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PLANE WAVES IN THE GENERALIZED FIELD THEORY

By A . H. KLorz
Department of Applied Mathematics, University of Sydney, NSW 2006 Australia

( Received May 14, 1986)

Plane wave solutions are investigated for the field equations of the macrophysical
Generalized Field Theory. It is shown that when a geometry of the space-time is assumed,
which is a small perturbation of the flat manifold, there exists, as expected and requiréd,
an electromagnetic wave propagating in a fixed direction. It is also shown that there can
exist an unperturbed wave which does not affect the geometry; however, this wave is not
electromagnetic.

PACS numbers: 04.50.+h

1. Introduction

It is well known that the study of gravitational radiation was initiated by Einstein
himself in two early works (Refs [1, 2]) in which he showed that in a weak field approxima-
tion and under permissible coordinate conditions, the general relativistic (GR) field
equations take on the form of inhomogeneous (i.e. with sources) wave equation. In empty
space, the latter and the conditions were later identified as the equations of a particle of
zero rest mass and spin two. Hence the graviton. In other words, graviton is a possible
solution of the GR field if indeed it is sensible to consider originally purely macroscopic
equations as describing a microphysical entity.

Be it as it may, all experimental investigations (Ref. {3]) aiming to show the existence
of gravitational waves rely on an analysis of their material source and thus on the field
equations with nonvanishing energy momentum terms. Indeed it is difficult to see how
this could be otherwise in a terrestrial laboratory. It follows that radiation studies in GR,
perhaps more than any other aspect of the theory, bring into it notions of ‘“‘prerelativistic
physics” since GR itself contains no prescription of how the source terms are to be construct-
ed or written down.

The situation is quite different in the Generalized Field Theory (GFT, Refs. [4, 5])
which is itself but a development of the Nonsymmetric Unified Field Theory of Einstein,
Straus and Kaufman (Refs. [6, 7], and the references cited in [4]). A plane wave solution
has been found for the latter (Ref. [8]) but a new problem arises in GFT. It has been en-
countered and commented upon (loco cit.) before.
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It is simply that the nonsymmetric field tensor

g = (guv)

(as always, Greek indices go from 0 to 3 and Latin, if used, from 1 to 3 with x° corresponding
to a time-like direction) and the Riemannian metric tensor

a = (a,)

of the space-time are connected to each other (“geometrisations of physics™) but only
by the full set of the field equations and not by an a priori identification as in GR. It is
therefore questionable whether one is entitled to impose restrictions such as the wave
conditions on both g and a. Perhaps, since they are essentially physical conditions, they
should be assumed for g only but this would make the task of finding the solution
enormously more complicated if not impossible. It is thus for reasons of expediency that
we shall assume the components of both g and a to be functions of

x0—x? 6}

only. Justification of this highhanded assumption lies in the fact that, as in GR, we wish
to establish merely the existence of a plane wave solution and not to prove its uniqueness
in any strict sense.

The strength of our assumption can be relaxed somewhat by requiring a priori that only
the geometry a should be a small perturbation

Ay, = Nyt 0,,, iauvi <1 (2)

of the flat, Minkowski space-time #. We shall find that this fairly curious supposition leads
unambiguously to an interesting second form of the solution though it may be too early
to speculate unduly on its possible physical significance.

On the other hiand, energy-momentum terms play no part in GFT until a solution
has been obtained though, once it has been found, they can be readily calculated. Of course,
GFT still lacks an empiriéal confirmation which would determine its validity as a physical
theory. Indeed, our present aim is not to seek, from the wave solution, any definite predic-
tions. It is rather to investigate whether the theory leads, at least in the first approximation,
to results which are sensible from a physical point of view.

2. Expansion of the field
The field equations of GFT are

guv,l_leglrv—f:vgua = O’ (1)
6[‘“],» =0, (2)
R(uv)(f) = Os (3)

R{[.uv],l] = 0 or: R[yv}(f) = %‘ (Fu,v_rv,y)’ (4)
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and

f:ﬂv) = {:V}a. (5)

Here R,, is the Ricci tensor constructed from the “geometrical” connection I*g, related
to another, “physical”, connection I';, by Schrédinger’s equation

I, =I5, +%8, (6)
so that

F = {#al =0, (7)
square brackets round the indices denoting skew symmetric part, and round ones the
symmetric part respectively. Also

6" = —gg", g=det(g,).

