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We demonstrate how the theoretical knowledge about multiparticle production in
deep inelastic lepton scattering can be incorporated into a multistring model for low p, proton
proton collisions.
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1. Introduction

In the late 1960s the discovery of large p, lepton proton scattering suggested
the existence of pointlike particles inside the proton, called “partons”, which turned out
to be identical to quarks [1). Because at large momentum transfer Q2 quarks appear to be
free, a theoretical description of the scattering process as a superposition of elementary
electron parton diagrams was possible (Quark Parton Model [2}). An analysis of e*e~ and
deep inelastic lepton scattering data in terms of the Quark Parton Model allows the deter-
mination of momentum distributions of quarks and gluons in a fast-moving proton (struc-
ture functions). Also, the fragmentation (hadronization) of color strings, consisting of the
scattered quarks and the spectator partons, can be studied.

For high energy hadron hadron scattering the situation is quite different, since most
likely only a very small amount of transverse momentum is transferred. For this case
asymptotic freedom of quarks and perturbative treatment do not apply. Nevertheless,
successful models for low p, hadron hadron scattering have been constructed using the
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knowledge from lepton scattering about the partonic substructure of the proton and about
string fragmentation.

In Chapter 2 we review the Quark Parton Model for deep inelastic lepton proton scat-
tering and demonstrate how structure and fragmentation functions are obtained
from scattering data. In Chapter 3 we discuss a phenomenological model on string fragmen-
tation based on the Field-Feynman model. We introduce in Chapter 4 a multistring model
for soft proton proton scattering using a fragmentation scheme described in Chapter 3.
Finally, in Chapter 5 we apply the fragmentation model as well as the proton proton model
to compare with data.

2. Deep inelastic lepton scattering

We consider in this Chapter the scattering of electrons, muons, neutrinos or anti-
neutrinos on nucleons with large momentum transfer involved. According to the quark
parton model, the cross section for lepton proton collisions is an incoherent superposition
of lepton quark scatterings where, because of the large tiansferred momentum, only the
lowest order diagram is considered. This statement can be written as

d*c d’c
IN) = E dég (¢ Ig), 1
dxdy( ) | Jéq(g)dxdy(q) ey

where i represents a quark flavor, £ is the momentum fraction of the quark in the proton,
¢; is the momentum distribution of quarks with flavor i, and the dimensionless quantities
x and y are defined as

x= o=, @

Y=, (3)

with k, k', ¢ and p being the momenta of the incoming and outgoing lepton, the transferred
boson, and the proton. In the laboratory system we find, because of p = (M, 0,0, 0):
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with E and E’ being the energies of the incoming and outgoing leptons. Neglecting masses,
momentum conservation ((p+g)* = 0 leads to
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From Egs (5) and (6) we conclude that the kinematical allowed region is given by
0<x,y< 1.

In the case of electrons (or muons) scattering on nucleons, the elementary lepton quark
cross section is given as

d*c 2na? ] " 2e
dxdy (eq)) = ?S«\(l +(1=y))eio(€ —x). @)

From Eqgs (7) and (1) we obtain

d*o N~27mt2 1 1__‘2) 5 g
dxdy(e )-—QTSX( +(1-y) ' €; qi(x). 8

In a similar fashion, using the elementary neutrino quark and neutrino antiquark cross
section,

d’s G:

dxdy (vq) = - sx8(¢ —x), 9
d’ec  _ G? 5
———(vq@) = — sx(1~3)"6({~x) (10)
dxdy n

we find from Eq. (1) (with 6, = 0 and charm ignored):

2
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dxdy (VN) = ;sx(qd(-\)ﬂ =) qx(%)), (11
d*c _ 2

oy VN = —sx( —1)?4.(%) +ga(x)). (12)
xdy n

Equations (8, 11, 12) show that the cross sections d2c/dxdy(IN) for 1 = €, i, v, v can be
expressed in terms of the quark structure functions g(x). By using these equations it is
possible to determine the structure functions from measured cross sections.

