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We review the negative binomial properties measured recently for many multiplicity
distributions of high energy hadronic, semi-leptonic and leptonic reactions in selected rapid-
ity intervals. We analyse them in terms of the “clan’ structure which can be defined for any
negative binomial distribution. By comparing reactions we exhibit a number of regularities
for the average number N of clans and the average charged multiplicity 7, per clan.

PACS numbers: 13.85.—t, 13.65.+i, 13.60.H, 12.40.A

1. Introduction

The study of multiplicity distributions (MDs) in high energy hadronic, leptonic and
semileptonic processes has revealed an unsuspected and striking phenomenon: charged
particle MDs have a negative binomial (NB) shape over a wide energy range in full phase
space and in symmetric rapidity windows |y| < y, (¥ = longitudinal rapidity in the c.m.
frame).

The main experiments have been so far:

— UAS5 Collaboration at SPS pp Collider, c.m. energies \/s = 200 GeV, 540 GeV, 900 GeV
(here for the window analysis, the pseudorapidity variable is used instead of the rapid-
ity) [1].

— HRS Collaboration at PEP, e*e annihilation, /s = 29 GeV (the longitudinal direction
is defined by the thrust axis of the final state particles) [2].

— NA22 Collaboration with the European Hybrid Spectrometer, pp and n*p collisions
at \/s = 22 GeV (the pp and n+p data are very close to each other; here the NB regular-
ity was also found for negative particles and in ntp for the forward and backward
hemispheres taken separately) [3].
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— European Muon Collaboration (EMC), deep inelastic muon-proton scattering in eight
intervals of the total c.m. energy of the hadronic system, W, from W = 4+6 GeV
to W == 18+20 GeV (here the regularity was also found in the forward and backward
hemispheres taken separately) [4].

— NAS Experiment, proton-proton, proton-Xenon and proton-Argon collisions at
Py = 200 GeV/c (here the NB regularity occurs separately in the forward and backward
hemispheres for charged and for negative particles, and in symmetric windows for
negatives; for charged particles it fails in large symmetric windows) [5].

— New results, still preliminary, on MDs in rapidity intervals at the ISR have been pre-
sented. They seem to follow the same general NB trend [6].

In the pp experiments [4], departures from NB behaviour are seen below W ~ 10 GeV
for total charged multiplicities. The distributions become narrower with Poisson shape
or positive, i.e., ordinary binomial shape. However, the NB behaviour is preserved in central
rapidity intervals. The origin of this effect is presumably due to energy-momentum conserva-
tion which strongly affects the fragmentation regions, and at low W these contribute a major
fraction of the total multiplicity.

The challenging question is to interpret the wide occurrence of the NB regularity in
terms of a general mechanism common to hadronic, leptonic and semileptonic processes.
We have argued [7] that the most likely explanation is some form of cascading (or shower)
mechanism of particle production, and we have introduced the term “clan” for groups
of particles of common ancestry in such a cascade (for convenience, we define clans to
contain at least one charged particle). By a well-known mathematical property of the NB
distribution (see the Appendix), one can assume the clans to be produced independently
(Poisson distribution for the number N of clans); if the MD of an average clan is logarithmic,
the overall MD is then NB. The parameters which characterize the clan structure are the
average number of clans, N, and the average number of charged particles per clan, 7. As
shown in the Appendix, they are linked to the usual parameters 7 and k of the NB distribu-

tion by
N = fiji, = kln(1+ Z)

Note that i, depends only on the ratio #/k and is always > 1, with i1, = 1 for a Poisson
distribution (k = o0).

In Section 2 we briefly review the main properties of the expetimental NB distribu-
tions presented in Refs. [I-3] by analysing their clan structure for symmetric rapidity
windows [y| < y,. Then we compare the results with those emerging froni a similar analysis
of the EMC experiment [4]. This comparison is possible because the highest EMC hadronic
energy (W = 18+20 GeV) is close to the energy /s = 22 GeV of the NA22 experiment
on n*tp and pp {3}

Section 3 is devoted to the discussion of MDs in forward and backward rapidity
windows, 0 < y < y, and —y, < y < O respectively, and also in “moving rapidity win-
dows”, i.e., intervals {y—y,! < y, with fixed y, = 0.5 and variable y,. In Section 4 we
review the NB behaviour observed in proton-nucleus collisions and mention some related
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theoretical work. Section 5 discusses Kittel’s recent “Monte Carlo ete~ annihilation experi-
ments” at \/E = 29, 200 and 2000 GeV. We also mention further work on the same topic,
which led us to a simple physical picture for the clan structure at partonic level and for the
relation between partonic and hadronic MDs, We present a summary and concluding
remarks in Section 6, and the Appendix mentions the relevant mathematical properties
of NB distributions.