Because of equation (5) (“‘metric hypothesis”) which defines the geometry a of the space-
-time which must be (Ref. [4]) Riemannian, and adopting the notation of Mme Tonnelat
(Ref. [9])

) = hl-w’ 8ruv) & kuva (8)
with h,, (though not necessarily, k,,) nonsingular, we have
O'V 2
huv,l_ {”/} ha\ {/‘:V} h [u;]kav+F[Av]kuo’ (9)
g 12 ~ ~o
kpv,i.— {ﬂl} kov'_ {;ﬂ’} kﬂ, = F[aux]kav'*'r[}.v]kuc& (10)

where the Christoffel brackets are (as usuai)

d 1 o4
{yv} =34 (alv,u+aul,v—auv,l)'

If now the space-time is perturbed from some ground state a:
0
auv = auv"'“uw ]auvi < iauvi (11)
0 0

both the inverse (metric) tensor and the brackets are expanded;

v _ uv g _ [
DR A EDRAE w
[} [ n
g g .
o~ 2 ®

where



536

and the n'™ terms of both scries are of the order ja,,1". In fact, we have

By __ " _Ho, v v o v
= (-1 d“a,, o, = a"a,,
n n—1 0

and

g . 7 § ai -
{Iﬂ’} =a [/.lV, l]g,w+ na—l [:uv’ A’]ﬂuv’
n

n

where [uv, A] is the Christoffel bracket of the first kind formed from the tensor b. If, as
throughout this article, we consider only the perturbation (1.2) of the Minkowski space-

-time, then
o oi o
= 4q v, A = 0. 14
{!“’} n=1 L, 2] {IQ’} (4

We shall also confine ourselves in the sequel to a discussion of only the zeroth and first
order terms in the (small) quantities a,,. The reason for this is that in the present state
of the theory, that is in the absence of empirical evidence which would decide its physical
validity, the most interesting results are those which can enhance its interpretative status.
It turns out that this is achieved precisely in the two lowest order calculations rather than
in clearly unobservable, higher order interactions.

Let us now consider the Ricci tensor formed from the geometrical connection f‘f,v.
We have

o G AR AR
R = = {#v}f {W},»+ {ue}{ } + Gl = {m} {69}’
~ [ o —_ o
R[uv] = _Ff'uv}a'*' {It }F[a\’] { }r[ua] J[ag} F[;W] = 'F[uv];a . (15)

Hence, for the perturbation (1.2) of a flat background, the first two terms in the correspond-
ing expansion of the ccmponents of R,, are

and

— 7 e
Ry = I'iypl Tovpy
) 0 0

(/2 g
If(uv) == {uv} a+ {uo} +F[uo]r[ﬂv}+rlua]r[av] s
17 1

_ 1%
R[uV] - F[uv],cn
0 0

e a 144 ol
Ry = =19, ,+ e+ Ie re... 16)
1[:! ] [av], {#Q} [ov} { } lnel ™ { 19} o[u ] (
1 1
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The components of the affine connection themselves are given by the equations
huv,l = ngl]kov+rglv] kua-a
0 o o 0o o

e e
ko2 = Thuathey T iy
0 o o o o

G|, G - - N ~
L { } bov™ { } hyo-= T'fyiKay+ T{iiKye T gkay+T TviKuas
1 HA) o AV} o 0o 1 o 1 1 e 1 o

1

g g o . I I o
Kyy,a— { 1} for ™ { } kuo = Iluhoy+ I Taitue + Funhos + Daiios amn
1 ﬂl ) AV} o 0o 1 0 1 1 0 10

(Progressively more involved expressions occur on both sides of these equations in higher

order approximations. For example, already in the second order, we find terms of the type

{3} Kk)or ffuv](h, k) and so on. Because of such terms, it seems very difficult to devise
11

an iterative procedure for this kind of expansion.)
We now notice that the first two of the equations (17) give, in the usual way,

hu\;,l+hvl,u+hlu,; E h[uv,}.] = 0 (18)
(1] 0 0 L]

and
~an] hdl(kj.v N’ + kul v + kuv 2.) (19)

ag 2 g
I:[;tv,},] - 2 ({ﬂl} f)lo'v {HV} ga}. {vl} f)lau)’ . (20)
1 1 1

However, in the particular case considered below (that of the plane waves) we shall find
it easier to solve the first order equations directly.