In order to treat inclusive particle production, we introduce the variable z = p 1/Pmax
where p| is the longitudinal momentum of the produced hadron in the cm system of the
string, and p,,,, is the maximal possible momentum. For electron (or muon) nucleon
scattering the cross section for inclusive hadron production can be written (see Eq. (8)):

d’c N) = 2na’ Ll o2
dxdydz(e )= sx(1+(1=y)")
x ¥ eiai(x) {6(2)D}, (2) +6(—2)D}y o, (12}, 13)

where the fragmentation functions D!(z) represent the z-distribution of hadrons originating
from the jet a (this assumes that a string can be treated as two independent jets moving
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into opposite directions). A similar formula holds for neutrino scattering (compare Eq. (11)):

d%c B Gsx ‘B(D" o - ~
dxdydz (vp) = T 44(x) {8(z)D(2) +0(—2) p—-d(!";)}
Gsx 5 . . A
+ — (1=3)7g5(x) {6(2)D(2) + 0~ 2)Dp—5(iz))}- (14)

A corresponding formula holds for vp scattering. If sea quarks can be neglected (which
is justified for certain experimental cuts) we find

d’c Gsx
dndvd, VP = T du) {8(2)D3(2) +0(— 2)Dyu(12D)} 13)
xdydz T
and
d3
p (vp) = ——*(1—y) 4u(x) {0(z2)D(2) +6(— 2)Dug(121)} - (16)
xdydz

Equations (15) and (16) tell us that for z > 0 the cross section is proportional to the quark
fragmentation function; fo1 z < 0 the cross section is proportional to diquark fragmenta-
tion. In other words, quark and diquark fragmentation functions can be measured.

3. A model for string fragmentation

Different types of models provide a phenomenological description of string fragmenta-
tion: (i) The Field Feynman Model [3] (FFM) where the two jets fragmest independently
in an iterative manner; (ii) the Lund model [4] where resonance production is realized
through breaking the string in smaller and smaller pieces; (iii) Parton shower models {5]
where ordered gluon tadiation is the source of particle production. We shall discuss the
FFM, first of all, to introduce the concept, the analytical solvable case of an infinite energy
quark jet, which produces only mesons. Later, we shall generalize the model to include
diquark fragmentation and baryon production.

The analytic solvable FFM is defined as follows: a quark ¢; with energy e produces
via quark-antiquark production a meson with energy xe, leaving back a quark with energy
(1 —x)e, which now plays the role of the original quark and produces in the same way the
next meson with energy {1—x)x’e etc. A so-called splitting function f(x) governs the distri-
bution of the energy fraction x of the meson relative to the jet quark. For an infinite energy
jet, the energy fraction distribution D(x) of produced mesons fulfills the integral equation
(for one kind of flavor):

1

A |
D(x) = f(x)+ f def1 - é)D< ) (17)
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The term f(x) on the rhs of Eq. (17) represents mesons which are produced from the original
jet quark in the first fragmentation step (first rank meson). The integral in Eq. (17) counts
higher rank mesons: f(1 —¢)d¢ is the probability to have a remainder jet (after the first
fragmentation) with energy e, D(x/)/¢ is the distribution of mesons produced from the

remainder jet, renormalized to its energy (e (rather than e of the original jet quark). The
reasonable ansatz

fx) =@+ (A-x) (18)
allows an analytical solution of the integral equation, Eq. (17):
D(x) =f§c_x) (19)

which shows the correct behavior for large x:

lim D(x) = f(x). (20)

x—1
For small values of x, (x < 1), we find

D(x) ~ '11;1- 21

In the central region (small x) it is more convenient to use the rapidity variable y rather
than the energy e; both are related through

e = pcoshy, (22)

where p = (m?4p2)*/? is the transverse mass of the meson. From Eqs (21) and (22) we

conclude for the rapidity density D(y), if y is not very large (comparable to y,,,, and not
very small)

D(y)~ n+1, (23)

which means: the height of the rapidity distribution stays constant with energy; only the
width increases linear in logs which consequently also leads to a linear increase of the mean
multiplicity (#n):

{n) = a+blogs. (24)

These important features, rapidity plateau and linear increase of the mean multiplicity
with logs, remain true also for the more general FFM [6] which we desctibe in the follow-
ing. In order to treat quark and diquark fragmentation into mesons and baryons (or cor-
responding resonances) we need four elementary vertices (instead of the one of the analytic
model) as shown in Fig. 1: (a) quark into meson leaving a quark; (b) quark into baryon
leaving an antidiquark; (¢) diquark into meson leaving a diquark; and (d) diquark into

baryon leaving an antiquark (corresponding vertices apply for antiquark and antidiquark
fragmentation).
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Fig. 1. The elementary fragmentation vertices for the fragmentation of quark and diguark jets (antiquark
and antidiquark fragmentation is obtained by exchanging quarks and antiquarks in the figure)

The relative weights of baryon and meson production in quark jets (P;, l—Pq") and
in diquark jets (Psq, 1-— P:q) provide two free parameters. A further parameter is the proba-
bility P, to create ss pairs in competition to uu and dd pair production; the latter two are

assumed to be produced equally probable:

Py=—-=. (25)