2. Clan structure in hadronic, leptonic and semi-leptonic processes — symmetric rapidity
windows

Figure 1 shows the most remarkable result of the clan analysis: in hadronic collisions
the average number N of clans for fixed rapidity windows is approximately energy-inde-
pendent over the large energy range /s = 22-900 GeV. While this result is not yet under-
stood theoretically, it is very striking and justifies in our view the use of the clan analysis
to describe the NB properties. As we shall see, it also holds for the pp data and for the
parton shower model predictions of e*e~ annihilation.

The main properties of the average charged multiplicity 7, per clan, shown in Fig. 1b,
are the following:

a) 7, increases rapidly with energy; since N is almost constant the overall growth of multi-
plicity is due to this increase of clan size,

b) n, is becoming larger as the rapidity window increases, reaching a maximum and then
eventually decreasing (this decrease is clearly visible in pp and n*p at /s = 22 GeV,
but is at most very weak in pp at /s = 200-900 GeV).
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Fig. 1. a) Average charged multiplicity n. per clan and b) average number of clans 1_\-’, as a function of the

size of a symmetric rapidity window |y| < y, for the collisions and energies indicated. For pp data y is the

pseudo-rapidity. The points at the highest y, value correspond to the respective phase space Hmits Ymax

= In (+/5/my). This figure is adapted from Fig. 1 of Ref. {16]. The n*p data at 22 GeV (not plotted here)
are very close to the pp data. They are plotted in Figs. 2 and 3
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The ete— annihilation data at V/E = 29 GeV, also shown in Fig. 1, give values of N
and 7, which are very different from those of pp and wn*p at the comparable c.m. energy
/s = 22 GeV. The e*e~ annihilation clans are more numerous than in hh collisions (larger
N), but their multiplicity is smaller (smaller 7).

We now compare these results with the new data of the EMC for muon proton deep
inelastic scattering, selecting the c.m. energy intervals W = 6+8 GeV and W = 18
+20 GeV. Figures 2 and 3 give the values of N and #_ in symmetric rapidity windows
¥l < ¥o and in windows 0 < +y < y, of the forward and backward c.m. hemispheres
of the hadronic system®. The W intervals have been selected in order to compare the behav-
iour of clan parameters at low energy with the highest ¥ available for semi-leptonic
collisions. The parameters at intermediate energies W vary smoothly between the above
two. In Figs. 2 and 3 we have also plotted the parameters N and 71, for np at /s = 22 GeV
and for e*e~ at /s = 29 GeV (the latter already appear in Fig. 1).

The present Section analyses the clan structure in symmetric rapidity windows [curves
(S) in Figs. 2 and 3]. In Fig. 2 one sees that N is essentially constant for y, < 1 although
W increases from 68 to 18+-20 GeV. A variation appears for larger y,; it is at yo >~ 1.5
that the 6+ 8 distribution goes over from a NB to a positive binomial (for which an inter-
pretation in terms of clans makes no sense, see Appendix). At 18+20 GeV the values

I
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Fig. 2. Average number of clans, 1\7, in the following experiments: A—A ete™ (1/5 = 29 GeV), @---@

7p (/s = 22 GeV), A—A pp (W = 6+8GeV), O—0O up (W = 1820 GeV), in rapidity windows

I <30 (8), 0 <y <yo (F)and —y, <y < 0 (B). The symbol [] indicates the overlap of two points,
and -» indicates the limit above which the =¥p data are taken for even multiplicities only

1 The forward hemisphere, y > 0, is defined for pp collisions as corresponding to the fragmentation
region of the *“‘current quark” struck by the virtual photon. For =*p it corresponds to the pion hemisphere.
The windows 0 < +y < y, are discussed in Section 3.
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Fig. 3. Average charged multiplicity per clan, 7.. Same notation as in Fig. 2, but the values for [y| < y, (S),
0<y<yo (F) and —yo <y < 0 (B) are plotted separately

of N for y, < 2 are very close to those of n*p at /s = 22 GeV (the values of n*p for
Yo > 2 refer to even multiplicities only), and they lie far below the corresponding N values
for ete~ annihilation at /s = 29 GeV.