Similarly

3. One-dimensional plane waves

Let us adopt the coordinate system
(x°, x', X2, x%) = (t, %, , 2)

and assume that the components of both the metric tensor a and the nonsymmetric field
tensor g are functions of
E=t—x=x0=xt 0y
only:
Ay = @8y By = 1D, Ky = K(9).
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The components of the geometrical connection f;, are necessarily functions of & because
equations (2.1) are, in general, solvable (Ref. [9]) in terms of the tensors h, k and their first
derivatives. Similarly, because of the metric hypothesis (equation (2.5)), so also are the
Christoffel brackets. However (see Apendix), this does not guarantee that the components
of the metric tensor a will be always also functions of £ only. To assume that they are is thus
an a priori restriction on the solution

Let us impose a further simplifying assumption, namely, that as in the case of the gravi-
tational waves, the space-time metric is of the form

ds? = dt?— dx? — (1 — a)dy? — (1 + a)dz® +2b dydz, @

where the absolute values of the functions a, b (of ¢) are small compared with unity.
We now have

e g ]
Ly = {IM’} = 0+ 0= O 2) 3
1]

1

and if dashes denote derivatives with respect to &, the only surviving brackets of order
one are (dropping the order indicator)

0 . 1 0 . __ 1z O — A

fof = -3 fp = {if =

1 , 1 , 1 )

tof= -t Q= ff =4

._‘, 2 ___1_' 2 ___.l_f 2 __1 !
{12}’“2“’ {03}— z b, {13}“7"’

3 , 3 , 3 , 3 '

{03}= zd, {13}"%“’ {oz}z“%b’ {12}=%b' @

0 ' ~0 ’ S0
r[ox] = Kot r[oz] = kg3, r[osl = k:):”
[ 0 0 0 0 0

A,
[« S/
[\
(S
i
|
N
Q

Similarly,

70 1,1 ’ f°0 S W R ’ -0 S X
r[12] = 7(k12—k02)9 F[l3] = —f(k13~k03)’ r{23] - 7 k23’
] o ] 1] o 1] Q

0

ri o L’ 1 1 ’ ’ 1 1 ’ '
I'ioyy = koys Loy = 3(koa—k12)s  T'josy = 7 (ko3 —ki3)s
0 o 0 T 0 0 0 0

23 N 71 — L i1 e R

Liiay = ki, Iy = ki3, Iip3 =7 k23,

0 0 0 0 o °

r2 | ’ ’ F2 1t 2 N

Iioyy = 3(ki2+koa), Tiosy = —7 ks, I'fis; = 3 ka3,

o o o 0 ° 0 0

r3 1 ’ ‘ 3 1 73 1 :
r[ou = 3 (ki3 +kos), F[ozl = 7 k33, r[12] = —7 k3. (%)
[ o [ 0 V] 0



It is now easy to show that the equations

Bypvzy =0
/]
imply that
h,, = constant.
0
In fact, letting u = v = 0, =10, 1, 2, 3 gives immediately
hy, = constant.
0
Similarly, p =0, v=1, 4 = 1,2, 3 gives
Iiyys hyss hyy = constant,
0 (1] o
p=0,v=2 iA=23 gives
hy,, hy3 = constant,
0 0
and, finally, p =0, v =3, 1 = 3 gives
hs3 = constant.
0
Without loss of generality, we can therefore take
huv = Hyy-
0

To determine k,, we proceed as follows. Let
0

kot =p, ko =4, kos=7r, Kkyy=u, kyz=0vkyz=w
0 0 0 0 o 0
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Then, substituting the above expressions for I'f,,; in terms of the derivatives of k,, into
0 o

the equations (viz. (2.17))
Funkow+ Tk = 0
(V] 0 0 0

we obtain the 24 equations:

2pp" +q( +g)+r@' +r) = 0,
P —u)+rw =0,
pr’'=v')—gw =0,

2pp' —u( +q")—v(v' +r') = 0,

2p(q' —-u)—ow +rw’ = 0,
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2p(r' - ") Fuw' —gqw' = 0,

