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PHOTINO AND SEARCH FOR SUPERSYMMETRIC
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We point out that photino is one of the very few supersymmetric particles which may
be freely produced. This, along with the fact that of all such particles photino is expected
to be the least massive one, imparts on it the status of the best candidate for experimental
search of supersymmetric particles.

PACS numbers: 11.30.Pb

It is well known that all supersymmetric grand unified theories [1-8] predict the
existence of a set of particles corresponding to all known particles which have spins differ-
ing by one-half from those of the partner particles. The former particles are generally
referred to as supersymmetric particles or as s-particles for the sake of brevity and the latter
ones as normal particles. It is worth mentioning in this context that a s-particle and its
partner particle share the same internal quantum numbers in simple supersymmetric
theories [9]. Cn the other hand, the internal quantum numbers may not be identical for
a s-particle and its partner particle in extended supersymmetric theories [10]. In this paper
we shall be concerned with the s-particles as discussed by Fayet and Farrar in connection
with their work [2, 11] on supersymmetry phenomenology. This work is based on a simple
supcrsymmetry and assigns a new discrete quantum number R associated with R-symmetry
[2, 11]. In passing we may note that R = 0 for normal (i.e. conventional) particles and
R = 11 for their supersymmetric partners (with R = +1 for a s-particle and R = —1
for its antiparticle). One important point regarding s-particles is that none of them has
been seen to date. In this connection it may be recalled that the supersymmetric partners
of electron [12], muon [13] and W*, Z° [14] have been searched for but not observed.
These experimental facts have prompted us to investigate in this paper the criteria for
selection of a s-particle for experimental search. This paper concludes that photino is the
best candidate for this purpose. This conclusion does not simply rest on the fact that
photino’is the least massive [15] of all s-particles. This point is discussed below.
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This paper highlights the role of production behaviour of a s-particle, apart from its
mass, on the feasibility of its experimental detection. The important point to be recognized
in this context is that a s-particle, if it undergoes suppressed production, will be more
difficult to detect than what is expected if it could be freely produced. This point has been
elaborated at the final stage of this paper. In fact, in this paper we have stressed that the
two important criteria for the selection of a s-particle as a candidate for experimental search
of such particles are (i) its mass and (i) its production behaviour. Unfortunately, the crucial
role played by production behaviour of a s-particle in the matter relating to its experimental
detection remains underappreciated in the literature.

For the reason underlined above, we have investigated production behaviours of the
supersymmetric partners of some familiar particles (which include hadrons and non-
-hadrons as well). For this purpose the most straightforward approach is to exploit suitable
constraints. In order to select appropriate constraints it is important to remain aware of
the fact that in the literature therc is not a single constraint which is exclusively meant
for particle production. Needless to mention, the conventional constraints which arc
applicable in particle production also find their use in particle decays. On the other hand,
there are some constraints which cover particle decays only (such as, for example, 47 = 1/2
rule in weak decays). This fact prompted us to suggest in our earlier papers [16-19] two
constraints for hadron production and their analogs for production of non-hadrons. As
these constraints are exclusively meant for particle production, they are expected to deliver
some vital information as regards production behaviour of particles. This is really the case
as evident from our previous papers [16-19]. In the present paper we have generalized the
constraints concerned to invoke the quantum number R within their expressions in order
they can be employed for investigating production behaviours of s-particles. The predic-
tions of these generalized constraints on the overall nature of production of some normal
particles (for which R = 0) and their supersymmetric partners have been displayed in the
last columns of Tables I and Il. A look into these tables reveals that out of all the s-particles
exhibited there only two i.e. A (in Table I) and photino v (in Table II) may be freely pro-
duced and the rest are liable to suffer inhibited production. Implications of production
behaviour of s-particles have been discussed by considering relatively light particles which
include photino as well as scalar electrons and scalar muons. Finally, we have exploited
the. facts that photino is the least massive [15] of all s-particles and that it may be freely
produced in order to justify its claim as the best candidate for experimental search of
s-particles.