The energy of a primary hadron relative to the energy of the corresponding jet is generated
according to splitting functions fJ(x), /(x), fa(x), and fq"q(x) for the four vertices of Fig. 1.
The splitting functions are a crucial input of the model: they determine momentum distribu-
tions of produced particles; moreover, the multiplicities depend strongly on these functions.
Therefore, one would like to have some theoretical basis to determine them, rather than
having free parameters. Indeed, there exist QCD results for the asymptotic behavior
of such elementary vertices as x approaches 1: the fragmentation behaves like (1 —x)*""1,
where n counts the number of spectators (counting rules {22]). We have n = 1 for the verti-
ces Fig. 1 (a, d), and n = 2 for the vertices Fig. 1 (b, c), leading to a large x behavior as
(1—x)! and (1 —x)? respectively. In order to account for the fact that one does not observe
a rapidity plateau of baryons produced in deep inelastic scattering [7] we add a factor
x® for the case of baryon production. We eventually use (up to normalization factors)

fo () = (1-x),

Jo(x) = x*(1=x)*,

fax) = (1-x)>,

S (x) = x(1—x). (26)
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A finite transverse size R of the string requires a finite transverse momentum of the order
1
<Pu> & 7{“ .

We generate a transverse momentum of a quark according to the exponential distribution

- 2
f(p) = 5 €7, @n

nl{py 2

The antiquark assumes —p,.

The jet fragmentation cascade is terminated when the jet energy is too small to produce
further particles. In order to achieve flavor conservation (and thus baryon number conser-
vation) we combine the two remaining partons of two corresponding jets to make a primary
hadron. The last fragmentation step before the recombination is performed only if the
sum of the masses of all produced particles, including the recombined one, is smaller than
the string mass M. We achieve approximate energy conservation. Using this prescription
to conserve flavor and energy, we no longer have a really independent fragmentation
scheme.

Actual calculations are carried out on Monte Carlo basis, which allows to treat cutoffs
in a proper way and which allows in particular to calculate much more than only inclusive
results as shown in the analytic model. Results will be presented in Chapter 5.

4. Multistring model for soft proton proton scattering

The theoretical treatment of low p, proton proton scattering is much less straightfor-
ward than deep inelastic lepton scattering, since the small momentum transfer prohibits
perturbative treatment. Nevertheless, we want to use the concept of color strings, which
we studied in the previous chapter on lepton scattering, also to describe proton proton
scattering.

The main assumption of the proton model is: the whole process can be divided into
two steps, formation of strings and subsequent string fragmentation. The hadronization
time being much larger than the reaction time justifies this assumption. The fragmentation
is treated as described in Chapter 3, even using the same parameters used to describe
lepton proton scattering data. In the following, we give a prescription of how to form
strings in a proton proton collision. The model is similar to Dual Parton models [8-11],
yet more predictive than HILUND {12] and ISAJET {[13].

Color exchange is assumed to cause the formation of color strings: i exchanges of
color between quarks of the projectile and target proton result in 2i strings. The relative
weight of a i color exchange contribution is named w;, thus cross sections can be written as

s

o = wG;, (28)

1

n

i
a; being the contribution consisting of 2/ strings. We first describe the dominant i = 1
contribution, i.e. the formation of two strings: color exchange between a quark of the
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Fig. 2. The four basic (one-color exchange) contributions to pp collisions. Color exchange (arrow) is the

basic mechanism to rearrange color singlets (closed lines) and thus to produce strings. The contributions

a) to d) differ in the number N of quarks being part of a white qg pair: N = O for a), N = 1 for b), ¢), and
N =2 for d)

projectile and a quark of the target rearranges the color structure of the pp system: instead
of two protons in singlet states we find two singlets each consisting of a diquark and a quark
of the other nucleon (see Fig. 2a). We explicitly treat the case in which one (or both) of the
quarks participating in the color exchange is accompanied by an antiquark such that the
qq pair is color neutral, because in this case the diquark quark (qq¥q) string is replaced
by a q—q string and a baryon. In Figs 2b, ¢, d we show this for the case when the projectile
quark (b), the target quark (c), of both quarks (d) are part of colorless qq pairs. We generate
quarks with and without q partners with probabilities w and 1—w, so the relative weights
of the contributions 1a, b, ¢, d can be expressed in terms of the parameter w (in a compli-
cated way because certain events have to be discarded as unphysical). So far, we treat neither
color exchange between antiquarks nor color exchange between gluons. Gluons are only
spectators, in the sense that diquarks are implicitly assumed to be “dressed”, i.e. to contain
gluons.