As shown in Fig. 3 (S), for fixed y, the average number 7, of particles per clan increases
significantly with W. For fixed W it first increases with y, and then decreases. For 18
+20 GeV, it reaches a maximum of ~1.5 at y, ~ 2. At 6+ 8 GeV, its maximum is ~1.08
reached at y, ~ 1, and 7, becomes <1 for y, 2 1.5 (positive binomial). For W = 18+20
GeV, 71, has approximately the same values as in e*e~ annihilation at /s = 29 GeV, but
is significantly below the corresponding values in 7*p at /s = 22 GeV. Interestingly,
this is the opposite of what occurs for N. It therefore appears that for up in symmetric
windows the behaviour of the number of clans tends to have hadronic character while
that of the clan size tends to be leptonic. The analysis of these trends will be refined in
the next Section.

3. Forward versus backward hemispheres and moving rapidity windows

We now discuss the pp results in the forward and backward hemispheres (FH and
BH respectively). They are given in Figs. 2 and 3 by the curves marked (F) and (B). Contrary
to what happens for ntp, we notice a sizeable difference between the clan structures of
pp in the two hemispheres, i.e., between the quark and diquark fragmentation regions:
clans are more numerous but smaller in size in FH than BH. In both hemispheres N is
approximately energy independent for y, < 1.5, more so than for symmetric windows.
In contrast, i, grows appreciably with W in both hemispheres, especially in BH, as illustrat-
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ed by the values of the maxima [FH: (7 )p. =~ 1.03 at yo, ~ 1 for W = 6+8 GeV and
(idmar =~ 113 at yo =~ 1.5 for W = 18+20 GeV; to be compared with BH: (71,),,. =~ 1.07
at yo ~ 1 for W= 6+8GeV and (il )p, = 1.3 at y, ~ 2 for W = 18+20 GeV].

The parameter N for pp is quite close to the ntp values in FH, while it is smaller in
BH. Again things tend to be opposite for 7n; at W = 18-+20 GeV, it is close to np in
BH but is smaller in FH where it is presumably close to e*e~ values or even somewhat
smaller (we do not have ete- MDs for single hemispheres). At the end of Section 2, we
remarked for symmetric windows that the behaviour of N tends to be hadronic whereas
that of 7, tends to be leptonic. We now see that the hadronic behaviour of N and probably
also the leptonic behaviour of 7, are concentrated mainly in FH, i.e., in the current quark
fragmentation region. In BH (diquark fragmentation) the clan size (7_) is larger than leptonic
and close to hadronic, whereas the number of clans (N) is smaller than hadronic (and
surely much smaller than leptonic). These remarkable trends will be confirmed below in
our discussion of moving rapidity windows. Taken together with the energy independence
of N for fixed windows, they support our view that the clan structure analysis is more than
a mathematical parametrization of the data and must have dynamical relevance.

We now discuss the clan structure of hadronic and semi-leptonic reactions in rapidity
windows of unit size, |y—y,] < 0.5, with the centre y; moving from —3 to 3. To this
effect we plot in Fig. 4 the clan parameters N, 7, for pp at \/s = 540 GeV [8], n*p at
5 =22GeV [9] and pp at W = 6+8 GeV, W = 18+20 GeV [10].