2qp' +2up’ +2pu —w(W' +r')—rw’ = 0,
299’ +u(qg' —u')—ww' =0,

2gr’ +u(r' —v'y—pw' = 0,

2rp’ +20p" +2pv’ +w(' +q )+ qw’ = 0,
2rg’ +o(g’' —u)+pw =0,

2rr’ +o(r' —v)—ww' = 0,

p(' —q)+ow' = 0,

plv

—2qp’ = 2up’ —2pq’ + w(t' +r)+ow’ = 0,
2uu’ +ww' +q(u' —q") = 0,

7

—t)—uw’ = 0,

2ut’ +pw +q@' —r’) =
2rp’ +20p" + 2pr’ + w(i' +q' )+ uw’

0,
=0,
v —pw' +r(u —q') = 0,
2ot +ww' +r( —r’) = 0,

(g+uw’ =0,
2rg’ +2qr' +v(q' ~w')Fu(r' —v') = 0,
200’ +quv' +r( —q' )+ q(0"'—r") = 0,

(r+ov)w = 0.

®

It is not difficult to show that (neglecting irrelevant, additive, constants. of integration)

the only solution of these equations is given by
p=w=0 g=—u r=-v

Then, the nonzero components of k,, and ff{uv] are
Y] 4]

ko, = —ky; = —u, kos = —ki3 = —v,
0 0 0 0
~0 T - ’ 0 — . ’
I'tozy = Ty = —4's  Tposy = Tpoay = =0
0 o 0 0
0 ol ’ 0 Ft I
F{121=r[12]=“= F[13]=F[13]——v.
0 o 0 0

We may note that the equations

o ™1
1l
o

are identically satisfied as required.

&)

(10)
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It is also evident that the field equations
— o Te  _
R(MV) - F?Mo]‘r[av} =0 (11)
0 0 o
are satisfied. For example,
=0 0 0 1 =1 70 ™1 F1
Re2sy = I'aol o3yt 20l tos1H izold 12+ T2l 1a3p
0 0 [} 0 4] [} 0 0 0
= —u'v'+uv +uv'—u'v’ =0,
=0 o M0 =1 o =1 =1
Ri33) = I'iaol toa1+ L gasl tosyH isod a1+ 3o 1aagp
0 4 0 0 0 0 4] + 4] 0
= —v' 4222 -'? = 0.

The remaining eight equations (11) can be checked out in the same way. We still have
to satisfy equations

R[uv],l+R[vi].u+R[/‘»u],v =0
0 0 [0
with
— — ~"
R[m] - I;[uv],w
However, when
~ = o_ 1
FEWJ = Fguv](x =x),
0 o
we have
=0 =1 e 0 sy P
Rywy = —Towno =T = — Ly +m
[ [+] 4] 0 (]
and a glance at the solution (10) above shows that
Ry =0,

(because for all p, v, I'1y = [l

Now, in GFT, R;,,; is identified as (proportional to) the electromagnetic field tensor.
In other words, although we have shown above that there exists a plane wave solution
of the GFT field equations (actually, a class of solutions) for which the geometry of the
space-time is nearly Minkowskian, but the skew field is not infinitesimal (a zeroth order
approximation), no free electromagnetic field exists.

The functions a, b, u and v of x°—x! are quite arbitrary.

4. One-dimensional waves in the first approximation

In the first approximation, the components of I'y,,; are now given by
1

G g il g I . ""ﬂ
huv,).'_ { ;{} Rav— Jl }nua = F[nl]kov+F[}.v1kuo+r:{p}.lkav+r[lv]k,uo (1)
1 #1 l l" 0 1 o 1 0 o -0 o
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and

1 o L]

c c ~ ~a =y -
kuv,l_ { }} kvv- {l } kua = rgpl]”av+F[l\']"uc+rhu\]hcv +F‘[’“]h”,. (2)
111 g 1" 1 1 o 1 o 1
From equation (2), we obtain, in the usual way,
fﬂ(’pv] = ’!2' ’lﬂl(k}.v u+ku),,v +k_uv l)_ ”al ? knv+ e kuo+fgu\-]hal . (3)
1 1 ' "-lll o 3 o 1