Looking at figures 2a and 2d indicates already a possible generalization: the color
exchange between quarks being part of white qq pairs (1d) may occur in addition to the
nondiffractive color exchange of Fig. 2a leading to a i = 2 (two-color exchanges) contribu-
tion with 2i = 4 strings. Two color exchanges of the type 2d in addition to the exchange
of type 2a leads to a i = 3 contribution with six strings and so on. The same generaliza-
tions apply to the contributions 2b, 2¢, and 2d. This expansion in terms of the number
of color exchanges (i.e. in terms of the number of strings) corresponds to the multi-Pomeron
exchange picture of Abramovskii, Kancheli and Gribov [14] and is also used by other
authors (Ref. [10} and Refs therein).

How do we determine energy and momentum (and so the mass) of a string? We want
to choose a frame in which both protons are fast and moving in opposite directions, so
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we take the pp cm system. As discussed in Section 2, the distribution of the momentum
fraction of a parton i in a fast-moving proton, the so-called quark structure functions g,(x),
can be determined from deep inelastic lepton scattering data. (For a parametrization see
Ref. [15]). We generate flavor and energy of the quarks involved in the color exchange and
of the antiquarks according to the structure functions. The distribution functions ¢,(x)
also determine the relative weight of valence and sea quarks, yet in the case of a quark
accompanied by an antiquark we always assume the quark to be a sea quark and the pair
to be flavor white (some further study of pp — nX, for example, is necessary to justify or
reject this last assumption). By energy conservation, the energy fraction of a diquark is 1 —x
when the quark has energy fraction x. (For reasons discussed below, we take x to be
the energy rather than the momentum fraction, which amounts to the same for large x.)

What about transverse momenta? Since the partons are confined to the proton size
R, the uncertainty principle requires a finite transverse momentum of the order

1

{py = e 29)

We generate transverse momenta for the quarks according to the exponential distribution

_2n

e <P, (30)
7{<pt>2
To preserve momentum, the diquark corresponding to a quark with momentum p, assumes
a transverse momentum of —p,. The strings are now fully determined, since we assume
the string constituents (quarks, antiquarks, and diquarks) to be massless.

The invariant mass of a qq — q string consisting of a diquark with momentum (1 —x,)p
and a quark with momentum x,p, is for {p> = 0 given as

f(;t) =

M? = 4x,(1~x,)p2. (31

This shows that for {p,> = 0 the infrared divergence of the sea quark structure functious
(geea(x) ~ x~1) raises no problems, because for x, — O the string mass vanishes, and this
event does not count (we discard events including qq—q string with masses less than the
proton mass and q— q string with masses less than the pion mass). For finite {p,> we have
the unphysical situation of infinitely many sea quarks with very small p; but finite p,, and
thus finite energy — if the variable x occurring in the structure functions is longitudinal
momentum fraction. Therefore, we take x to be the energy fraction which solves this
problem, and for larger values of x energy and longitudinal momentum are equivalent (one
could also take the light cone variable p. rather than the energy).

5. Results

Before comparing Monte Carlo results with experimental data, we want to discuss
the parameters. The probability P, to create a ss during fragmentation is taken to be
P, = 0.14 from Ref. [13]. We fix the baryon production probabilities P{ and Py, as well



490

as the splitting function parameter « by comparing with EMC data [16] on proton produc-
tion in deep inelastic pp scattering. We obtain best agreement for P§ = 0.12, P‘;q = (.75,
and ¢ = 1.5. The mean transverse momentum of produced gq pairs as well as the mean
transverse momentum of partons in protons assumes {p,> = 0.5 GeV. For the momentum
transfer Q2 entering the quark structure functions, we use Q? = 4 GeV2, which is the
smallest value of Q2 where the parametrizations of Ref. [15] are valid. The probability
w, that in a pp collision an interacting quark is accompanied by an antiquark, is fixed such
that the fraction of events involving one such qq pair matches the ratio 64;s,/0;5e, Which
has, over a wide energy range, the value 0.2 [17]. This prescription is explained in Ref.
[18]. The multicolor exchange probability w; entering Eq. (28) provides in principle an
infinite number of parameters. On the other hand, the results we will discuss ia this paper
are rather insensitive to higher than the first moment

Gy = 3w (32)

of w;, and this first moment is fixed to give the correct mean multiplicity (i) increases
with energy). In the actual calculations we use an exponential distribution

ERWCOT
- (951

using instead a Poisson distribution for w, leads to quite similar results.