For pp at 540 GeV the average number of clans is approximately constant (N =~ 1.8)
in —3 < y; <3 with a shallow dip in the centre. A similar behaviour is found at
J$=22GeV in -2 <y, <2 for np (N =~ 1.4 in BH, N ~ 1.5 in FH) and also for
pp (N =~ 1.4, data from Ref. [9], not plotted), with a decrease at larger |y, |. The behaviour
of N is different for up, where the data show a sizeable asymmetry between FH and BH.
At W = 18+20 GeV, N in FH has values close to those of ntp (N ~ 1.5 up to y, ~ 2,
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Fig. 4. N and 1. in rapidity windows |y— y;| < 0.5 with centre y, moving along the rapidity axis. @—@
7+p (/s = 22 GeV) and pp (v/5 = 540 GeV) as indicated in the figure, @---@ up (¥ = 1820 GeV),
@ @ up (W = 6+8GeV). The symbol [ indicates the overlap of points
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TABLE
Test of the additivity relation (A.27) of the Appendix for the up reaction at W = 18+20 GeV
n k! nfk
D, —05<y<0 0.77+0.01 0.2094-0.039 0.161+0.028 ] SUM
D,: —15<y< ~05 1.33+0.01 0.309+ 0.021 0.41140.031 | 0.572+0.042
1 D: ~15<y<0 2.13+0.03 0.268+0.017 0.571 +£0.044
Dy O0<y<0.5 0.79+0.01 0.215+0.017 0.170+0.016] SUM
D, 0S5<y<15 1.61+0.01 0.0874+0.011 0.140+0.010 | 0.310+0.019
LD O<y<15 2.43+0.01 0.113+0.006 0.275+0.016
D, : ¥l < 0.5 1.574+£0.02 0.2124+0.014 0.3334+0.0267
D, 05<y<15 1.61+0.01 0.087+0.011 0.140+0.010 SUM
D3y —-15<y<-05 1.33+0.01 0.30940.021 0.411 +0.031.] 0.884+0.042
LD: Iyl < 1.5 4.56+0.03 0.127 +0.005 0.579+0.027

then quickly decreasing), while in BH the N of up falls well below the n+p values, confirming
the trend noted in the analysis of the windows 0 < +y < y,. Regarding the energy de-
pendence of the pp data, one finds the usual property that N depends very little on W in
the central region.

The average number of particles per clan, 7, is close to constant at 540 GeV (7, >~ 1.75)
over the whole range —3 < y, < +3. For n*p (and also pp) at 22 GeV, it has a broad
maximum in the centre (A, =~ 1.3). In pp we have again the appearance of a forward-
-backward asymmetry, at least for W = 18+20 GeV: the maximum of 7, is reached at
y, = —1 (i, ~ 1.2), whereas i1, ~ 1.0 (i.e., a Poissonian MD) at y, ~ 1. The clan size
in pp coincides with that of n*p in the backward region y, < —1, but is smaller in the
central and forward regions, which confirms again the trend noted earlier.

Finally, we can use the pp data on moving windows to test an additivity property
mentioned at the end of the Appendix, Eq. (A.27). A sample of results for W = 18+20 GeV
is given in the Table. Similar tests have been performed for ntp at 22 GeV and can be
found in Ref. [9]. They show that the additivity property only holds for small rapidity
windows; it is therefore only for such windows that the data could satisfy the rather extreme
assumption of NB behaviour mentioned in the last paragraph of the Appendix.

4. Negative binomial and clan structure in nuclear target experiments

A negative binomial behaviour of MDs has been found also in experiments on proton-
-nucleus collisions [5], leading again to an analysis in terms of clans. The parameters N and
n, for rapidity windows 0 < +y < y, on Argon and Xenon targets are shown in Figs. 5
and 6, the rapidity being defined in the proton-nucleon c.m. system (NB fits for symmetric
windows |y| < y, were found to be good only for y, < 2 when all charged particles are
considered; they remain good throughout for negatives). For comparison, proton-proton
data folded in one hemisphere are ailso shown in the figures.

In Fig. 5 the mean number of clans N is seen to increase with the atomic number of
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Fig. 5. N in proton-nucleus collisions: O—O p Ar and @- - -@ p Xe in rapidity windows 0 < y < y, (F) and
—yo<y<0(B), A" A pp in the same windows folded in one hemisphere. The proton laboratory
momentum in 200 GeV/e. The symbol [ indicates the overlap of points

Yo
Fig. 6. n. in proton-nucleus collisions. Same notation as in Fig. 4 but the values for 0 < y < y, (F) and
—¥o <y <0 (B) are plotted separately

the target nucleus in both hemispheres, but for large y, this 4 dependence is much stronger
in the FH. At y, = 3.5, for instance, one finds in FH: N(Xe) ~ 4.8, N(Ar) ~ 4.2, N(p)
~ 3.4, to be compared with BH: N(Xe) ~ 3.6, N(Ar) ~ 3.5. In contrast with N, the clan
size parameter 7, in FH is practically target-independent and varies little with y, (Fig. 6):
fi, ~ 1.5 for y, ~ 1.5+2.0, then slowly decreasing to ~ 1.25. The situation is completely
different in BH where n_ for y, < | is much higher for heavier targets and larger rapidity
intervals [for instance at y, ~ 3.5: A (Xe) ~ 3.9, A (Ar) ~ 2.2, n(p) =~ 1.2].

