = e, p, for pedagogical reasons; they pose no particular problem,
but are expected to be insignificant at the level of accuracy of interest to us here.)

Several comments are in order. First, the use of E, .. and E,’ ., for the respective
upper limits of the radiated photon energy is a refinement; these two can both be replaced
by their maximum value, which is just E, ... Secondly, we have not allowed K_,,, to depend
on the spherical angles (6, ¢) of the respective photons. This we have done for simplicity.
The expression (32) is flexible enough to allow one to include a possible angular dependence
of K,,.,. Indeed, let K., = minimum value of K,,,,(0, ¢) for the respective detector. Then,
if we set K, .x = Kpay in (32), we have a correct formula. We can then include the effect
of K...:(0, ¢) by amending our prescription for choosing (¢ —k’) and n: if e > K, (¢ —k’
> Kpnax) and 7 > 0, use the bremsstrahlung distribution S(k)d3k/k to pick the respective
angles (0, ¢;) of the n photons with energies {k;} as determined by the procedure in Ref.
[12]. Due to the angular dependence of K,,.(0,®), some subset of the n photons with
energies {k;, ..., k; } m\ay not be detected. Let the energies of the detected photons be
{ki,, > -k }. Then, treat the event as an event with n—j detected photons with \/ s—Ey =¢
where only Yk, of e(e—k’)is detected. In this way, we maintain a realistic description

1=j+1

of the cross section in (32).

Finally, in the interest of completeness, we would like to describe the procedure [12]
which one uses to choose the photon energies associated with (37). Specifically,
these energies are generated as

ki = eel(Y &) (ki = (k)Y &), (43)
Jj=1 ji=1
where the z; are such that z; = Ink;+ Y. Here, for i = 2, ..., n, we take
z; = Ine+(In K, —Ing) (R;/7n)
(zi = In(e=k)+(In Koy —In (6= k) (Ri/7)), (44)
where we recall that 7 is defined in (37) and we note that the R;,, are generated from

N
a series of uniformly distributed random numbers r; e (0, 1) with Ry,; = — Z Inr,

i=1

I < N < n~1, where (n—1) is the value of N for which Ry, , first exceeds Ai. Then, Y is

n—1 n—1

ﬁxed. SO that kl = &— 2 ki+1(k1 = g-k'— 2 ki+1) and
i=1 i=1

z; = Ine(z; = In(e=k")), (45)
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which means that, at the end of the process, we must reject the entire event if
z,~Y<InK,,,, ie., if k, < K,.,. The prescription represented by (14)-(45) is now
a practical way to implement (9).

What we see is that (14)-(45) afford one a method for summing the large IR and
UV effects in ete~ — pu(y) without encountering mass singularity problems and without
presuming the parton model, at the level of a realistic Monte Carlo event generator. To
repeat, the general application of such “exponentiated” event generators will be taken-up
elsewhere [8, 9].

5. Conclusion

We have derived a rigorous renormalization group improved version of the Yennie-
-Frautschi-Suura program using the renormalization group equation of Weinberg
and ’t Hooft. The detailed application of our formalism to the SU,; x U, theory for the
processes e7e~ — Z° — X will be discussed elsewhere [8, 9]. We have, however, illustrated
how one would use our formalism by giving an explicit recipe for the renormalization
group improved exponentiation of the popular Monte Carlo event generator MMGI1
in Ref. [10].
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