In the following we compare Monte Carlo results with data. In all plots we use the
convention: open dots are data, full dots are Monte Carlo results, and lines may be either
of them. In Fig. 3 we compare vp scattering data [19] with ud—d string fragmentation
results. The variable x is the momentum fraction of the produced particle relative to the
maximum possible momentum, which results in

2phadr
X =
NE
for a large string mass /5. The Monte Carlo results are real predictions; no free parameters
have been adjusted to produce these curves. The significant difference between fragmenta-
tion of d-quarks into n~ and into n* is due to the fact that a n~ can be produced in one
fragmentation step, whereas a n+ requires either two fragmentation steps or a resonance
decay (we have elementary vertices only for “favored” hadron production; the produced
hadron always contains a jet parton!). The experimental fragmentation functions for the
fragmentation of d-quarks into pions as shown in Fig. 4 are obtained from pp data [16]
assuming that there exist only two kinds of fragmentation functions for pions produced
from quarks: “favored” ones, where the meson contains the quark, and ‘‘unfavored”
ones, where the quark is not contained in the meson. Next we show some proton proton
results. In Fig. 5 we display the distribution of the rapidity y, defined as

e+p

y = 3 log
€=py
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Fig. 3. Longitudinal momentum distributions of 7~ (upper curve) and =+ (lower curve) produced in vp colli-

sions which is (for this experiment) equivalent to ud —d string fragmentation. The average squared energy

is {W3) = 6.22 GeV2. The variable x is the longitudinal momentum fraction relative to the maximal

possible momentum for this kind of fragmentation. Positive x is quark fragmentation; negative x is diquark
fragmentation
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Fig. 4. Longitudinal momentum distribution of =~ (upper curve) and =+ (lower curve) originating from
d quark fragmentation (def of x, see Fig. 4). The data points are extracted from pp scattering with
(W2 = 1142 GeV?
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Fig. 5. Rapidity distribution for negative (left) and charged (right) particles for a pp collision at 200 GeV
Data (points) from Ref. [23]
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Fig. 6. Transverse momentum distribution of pions in the central region (y = 0) and in the projectile frag-
mentation region (x = 0.3) for a pp collision at 280 GeV and 100 GeV. Data (points) from Refs [24, 25]

for negative particles (left) and for charged particles (right). The transverse momentum
p, is integrated out. One should keep in mind, at least for the charged particle distribution,
that the experimental error bars are larger than indicated, which can be concluded from
the asymmetric shape of the distribution (the theoretical curve is rather symmetric, as
it should be). Figure 6 shows the transverse momentum (p,) distribution of pions in the
central region (y = 0), and in the projectile fragmentation region (x = 0.3). In Fig. 7 we
show the p, distribution of protons at x = 0.3 and at x = 0.92. In Fig. 8 finally we display
multiplicity distributions. It is known for many years already [20] that multiplicity distribu-
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Fig. 7. Transverse momentum distribution of protons at x = 0.3 and x = 0.92 for a pp collision at 100 GeV*
Data (points) from Ref. [25]

Fig. 8. Multiplicity distributions for pp collisions at 14, 23, and 53 GeV compared to the KNO function
of Ref. [21]

tions P(n) for pp collisions in a wide energy range scale, i.e..

n
{n)P(n) = ¥ (—)
{n)
with a universal energy independent function ¥. The curve in Fig. 8 represents the parametri-
zation of ¥ according to Ref, [21]. The Monte Carlo results for pp collisions with cm
energies of 14, 23, and 53 GeV are very close to the experimental curve.

6. Conclusion and outlook

We have demonstrated that it is possible to construct a model for low p, proton proton
collisions in the spirit of the Quark Parton Model, originally designed to describe high
P, processes in deep inelastic lepton scattering. The assumption that strings produced in
soft pp collisions fragment in the same way as strings from deep inelastic lepton scattering
is by far not trivial. Nevertheless, using this assumption, many pp data can be reproduced
similarly well as lepton proton data. Very few additional parameters enter the pp model,
and since a huge variety of pp data exist (covering a wide energy range) it is possible to
make sensible tests of the model to confirm or reject the proposed reaction mechanism.
Some confidence into a proton proton model is in particular necessary to extrapolate the
pp model in order to design proton nucleus or nucleus nucleus models. Such models for
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ultrarelativistic nucleus nucleus collision have attracted considerable interest in the last few
years in connection with the search for a quark gluon phase transition in these collisions.
A solid understanding of the bulk of all nucleus nucleus collisions would help to detect
such a (probably) rare transition event.

I acknowledge helpful discussions with P. Aurenche, A. Bialas, B. Buschbeck, A. Ca-
pella, M. Kutschera, and P. Lipa. This work has been supported by the U. S. Department
of Energy under contract no. DE-AC02-76CHO00016.
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