We now proceed to discuss the generalized versions of the two constraints [16, 19]
for hadron production. One of them is of restricted validity whereas the other one is of
general validity. For convenience of discussions, we first consider the former constraint
which is applicable for production of a hadron having odd-half integral isospin or(and)
actual spin. To formulate this constraint, we assume flavor symmetry {20] of hadrons to
be SU(4) for the sake of simplicity. Now, we consider a hadron specified by its actual
spin J, SU((4) quantum numbers 7 (isospin), S (strangeness), C (charm) and the quantum
number R; its 7 or(and) J being odd-half integral. With this hadron we associate the
quantity (— 1)**' which is a rotational invariant in isospace where K, is a c-number. With
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TABLE 1

The predictions on the nature of production of some normal particles and their supersymmetric partners
by the constraints given by relations (9) and (10). The relation (9) is applicable for particles having odd-half
integral isospin I or (and) actual spin J

t

i Nature of ! Nature of
Normal particle and its J production ! production Overall nature of
supersymmetric partner according to : according to production
relation (9) i relation (10)

r 0 | free free
T 1/2 suppressed 3 suppressed suppressed

K 0 free ! free free
K 1/2 suppressed ‘ suppressed suppressed

(charmed D 0 free ‘ free free
mesons) D 12 suppressed ‘ suppressed suppressed
(charmed F 0 | suppressed suppressed
mesons) F 1/2 free ; suppressed suppressed

(nucleons) N 1/2 f free { free free
N 0 ! suppressed | suppressed suppressed

(strange A 1/2 free free free

baryons) A 0 free free

(charmed A, 1/2 free free free
baryons) A 0 suppressed suppressed
(charmed X 1/2 suppressed : suppressed suppressed
baryons) ¢ 0 suppressed suppressed

TABLE II

The predictions on the nature of production of some non-hadrons and their supersymmetric partners
by the constraints given by relations (9a) and (10a). The relation (9a) is applicable for a particle having
odd-half 7, (weak isospin) or(and) J (actual spin)

1 Nature of i Nature of
Normal particle and its ‘ production production Overall nature of
supersymmetric partrer | 7 | according to according to production
‘ i relation (9a) relation (10a)
(lepton) 1 ‘ 1/2 3 free free 1 free
(scalar lepton) 1 ‘ 0 suppressed free i suppressed
(photon) ¥ i 1 free free
(photino) v } 12 free free free
t
W=, Z0 \ 1 ‘ free 5 free
W+, Z° ‘ 1/2 suppressed suppressed ] suppressed
(Higgs boson) H J‘ 0 suppressed suppressed suppressed
(Higgs fermion) H | 1/2- free suppressed suppressed




592

the same particle we can also associate the quantity (— 1)** which is a rotational invariant
in actual spin space where K, is a c-number. If, further, X, and.K, are so chosen that
both of them are c-number in isospace and zctual spin space as well, then, the following
conclusions can be drawn regarding the combination (— 1)/ +(— 1)/, Obviousiy, the
first term of this combination is an invariant under rotational transformations in isospace
to which the second term does not respond and as such the latter may be treated as a con-
stant quantity. On the other hand, under rotational transformations in actual spin spacc
the first term of the above mentioned combination behaves as a constant quantity whereas
the second term is an invariant. It is worth recalling in this context that invariance property
of a quantity is not affected if we add to it a constant term. This in turn implies that

(=¥ (= D*’ = invariant (i)

under rotations in isospace or actual spin space.

In order that the invariant, defined by relation (1), may be physical it has to possess
a real value. This in turn means that both K, and K, occurring in relation (1) can admit
non-zero even integral values as we are considering a hadron having odd-half integral
I or(and) J. Obviously, the minimum value admissible for both K, and K} is 2. If, however,
we set K, = K, = 2, then, the invariant concerncd remains rcal as desired. For this choice
of the values for K, and K, the invariant concerncd involves [ and J which are not sufficient
for specifying a non-ordinary hadron. Therefore, in oider that the invariant may be useful
for an ordinary as well as a non-ordinary hadron and their supersymmetric pariners, one
of the quantities K, and K, should be ¢xpressed in terms of the scalar quantum numbers
indicated below

K, = (B+S+C+R+X)| and K, =2 (2)

where B denotes baryon number, S strangeness, C charm and R the quantum number
relating to R-symmetry. The quantity X is necessary for the reality of the invariant as well
as to ensure a non-zero value of K. The admissible valucs of X may be obtained by exploit-
ing these conditions along with-the more explicit form of the invariant shown below.

(= DIBFSTEFRENND 4 (—1)*) = invariant. 3)
Now, taking into account the quantum numbers of the well known normal hadrons (for
which R = 0) which are spinors in isospace or(and) actual spin space, it is easy to check
that the allowed values of X are given by [16-18]

X = 42, +4, +6, ... for isobosons
= 41, +3, +5, ... for isofermions, (4)

where + sign refers to a particle and — sign to an antiparticle.