These remarkable trends are not yet understood. An attempt was made by Fiatkowski
[11] who calculated the mean multiplicity and dispersion in backward rapidity windows
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for pAr and pXe, on the basis of the multiple collision model of Ref. [12], with good
agreement for 7 and fair agreement for k, but without testing the NB character of the MDs.
On the other hand, the CERN oxygen and sulfur beam runs on heavy targets
(pap = 200 GeV/c per nucleon) have given MDs which are clearly not of NB shape but
can be reproduced quite well by applying multiple collision theory to standard models
of pp collisions [13]. It turns out that the shape of the MD for nucleus-nucleus collisions
is mainly controlled by the averaging over impact parameter.

In this respect we draw attention to an interesting calculation by Bialas and Muryn
for MDs of 180-heavy nucleus collisions at p;,, = 200 GeV/c, on the basis of the wounded
nucleon model {14]. For central collisions (impact parameter & = 0) and a rapidity window
[¥] < 0.5, they find excellent NB fits, with the clan size 7, largely independent of the target
nucleus (Table I of Ref. [14]). This suggests that in nucleus-nucleus experiments, one should
measure the MDs in various rapidity windows, especially in small windows, for events

" selected by central collision triggers.

Finally, at much lower energy, Cugnon has proposed interesting searches of NB
behaviour and clan structure in intranuclear cascade models [15]. In Ref. [15b], a successful
test was performed for antiproton annihilation in emulsions at p,, = 0+ 1.4 GeV/e.
The experimental MDs of charged prongs are shown to have NB properties. The theoretical
interpretation identifies the ancestors of the clans with the pions coming from the annihila-
tion on a single nucleon, and the clans turn out to have a size independent of the antiproton
momentum.

5. NB properties at partonic level

In a very interesting contribution to a recent conference on future accelerators [16],
W. Kittel studied the behaviour of e*e~ annihilation at /s = 29, 200 and 2000 GeV as
predicted by a Monte Carlo model for coherent parton branching with hadronization
by Lund string fragmentation. At 29 GeV the model agrees reasonably well with the data
of the HRS Collaboration [2].

At the three energies, the Monte Carlo MDs for charged hadrons in symmetric rapid-
ity windows |y| < y, are generally close to NB shape, (for large y, this holds only for
even multiplicities). At fixed /s, N grows almost linearly with y, whereas 7 goes through
a maximum and then decreases. At fixed y,, i, grows rapidly with /s whereas N is almost
constant. Qualitatively, this behaviour is strikingly similar to that observed for the hadronic
reactions of Fig. 1, except that the decrease of 7, at large y, is much stronger.

In these “Monte Carlo experiments”, Kittel also examined the MD of all gluons
present at the end of the parton cascade when the hadronization sets in. It was found to
have NB shape at /s = 2 TeV but not at lower energy.

Stimulated by Kittel’s results and by the success of the coherent Lund shower model
in its most recent version for the description of eve~ annihilation data?, we have used this

2 The Lund shower model is similar to the Marchesini-Webber model as far as the partonic shower
is concerned, but different in the hadronization mechanism which is of string fragmentation type. The
most recent version is JETSET 6.3 [i7].
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version in collaboration with T. Sjéstrand to generate multiplicity distributions of partons
and of charged hadrons for quark-antiquark and gluon-giuon systems at /s ranging from
22 GeV to 2 TeV [18]. We find that both classes of MDs, in full phase space and in central
rapidity windows, have NB properties analogous to those observed in the hadronic experi-
ments of Fig. 1, again with a stronger decrease of 7, at large y,. We also find a simple rela-
tion between the partonic and hadronic distributions, which we link with the concepts
of preconfinement and local parton-hadron duality. At partonic level, the results suggest
a simple interpretation of the clans as “bremsstrahlung gluon jets” with a geometric MD,
which is the simplest type of MD reproducing itself by branching, see Appendix, especially
Egs (A.18) and (A.24). It is by averaging over these geometric clans that the logarithmic
MD of an average clan is generated, see Eqgs. (A.22) and (A.23). We are therefore led to
a simple physical picture of the clan structure at partonic level which carries over to the
hadronic level by local parton-hadron duality, and it is natural to conjecture that a similar
picture may also hold for hadronic and semi-leptonic processes.