However, instead of using this solution which is quite general, it is preferable, even
if tedious, to write out the 64 equations inserting the zeroth order solution derived in the
last section directly. We employ lexicographic order of indices, using at each stage results
obtained previously. This reduces somewhat the number of independent equations that
remain. Dropping the order indicator, we have

hoo = 0,
&2 ~3
O = ur[o‘]+vF[01],
= ko, +ultyy+0l
= UKoy tUloz 1023

’ 752 3
0 = p ko] +ur[03]+vr[03],

hoy =0,
0 = —u'koy +ul 5 +0lY o,
0 = —tkoy +ulhay 4 03y
ho, = 0,

0 = u(— I+ or)s
= —u'(koz+k12)"‘“f?021+“f(1021’
0 = —v'(koy+ky )~ ul oy +ulfosy+ullysy+oltys,
hos = 0,
0= l7(—f?o1]+f(1011)’
= —u'(kos +ky3)= vl fozy+ ol fory—ul fryy— vl s,
0 = —'(kos+ky3)— 0l o3, +0T o3y
h'u =0,

h'xz = "(f{)o:]_f[‘ou) =0,



and

0= “l(koz+k12)—“f?121+“f[112],

=0 ~1 =2 =3
0 U'(koz+kxz)"“r[ls]'*‘“['[xs]"“r[zsj_vr[zs]o
hi, =0,

0= u'(k03 +k13)—'l7[‘€12]+Uf[1]2]+uf[223]+vf[323],

v'(kos +k,3)—v1:&3]+vf'[113],
h’22—a' = 0’

0= “(_f?zs]'*'f[lzs])’

hy3—b" = u'(kos +k,3)+v'(k02+klz)+vf'?02]-—vf[‘02]+uf'?o”—uf'[lo,]
—hy+b' = —u'(kos +ky3)—0'(koz +k1p) + 0T 5y — vl oy +ul by 3 —ulfya
0= U(—f'?zs]‘*‘ftlzs]),
hi3+d =0,

ko, =0,
3 0 /
0 = —Tygz—Ty12y—2u'hoy —u'hy —t'hgo,
it =0
0= —F[osl‘rtx:s]_z”'hm“U'hu—vlhom

’ 1,/ 1.7, . PO ’ ¢ — P2 0 oo ’
k02_ -4 u-—ib U= F[OZ]—'u hoo—u h()] = F[OU—'FUZ]"“ hOO_u hOl’
_ 2 ’ ’ _ r-2 0 ] ’
0 = "F[()z]“‘uhoz—‘u hlZ = “'F[03]"‘F[23]"‘bhoz—v h12’
’ 1 1t | ~0 ’ ’ _ 3 ~0 ’ ’
kos—z b'u+7 a'v = Io33—0'hoo—0"hoy = I'fo13—I'(133—0"hoo—"hoy,
3 ’ 3 o ’ !
0 = —F[03]—l7 }113 = —F[02]+F[23]—u 1103—14]113,
' 1 s 1 by = 1”»2 fl I '} __'fvl '} 'h
12tz Utz 00 = Ijo— Loy~ ngy—uny = Ip~ung —uhngy,

0 = ‘f[212]+u,}102+u1h12 = —1:[213]+f[123]+v'h02+v'hu,

Kys+%bu—%a'v = oy =Flos—t'hor—v'hy = Tis3—v'hey—v'h 4,
0= “fgnzl—f[lzs]'*‘“'hoa+“"‘13 = "f[313]+vlhoa+v'hxs’
kyy = [y —Thsy+u'hos+u'hyy—v'ho,—v'hy,
= f’[213]—1~'[3,2]+u'h03+u'hl3—v'hoz-v'hlz,

3
0 = F[23].

943

)

(5
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Thus Aoo, #o1, Ho2s Hos, F11, h1z and s are necessarily constant and there seems to be no
reason why these components should not be taken as zero. This leaves us with the symmetric
field exactly the same as in GR:

h22 = —"h33 = da, h23 = b. (6)
Of course, the same result follows if
u=v=0. @)
Let us consider this case first. Then the physical field g itself becomes weak and
fuv] = 0. ®)
4]
The components
l;fuv] = I
are now given by
0 7
F[o1]1= ko1s
-0 1 0 1 ~0 2 ot
F[12] = _F[oz], r[m] = —F[os], F[23] = _F[oa] = F[soz],
rl r2 3 ~1 =2 3
F[zsl = Fus] = —F[n]a F[zs] = F[13] = "Fuzp
3 ™2 2 ~3 ’
Fo2y=Tio2y = I'tizy—T'1az2; = kzs’_
0 2 70 0 3 =0 X
F[oz] = F[m]—r[lz] = ki)z, F[os] = F[Ol]_r[13] =~k63’
~1 . r2 ol '
Fuz] = F[Ol]_r[102] = k12,
- - - ,
F[113] ='F[301]"F[03] = Kyp3 )
and
n2 3 2 3 3
Ifoy = Tiosy = I'fyay = I'ty3; = 0 = Iz
Because also
r,=0, (10)
i
the last five of the equations (9) give
1 0 0 ~1 1
Froy3 = It101 =0, Tpoy= —I'pyy =Ty
Hence, we get immediately