To proceed further we may note that the numerical value of the invariant can be
either 0 or 2. Now, wec demand that a hadron, which is a spiner in isospace or(and) actual
spin spacg, to be freely produced it is essential (but not sufficient) that the invariant must
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have the value 0 i.e.
| (__1)|(B+S+C+R+X)I(I)+(_1)21 = 0. (5)

Obviously, relation (5) can be recast as

. (_1)|(B+S+C+R+X)|(I) — (_1)(21ii) (6)

by writing (—1) = (= 1)*' where both + and — signs have been used in the index for
the sake of generality. As the quantity (2/4 1) does not possess a unique sign when J = 0,
we consider its magnitude and accordingly modify relation (6) as

(_1)((B+S+C+R+X)|(1) _ (_'1)|(2Ji1)]' N

This relation clearly indicates that as the bases are unity we cannot in general demand
the equality of the powers of the same. However, with a proper choicc for the value of
X from its spectrum of allowed values given by relation (4), we can equate the powers
of both sides of relation (7) to obtain the following constraint.

(B+S+C+R+X)|() = |(2J£D)|, @®)

where + sign holds for a hadron having I # 0 and — sign for a hadron having I = 0.
For convenience of future use, we rewrite relation (8) as

2QJ+1)|, I#0

(B+S+C+R+X)|(I) = {|(2J—1)|, I=o, ©)]

where, as mentioned earlier, the value of X should be chosen from its admissible values
indicated by relation (4). We repeat to emphasize that relation (9) is applicable for a hadron
having odd-half integral I or(and) J. For such a hadron relation (9) must hold true in order
that it may be freely produced. Otherwise production of the hadron concerned is forbidden
and, consequently, suppressed. It is easy to check that relation (9) is satisfied for the charmed
meson D (for which B=0,8S=0,C=1, R=0,1=1/2, J=0) with X = +1. This
hadron, therefore, should be freely produced according to the constraint described by
relation (9). The same constraint, however, is not satisfied for its supersymmetric partner
D withB=0,§=0,C= +1, R= +1,1=1/2, J = 1/2) for any one of the values of
X for an isospinor given by relation (4). Conscquently, this s-particle must undergo suppres-
sed production. Also, the same constraint is not satisfied for the charmed baryon X, (for
whichB=1,S=0,C=1I,R=0,1=1,J = 1/2). This is bccause for this baryon, which
is an isoboson, we cannot find any value of X from its allowed values for isobosons indi-
cated by relation (4) for which the constraint i.e. rclation (9) may be satisfied. As a necessary
consequence of this, production of X, should be forbidden. This in turn mecans that X,
should undergo inhibited production as claimed by the constraint described by relation (9).
This claim, necdless to mention, is justified by experiments- [21, 22]. As can be
easily checked, the same constraint also predicts that production of £, (having B = +1,
§S=0,C=+1, R= +1, I =1, J =0), the supersymmetric partner of T, must suffer
inhibited production.
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As the constraint discussed above is of restricted validity, we require -a' constraint
which should be applicable in production of all hadrons. To formulate such a constraint
we consider, as before, flavor symmetry of hadrons to be SU; (4) for the sake of simplicity.
For the moment, we confine our attention to the hadrons belonging to-the 0~ and 3+
SU; (3) multiplets. For these particles (for which the quantum number R = 0) we consider
the linear combination [(2/4S+ R)| where + sign refers to a particle and — sign to an
antiparticle; I denotes isospin and S strangeness. This combination exhibits the following
interesting property for.the hadrons referred to above. Its value is odd integral for all the
particles belonging to the 3+ multiplet and the same is even integral for all: the particles
of the 0~ multiplet. To be more specific,

[(2I+£S+R)| = 1 for an actual fermion
= 2 for an actual boson having I -0
= 0 for an actual boson having I = 0.

Further, all the hadrons mentioned above are conspicuous for their free production.
From these considerations, we demand that a hadron, be it a particle or a s-particle, may
be freely produced if its SU,; (4) and R quantum numbers satis{y the following constraint.

|(2QI£S+C+R)| = 1 for an actual fermion
= 2 for an actual boson having / # 0
= 0 for an actual boson having / = 0, (10)

where C denotes charm; -+ sign refers to a particle and — sign to an antiparticle. This
constraint is of general validity as it is applicable for all hadrons.

One interesting feature shared by both the constraints discussed above is that they
are of non-dynamical origin. This is becausc they involve the internal quantum numbers
(, S, C, R) but not their variations (i.e. 41, A4S, etc.). Needless to mention, dynamical
constraints concern themselves with the variations of the internal quantum numbers (like
Al = 0, A4S = AC = 0, etc. in strong interaction, for example). As is well known, non-
-dynamical constraints have a special advantage over dynamical ones as the former
are applicable in all interactions. Therefore, the constraints of qur interest are valid in all
possible production mechanisms of a hadron.