6. Summary and concluding remarks

The main purpose of this paper was to review the negative binomial (NB) properties
which have recently been found for many experimental multiplicity distributions of high
energy reactions in selected rapidity windows. For this review, instead of characterizing
the NB distributions by the usual parameters 7 and &, we have used the parameters N and
fi. attached to the clan structure which is defined mathematically for any NB. The experi-
mental values of N and 7, turn out to have a series of remarkable properties which can be
read directly from the figures of the paper, for instance

(i) the high degree of energy independence of the average number of clans, N, for
hadronic reactions in the wide c.m. energy range /s = 22+900 GeV (Fig. 1b);

(ii) the similarities and differences between hadronic and semi-leptonic reactions
(n*p at /s = 22 GeV, pp at hadronic energies W = 18+20 GeV) for N and the average
charged multiplicity per clan, 7, (Figs. 2-4);

(iii) the dependence of the clan parameters on atomic number in proton-nucleus
collisions in the forward and backward hemispheres of the proton-nucleon ¢.m. system
(Figs. 5, 6), especially the contrast between the forward (F) and backward (B) dependence
of the clan size on target nucleus (Fig. 6).

These findings led us to the conjecture that the clan structure analysis is more than
a mathematical parametrization of the data and should have dynamical relevance. Further
support for this view is provided by our recent work on the multiplicity distributions
predicted by the Lund Shower Model for ete~ annihilation (see Section 5 and Ref. [18]).
It suggests a simple interpretation of the clans at partonic level, which carries over to the
hadronic level by local parton-hadron duality, and it may lead to progress on the unresolved
problem of finding the dynamical explanation for the wide prevalence of NB behaviour
in hadronic, semi-leptonic and leptonic reactions.

On the experimental side, the NB properties already provide simple and powerful
ways of extrapolating measured multiplicity distributions to the higher energies which will
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become available at future ete~, ep and pp colliders. When these machines will operate,
the clan analysis and the comparisons between reactions which we have carried out will
become possible even with multiplicity data in limited phase space regions. This will apply
in particular to the e*e~ colliders SLC and LEP and to the ep collider HERA, which should
make it possible to explore e*e~ anaihilation and semi-leptounic reactions to sufficiently
high energies for putting on a firm basis the comparison we made in Sections 2 and 3.

We are indebted to the members of the Collaborations listed in Refs. [1] to [5] for
providing us with many data in a form suitable for our analysis, and in particular to I. De-
rado, M. Derrick, G. Ekspong, W. Kittel, P. Malecki, S. Maselli, F. Meijers and N. Schmitz
for help and discussions.

APPENDIX

This appendix groups a number of mathematical properties of the negative binomial
multiplicity distribution (NBMD). The NBMD has been defined by using different two-
-parameter sets. They are of course not independent but to examine each of them separately
turns out to be very useful in order to elucidate some of the main properties of the distribu-
tion.

The parameters k, n. The standard way to parametrize the NBMD in multiparticle
dynamics has been in terms of the average multiplicity # and the positive parameter k, which
is related to the dispersion D = V(2 —ii?) by

o _ + ] (A1)
P '
This relation implies that the NBMD is broader than the Poissonian for which D? = 7.
With these parameters the NBMD has the following form
k(k+1)...(k+n—1 TR
(k) .. tetn =) "). (A2)

k k
Po(ii, k) = <m> . P(7, k) = Py, k) . P

The corresponding generating function (g.f.) is given by

Gus(T, k; 2) = z 2P, k) = [1— 2(2—1)]_ (A.3)

n=0

the normalization condition being Gug(i, k; 1) = 1. If k is replaced by a negative integer,
—K, (A.2) transforms into the familiar (positive) binomial MD for n =0, ..., K and
P, = 0 for n > K. For k negative non-integer, (A.2) is not a probability distribution.