k;n = (k02+k12)l = f[zou =0
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and the nonvanishing components of the skew connection as
Fony = =Ty = Flony = —Ttin= —ki2 (= +kby),
f€23] = 1:[123] = ‘ftzos} = “fism = f13021 = ftzm = 7 ka3,
f?oal = ko3, f[lta] = ki3,
f?on = —(ko3+kis), f[loa} = ~f€133» = 3 (kos—Kk13),
Flos = ~(kos+kis). (1)

For this solution (equations (8) and the second f (2.16))
G 0 1}

R vy = = = + = 12

ha {#V}.a {w’} {ﬂv} (=

Ry = =T = (= T (13)

and

Hence the only nonzero components of the skew symmetric part of the Ricci rensor (in the
first approximation) are

Rygsy = =3 (kos+ky3) = _1}[13} (14)
1

and it is easy to check that these satisfy

If[[m‘],i] = 0.

With the GFT identification of the electromagnetic field tensor f,,

Ry = kfyw,  k = constant, (15)
1

and the standard relations
fOk = _Ek’ ~[U = Bk’ i,j, k C)Cllc 1, 2, 3
our result gives indeed a wave propagating in the positive x-direction (direction 7):

E A B oc ((kos+5ky3) ). (16)

5. On energy

It is known (Ref. {4]) that a suitable definition of the energy-momentum tensor in

GFT is given by
1 ® , '
T,=+ " R, gf) T2 a,R}, 1)
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where

r=am,({51).

(Such a tensor automatically satisfies the conservation equation
™, =0.
For the Christoffel brackets given by the equations (3.4)

1 1
Tuv = ; (Ifyv'—nuvlf) = ? Ruv (2)

1 1
since

R = 1"R,, = 0. G)
1

1

Moreover, the only nonzero components of the symmetric Ricci tensor are
Rgo = Ryy = 3(@?+b'%) = —Ry,. C))

We shall now-show that for the solution (4.14) also only these three components of the
Maxwell energy-stress-momentum tensor (in the first approximation)

Euv = f;laf:'}'% nuvf;:ﬁfzﬂ (5)

(indices being, of course, raised with the Minkowski tensor.n) of the classical electro-
magnetic field do not vanish identically.

Indeed, if
Jos = —/is
are the only nonzero components of the field tensor f,,, then
Tuaf* = (6)
and
Ego = Eqy = —Ey, =f023 =f123- (M

Hence we can have, as in the Einstein-Maxwell theory,

Bt R ({0, ®

and, with a clearly permissible adjustment of scale,

(kos+kia)' = + Va2 +b 9)
If we choose the solution (see, e.g., Misner, Thorne & Wheeler, Ref. [10]) so that
b=0, (10)
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we obtain a further restriction on the field

1

(ignoring again the constant of integration). In this way, geometry of the space-time
becomes explicitly dependent on the electromagnetic field. Of course, when ¥ # 0 we can
still define arbitrary functions A’, 6 by

a=A"cosf, b = A'sinh

and obtain

1 7 _— db
iA = k03+k139 6 = tan t (da)

but the geometric dependence on the field will be only implicit.

6. The case when u,v # 0

When u and v do not vanish, there is a non-weak (i.e. of zeroth order) field which
apparently does not disturb the fact that (by hypothesis) the geometry of space-time differs
only infinitesimally (1.¢. to the first order) from Minkowskian. The above field is character-
ised by the skew field

Bruv
since we have retained only the weak components

hyy = —h33 = a, hy,

of the symmetric part. We shall show that there is no electromagnetic field in this case.
From equations (4.4), (4.5) we immediately have

1 F0 3 =2 73 =2 3

F[ou = r[on = Fus] = r[12] = F[oa] = r[oz] = F[zs] = 0,
0 &1 53 2 T2 =3

P23y = I'asy = Tioay = I'tisy = —Tos; = — Iz,

3 2 2 3
Fiony—Tjo3y = I'tysy— T2y

0 1 =0 P2 ~0 71 =2 1
rnzl = "‘F{ozp F[oz} = F{ou“ruzp F[tz] = F{ox]"rm-‘l]’
whence
= oy ,
oy =T =06, ey
and so
=0 =1 S0 1
sy = =To3y = =Tz = I'iyyy

which implies that
f?23] = O,
and (since I3, = 0)

70 1 70 1
sz] = “r{le = “‘Fnz] = F[oz]—
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Equations (4.4) also give

w'(kos+kyz) = u'(kos+kyz) = v'(kos+kys) = v'(kos+ky3) = 0.