In Table I have been shown individual predictions of the two constraints on the nature
of production of some well known hadrons and their supersymmetric pariners. The internal
quantum numbers of the s-particles exhibited in this table have been assumed to be identical
to the same. for the corresponding normal particles as in simple supersymmetric theorics.
The last column of the same table shows the overall nature of production of the particles
under considerations. In passing we may note that if production of a particle is forbidden
(and as such suppressed) by any one of a set of constraints operative in its production,
then, the overall status of its production turns out to be that of a suppressed particle even
if 'its production is allowed by the rest of the constraints. :

We now turn our attention to non-hadrons which are specified by the guantum nuin-
bers I, (weak isospin), J (actual spin), L (lepton number) and R (which is the quanium
number associated with R-symmetry) with R = O for a conventional particle. To investigate
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production behavior of the particles now under considerations we require the analogs
of the constraints given by relations (9) and (10). The desired analog of relation (9) is easily
obtained by the replacement B —» L, ] — I and setting S = C = 0 in relation (9). Clearly,
the analog of relation (9) reads

(L+R+X) () = 1QJ+DI, [, #0

=|J-1), I, =0, (%)

I

where the value of X should be chosen from its spectrum of allowed values [18] indicated
below.

X = +2, +4, +6, ... for weak isobosons
= +1, +£3, +5, ... for weak isofermions,

where + sign refers to a particle and — sign to an antiparticle. It may be stressed that the
constraint given by relation (9a) is applicable to a particle having odd-half integral I, or(and)
J as this relation is obtained from relation (9) which is valid for a particle having odd-half
integral I or(and) J. Finally, the analog of the constraint given by relation (10) may be
obtained by the replacement / — I, and setting S = C = 0 in relation (10). This analog
reads [18]

|[(2I,+£R)} = 1 for an actual fermion
= 2 for an actual boson having 7/, # 0
= 0 for an actual boson having I, = 0. (10a)

This constraint is of general validity as it is applicable to all non-hadrons. In passing we
may also note that the constraints given by relations (9a) and (10a) are non-dynamical
ones as they happen to be the analogs of the constraints, described by relations (9) and
(10), which are so.

The individual predictions of the constraints given by relations (9a) and (10a) on the
nature of production of some familiar non-hadrons and their supersymmetric partners
have been shown in Table II. The internal quantum numbers of the s-particles exhibited
in this table have been assumed to be identical to the same for the corresponding normal
particles as in simple supersymmetric theories. The last column of the same table displays
the overall nature of production of the particles concerned.

A close inspection of Tables I and II reveals that out of those s-particles displayed
in these tables only one hadron i.e. A (in Table I) and only one non-hadron i.e. photino
¥ (in Table IT) may be freely produced and the rest of such particles must undergo suppres-
sed production. In sharp contrast to this, most of the normal particles exhibited in these
tables may be freely produced. From these considerations one can conclude that free pro-
duction should be a rare phenomenon for s-particles whereas the same should be witnessed
in majority of the normal particles. This conclusion remains valid for all other normal
particles and their supersymmetric partners not shown in Tables I and IL. This point can
be easily checked.

We now examine the implications of production behaviours of s-particles on their
observability. To discuss this point we confine our attention to the relatively light s-particles
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which include photino as well as scalar electrons and scalar muons. As reflected in Table I,
photino is predicted to be freely produced by both the constraints given by relations (9a)
and (10a). However, as evident from the same table, scalar electron and scalar muon must
suffer suppressed production as their production is forbidden by the constraint given
by relation (9a). As is well known, suppressed production of a particle has the implication
that its production cross section should be appreciably less than what is expected for the
same if this particle could be freely produced. Stated differently, production cross section
of a suppressed particle should be significantly less than its theoretical value (estimated
on the assumption that the particle concerned may be freely produced). This in turn means
that the number of events in which a suppressed particle may be detected will be less than
that if it could be freely produced. Needless to mention, the number of events in which
a particle may be seen is related to its effective production cross section. From what have
been discussed above it is clear that the feasibility of experimental detections of scalar
electrons and scalar muons is reduced appreciably due to their suppressed production.
The situation, however, is different for photino as its production is not inhibited at all.
This apart, as already mentioned, photino is expected to be the least massive {15] of all
s-particles. Therefore, from the considerations of its mass as well as its production behav-
iour, we can conclude that photino enjoys the status of the best candidate for experimental
search of s-particles.

To summarize, we have investigated production behaviours of the supcrsymmetric
partners of some normal particles. This investigation reveals that photino is one of the
few s-particles which may be freely produced. Furthermore, its mass as well as its produc-
tion behaviour clearly indicate that photino is the best choice for experimental search of
supersymmetric particles.
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