The parameters a, b and the recurrence relation. A necessary and sufficient condition
for a multiplicity distribution (MD) P, to be a NBMD is the recurrence relation

(n+1)P, 4,

=a+bn; n=01,.. (A4)

n
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where a, b are positive constants and b < 1. It can easily be seen that (A.2) satisfies the
relation (A.4) with

7k - il AS)
T ik T A+k’ (A
Conversely, iteration of (A.4) gives
P, = Poa(a+Db) ... [a+b(n—1)]/n!, Py =(1-b" (A.6)

with £, obtained by normalization. This is equivalent to (A.2) with the relations (A.5).
In terms of a and b, the g.f. (A.3) is

_ 1—b\"
Ona(ih, k3 2) ={ —— - (A7)

We mention two limiting cases:
I In the limit b - 0 (i.e., k = oo and g — 7#), the recurrence relation shows immedi-
ately that the NBMD reduces to a Poisson distribution

Pp(n) = Pp(0)a"/n!, a =5, Pp0)=¢e". (A.8)

The value of Pp(0) is given by normalization. The g.f. (A.7) becomes

Gp(ii; z) = ¢, (A.9)

II. The limiting case a — 0 at constant b is also interesting, but one must truncate
the NBMD to n > 1 because P, — 1 in (A.6). Solving the recurrence relation for n > 1
now gives the logarithmic MD

P(n) = PV n, n>1; P()= —b/ln(1-b), (A.10)
P(1) is obtained by normalization. The average multiplicity is

-b

= b In(i-b) (A.11)
and the g.f.
Gb; o) = 20 —ba) (A.12)
In(1—b)

For a > 0, b < 0 and a/b integer the recurrence relation gives the positive binomial MD.

The parameters i, and N and the clan structure. The NBMD can be obtained as a compo-
sition of Poisson and logarithmic MDs. We are interested in this approach for two reasons:
(i) it leads to the concept of “clan” for which remarkable properties are found from the
data; (i) it shows that the NBMD belongs to a more general class of MD, which are known
in the statistical literature as infinitely divisible (ID) or compound Poisson distributions.
Every NBMD can be generated by independent emission of groups of particles which we
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call clans® and which have on the average a logarithmic MD. The number N of clans has
a Poisson distribution with average N. The simplest proof of this property is in terms of the
g.fs. (A.7), (A.9) and (A.12)

Gra(7i, k; 2) = Ge(N; G(b; 2)) (A.13)

a relation which holds if

N=-

SR

In(1-b) =kin (1+ Z) (A.14)

In our definition every clan contains at least one particle, corresponding to Gy(b, 0) = 0.
The average number of particles in a clan, which we usually denote by 7, is given by (A.11).
As is easily verified, (A.11) and (A.14) give

n, = n, = n/N.
For a Poisson distribution (k - o, b —» 0), P(n) of (A.10) reduces to J,, and the clans
are composed of a single particle, so that N = 7, i, = 1. When a NBMD is close to Poisson,
the error on k gets large and the parameter set (a, b) becomes inconvenient (@ ~ 1, b =~ 0).
The sets (7, k-!) and (ji,, N) are then more appropriate. On the other hand, for a positive

binomial, the clan structure loses its meaning because b < 0 and the quantities (A.10)
are negative for even n.

Infinitely divisible (ID) distributions. The ID distributions are the MDs obtained
by independent emission of groups of particles (“clans”) which have an arbitrary MD.
Their g.f. Gp(N; z) is given by replacing in (A.13) the logarithmic g.f. G; by an arbitrary
gf. G(z):

Gip(N; 2) = Gp(N; G(2)). (A.15)

The number N of clans still has a Poisson distribution (hence the name “‘compound
Poisson”) but the MD of the clans is now given on the average by the g.f. G(z). The name
ID expresses the property that for any integer L > 0, the MD of g.f. (A.15) is the convolu-
tion of L identical MDs. This follows immediately from (A.15) by noting that

Gio(N; ) = {Ge[N/L; G} (A.16)

It can be shown that the converse also holds: if a MD is the convolution of L identical
MDs for every L, its g.f. is of the form (A.15) with G(2) a gf., i.e., G(z) = Zp,z” and
p, = 0 for all n*. This G(z) is unique if one adopts the convention p, = 0 (every clan has
at least one particle).

3 In Ref. [7a] a “clan” was called “cluster”. In Ref. [7b], the name is changed to avoid confusion
with the cluster concept commonly used to describe shori-range two-particle correlations. The word clan
refers to the fact that, in simple cascade models producing NBMDs, the clans are groups of particles of
common ancestry.