If we reject the possibility
=0 =0
as effectively leading to the case considered in Section 4,
koy = —kys, kos = —kiys.
It now follows that
hys =b

as before.
We also have

koy = 0 = u'koy +vlios = v'koy +ul?ys
Thus, either
koy =0
or
ko, = constant # 0.
In the first case
f[sozj =0 = kj;
and the only nonzero components of ffuv] are
Flosy = —Ifysy = Tlogy = -_I'—'[l‘ls] = ~kiz~7 b'u+3a'’n,
f?OZJ = _f[llz] = _f&z] = f[loz] = —kiy—3au—3b'v.
In the second case
ud'+ov' =0 or u?40*> = constant
and

{02y = constant.

@

3)

4

&)

(6

Q)

®

)

(10)

Only the first case needs to be considered. Then, however, we easily check that both

Ry = Rpyyy = 0.
1 1

7. Conclusions

(11)

We have considered in this work the first steps required for a full discussion of what
kind of wave propagation is predicted by the Generalised Field Theory of macrophysics.
There is, of course, no doubt that wave-like motion exists in Nature at every level of physi-
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cal reality (there are two only that need to be specified; microphysical at which the
Uncertainty Principle cannot be ignored, and macrophysical at which it is emphatically
not taken into account).

We have seen that the GFT field equations ((2.1) through to (2.5)) aliow at least
plane-wave solutions of a very general kind although we have restricted ourselves to the
case where the geometry of space-time is only slightly perturbed from its background,
flat state. We can expect such situation to occur in regions free of material sources of the
field itself. This does not tell us what the waves themselves might be. No problem arises
in classical physics because there we know from the start what we are talking about. If we
are discussing the structure of the electromagnetic field, our waves will be electromagnetic
waves even if the theory may lead to identification of light as an electromagnetic phenom-
enon. If the theory is that of the gravitational field, then any wave-like solution automati-
cally involves the postulate that it represents gravitational waves whether these are observed
or not. Their empirical discovery would provide a significant confirmation of the theoretical
description but, unlike more tangible predictions, nondiscovery cannot be regarded as
destructive. We can never be certain a priori that any proposed apparatus is suitable or
that the observation preventing noise has been adequately eliminated.

Now there is an important aspect in which GFT differs from General Relativity. It
is that it does not specify a priori the physical nature of the field whose structure it claims
to describe. Indeed, it was Einstein’s mistake (however natural if not actually forced by the
vague character of what he sought) to equate over-hastily 4, with gravitation and k,, with
electromagnetic intensity. Instead, and more so than any other proposal for macrophysical
unification of Nature, GFT speaks of the total (macrophysical) field specified by the tensor
g, even if when it is an (0, 2) tensor in a four-dimensional world, little room seems to be
left for anything more than gravitation and electromagnetism. This follows from the struc-
ture of both GR and Maxwell’s theory.

Nevertheless, there is room if I', is postulated as (proportional to) the electromagnetic
vector potential rather than k,, or something like it as the intensity field. This (equation
(2.4)) is equivalent to regarding the tensor Ry,,; (f(‘l"v)) as giving the latter. The reason is that
then we have effectively twenty functions (sixteen components of g and four of I’ ) with
which to describe macrophysical reality. It is very gratifying to note that the solution pre-
sented in Section 3 indicates that GFT appears to be more comprehensive than a mere
combination of gravitational and electromagnetic theories. What we have shown there
was that GFT permits macrophysical, and for that matter not even necessarily “weak”,
waves which do not disturb the geometry of space-time. Equations (3.12) and the second
of (6.11) show that these waves are not electromagnetic in the sense that, to the order of
approximation considered, they correspond to a zero electromagnetic field. Taking into
account the premises of GFT and, in particular, the way in which energy-momentum compo-
nents are calculated, it is difficult to indicate how such waves could be experimentally
detected. For this reason, as mentioned previously, we have refrained from speculating,
at the present stage, whether waves such as these are definitely gravitational or whether
they represent something more than either gravity or electromagnetism. Their apparent
possibility, however, is instructive and will be considered further when other than only
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plane-polarised waves are studied. At present, we can note that their existence is fully in
keeping with the spirit of GFT.

This brings us to a point which is frequently glossed over in theoretical physics. When
symmetry of the field and of the connections is restored GFT collapses, as it should in
accordance with its claim that it is its natural extension, into classical General Relativity.
Indeed, because of the peculiar (Hermitian) symmetry of the field equations and especially
of equation (2.1), this collapse is immediately brought about if we assume only the field
g to be symmetric since then

F;, = {" ! (1)

ﬂvsza.
If only the connection I is symmetric, equation (2.1) reduces to

i =0 =k, (2)

the first of which determines the brackets while the second implies (Ref. {1]) the existence
of a four-vector ¢, such that

Kiv = @vu=bus 3)
It is then easily shown that the field equations imply
W uizp = 6% @
so that a wave solution is the consequence of a single gauge condition
oL = 0. (%)

The bifurcation of gravitation and electromagnetism is then complete and, as far as their
connection is concerned, we are left with the standard, Einstein-Maxwell theory. It can
be regarded as a further confirmation of GFT, in the absence of direct empirical evidence,
that the primitive physical situation of plane waves allows relation (5.8) to hold and to
lead merely to a partial determination of the nonzero components of k.. It must be pointed
out that, in general, there seems to be no reason why the tensor E,, constructed from

e R ({2,1) ©

should always allow such determination when assumed to be proportional to

R ({1]):

Maybe, only those solutions should be regarded as physical for which this is the case but
to demand it could be an unwarranted restriction on GFT. On the other hand, and this
is the point we want to stress, any physical theory contains two kinds of assumptions.
There are those which determine the structure of the theory. As far as GFT is concerned,
the example in question is provided by the postulate of Hermitian symmetry of the field
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equations related by Einstein with their invariance under conjugation of the electric charge.
Perhaps, more than anything else, it implies the macrophysical nature of the resulting theory
because we know that such invariance can be broken at microphysical level.

Once the structure of the theory is established, another kind of assumption is involved
in hypothesising a physical interpretation for the quantities appearing within it. Again,
there is rarely any problem in distinguishing the two classes of assumptions in classical
physics. The distinction, however, is important when exploring reality whose structure
may not be clear from the outset. The reason is simply that the mathematical framework
of a theory may be perfectly valid under one interpretation and lead to contradictions or,
rather, paradoxes under another. To some extent, the postulate of charge conjugation
already belongs to the second class of assumptions. A more direct exampie, however,
is provided by our identification of

)

as the electromagnetic field intensity tensor.
Now, originally (Ref. [4]), a different tensor was proposed as the intensity field,
namely

W,y = a’”k,,‘,:,,,. (7

The reasons why this proposal was made and why eventually that given by equation (6)
was preferred need not concern us here. It is interesting, however, to note that for the plane
wave solution of Section 4

w;!v = wuv = O‘

0 1
In other words, our solution must be regarded as a deciding argument why the choice
of Ry,,;, rather than of w,,, is correct as well as, in view of equation (4.16), as another
indication in favour of the Generalised Field Theory.

APPENDIX

When the field g itself is weak so that the components of the tensors k and k are of the
same order of magnitude as those of the metric @ and

g=n+ht+k+ ..., (1)
then
re.=ro w -+ higher orders. 2)
1

The third of the equations (2.17) and equations (2.5) then give

23 4
% n (hAv,y+hyi.,v- hpv,}.) = {HV} (3)
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or

hyuy = Qauv
and it follows that

Gy = a,(E).

However, we have seen (equations (3.10)) that a solution of the form

g=n+k+h+k+ ..
o] 1 1

is also possible. The metric hypothesis then gives

[val

— _ 7o _Je _F o
a}.p,v = h).u,v F[Av]kdu F[v,‘;]klo [?Av]kau_r k).a
1 0 1 0 1 1 o 1 (1]

4

&)

(6)

and, although on the right-hand-side we have functions of & only, the components a 4 €N

appear to be (linear) functions of x* and x® in general.

Editorial note. This article was proofread by the editors only, not by the author.
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