4 This can be deduced from the Lévy-Khinchine “canonical representation” [theorem 5.5(1) p. 117,
in E. Lukacs, Characteristic Functions, 2nd Edition, Griffin, London 1970] by specializing to the case of
a probability distribution over non-negative integers.
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Cugnon and Harouna [19] have recently shown that a distribution of g.f. (A.15)
remains close to NB shape even when the MD of g.f. G(z) departs considerably from the
logarithmic form (A.12).

The relation of the NBMD to the geometric distribution. 1t is interesting that several
properties of a NBMD can be concisely expressed in terms of the differential of the g.f. Gyg.
This is best done by choosing z, k and the ratio 7i/k (or equivalently b) as three independent
variables. Starting from (A.7) and using @ = kb from (A.5), an elementary calculation
gives

adz dk dv
d1n Gyp = +1In Gy — +K[Gy(v; 1) —1] 2 (A.17)
1—bz k v
with
y= (=)' =142, Gviz)= — (A.18)
h K’ BT vt z—vz )
G, is the g.f. of the (truncated) geometric MD with probabilities
P0) =0, Pgn)=@—1)""'p" n=12.. (A.19)
v is its average multiplicity.
If we apply (A.17) at constant k¥ and b, we obtain
]
(1—bZ) a— GNB = aGNB. (A.20)
z

With (A.3), this is equivalent to the recurrence relation (A.4). Secondly, applying (A.17)
at constant z and b, we obtain that In Gy is proportional to k:

In Gyg(7, k; 2) = k In Gy ('i- s z) : (A.21)

which implies the infinite divisibility of the NBMD. Thirdly, (A.17) taken at constant z and
k can be integrated over 1 <<v <{v to give

d 7
In Gug = k J [G(v'; 2)—1] -vl (A.22)
1

(remember that Gy = 1 for b = 0). This is directly related to the clan structure expressed
by (A.13) because one verifies with (A.12), (A.14) and (A.18)

v

- @'
N=klnv, Gyb:z)= [ f GV 2) —v-} / Inv. (A.23)
v
1
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The natural interpretation is to regard the average clan with its logarithmic MD as an
average over geometric clans. In other words, the NBMD is generated by independent
emission of geometric clans with mean multiplicity v' in the interval (1, v = 1 +7/k), the
average number of geometric clans in (v, v'+dv') being kdv'/v'.

The geometric MD obeys the differential equation

-

y é’—v G,(v; 2) = Gy(v; 2) [G(v; 2)—1]. (A.24)

Expressed in terms of the probabilities Py(n) of (A.19), this relation describes the simplest
form of self-similar branching process. It was encountered by one of the present authors
in the Markov process version [20] of the Konishi-Ukawa-Veneziano QCD jet calculus
[21] when applied to gluons in absence of quarks.

The NB parameter k~' as a measure of aggregation. As shown in the Appendix of Ref.
[7b], one easily proves that for a NBMD the probability Py(n) to have n particles belonging
to N clans obeys the recurrence relation

Py(n)[Pyy(n) = k—ldzv(n)/dwﬂ("), (A.25)
where

dy(n) = (nYNDZ*(ny ... ny) "L
The sum X* runs over all partitions n = n, + ... ny with the n; integers >>1. For example
P{(2)/Py(2) = k1.

The relation (A.25) does not depend on the mean multiplicity 7. It shows that k~! can be
regarded as an aggregation coefficient between clans.

NBMD in continuous domains. One of the present authors [22] studied the class of
distributions of points in a continuous domain D,, characterized by the rather extreme
assumption that the multiplicity of points in D, and in every connected or disconnected
subdomain D of D, has a NB distribution. He showed that a distribution of this class is
completely determined by the two functions Q,(y) = dfi/dy and k(y), where dii and k(y)
are the average multiplicity and k-parameter of the NBMD in the infinitesimal neigh-
bourhood dy of the point y. For a general subdomain D, the NB parameters 7, and kp are
given by

fip = DI dyQi(y), THplkp = Df dyQi(y)/k(y). (A.26)
For non-overlapping domains D; and their union D, Eqgs. (A.26) give the additivity property

E (fip Jkp) = (X fip)/kp = fip/kp. (A27)
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