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PHENOMENOLOGICAL SUPERPARTICLES*

By W. KROLIKOWSKI
Institute of Theoretical Physics, Warsaw University**
( Received September 29, 1987}

The concept of a phenomenological superparticle is discussed as a base of an “engineer-
ing approach’ rather than a recourse to first principles. It is a hypothetical object described
by the position four-vector and a Dirac bispinor as well as three dynamical variables respon-
sible for color and two responsible for flavor. Then, the spectrum of such a superparticle
arises from an interplay of three types of excitations related to spin, color and flavor. All
leptons and quarks are presumed to correspond to the spin-1/2 sector of this spectrum. Two
flavor dynamical variables obeying Fermi statistics generate in a natural way a lefthanded
SO(5) group that unifies the electroweak SU(2) with two lepton and quark generations.
Two other generations appear as a spin excitation of the two former. A form of the effective
mass operator is tentatively proposed in order to describe the mass spectrum and mixing
parameters of leptons and quarks in consistency with experimental data.

PACS numbers: 11.30.Hv, 11.30.Ly, 12.90.+b, 12.50.Ch

1. Introduction

Under the name of a phenomenological superparticle [1] we will understand a hypo-
thetical physical object described by the position four-vector x*, u = 0, 1, 2, 3, and a Dirac
bispinor y,, « = 1,2, 3,4, (and their canonical momenta p, and §, = (y*),) as well
as dynamical variables responsible for color and flavor. On the level of quantum mechanics
or the first-quantization level all these dynamical variables are operators acting on the
state vector ¥ of the superparticle. In particular,

{x’: pv] = _16‘:" [X“, xv} =0= [p;n pv} (1)
and

{%, fpﬁ} = 5aﬂ’ {wm 'Pp} =0= {q-)ua qjﬂ}' (2)
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In the Heisenberg picture they depend on the proper time t and act on the t-independent ¥,
while in the Schrédinger picture they become 7-independent and are acting on the ¥(1)
that, in principle, satisfies the state equation

idi'r: ¥(r) = #Y(r), €))

but, in fact, is also-z-independent being subject to the constraint [2]
HY =0. 4

In general, the phenomenological superparticle is not (and need not be) supersymmetri-
cal in four (and in any) dimensions. This is in contrast to the supersymmetrical superparticle
extensively discussed recently as a zero-mode, pointlike approximation to the supersym-
met-ical superstring [3]. It may happen that the idea of superstrings is not physically justi-
fied, while the concept-of phenomenological superparticle is still pretty well applicable.
There is an essential point that may make the phenomenological superparticle physically
different from a zero-mode, pointlikc approximation to the supersymmetrical superstring,
namely, the possibility of low-energy excitations of the former with respect to the spin
degrees of freedom described by y,. In fact, we conjecture in the present paper the existence
of such low-energy spin excitations (cf. Table I).

As it shall be clear from the further context, the concept of superparticle can be viewed
as arising — through an act of algebraic abstraction — from the idea of composite particle.
In a somewhat analogical way the concept of spin has arisen from. the idea of orbital
angular momentum. Thus, there is an analogy between the two logical transitions

orbital angular momentum — spin

and

composite particle — superparticle
(cf. Ref. [4]).

We will establish the dynamics of our superparticle by assuming that its wave equation
given by the constraint (4) has the generalized Dirac form which in the free case is

(Pyy-p—m)¥ =0, (%

where (y*) = (8, ) are Dirac matrices and m denotes an effective mass operator. In the
position representation ¥ = ¥(x) as then p, = i6/0x". The wave function ¥ can be repre-
sented in the “intrinsic Fock space” (cf. Ref. [4]) spanned on the basic vectors

<0},
ol = {0}y,

1
== —eeen OI (1] L)
Caq0,] \/2!< [¥a, Va,
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+ . 1 T
<a| = Eyyia21s i <Oi%,%2%3a
3!

. 1
<OI = 81;:31319 7:~ <Oxw1xwlzw13w14' (6)
V4!

These basic bras correspond to the possible consccutive Fermi excitationsn = ¢y = 0,1, 2,
3, 4 (where Py = i,y,), resulting into spins s = 0, 1/2, 0, 1/2, 0, respectively (spin 1 is
excluded by antisymmetry of {x,a,]). Note that here (a!f> = <0!y,y; (0> = B,, due to
Eq. (2) and <Oly; = 0.

In the general case when then mass operator m may mix the basic vectors (6) of the
same spin, the wave equation (5) reduces in the representation (6) to the following set of
three nontrivial component wave equations involving the wave-function components
Y™ related to n = Py = 1,2,3 and so to s = 1/2,0, 1/2, respectively:

(7 - p~m)Pn) = RUDPS), 7
[(r1+72) - p—mP]¥? = 0, (3)
(,},T . p—r?z‘”)?’“’ - "‘2(31)?,(1)’ 9)

where m'® = m3Y*_ Note that for n = 0 and n = 4 the kinetic term Fyy - p in Eq.
(5) vanishes (though, in general, not necessarily ¥ = 0 if m'” = 0 as maybe expected; on
the other hand, ¥ = 0 if m'*’ s 0). In Eq. (8), (+}) and (%) are two commuting sets
of Dirac matrices, so that * = } (y{+73) are the Duffin-Kemmer-Petiau matrices [5]
(but spin 1 does not appear because of antisymmetry of ¥®' in Dirac indices o, and a;).
In Eq. (9), y*T = ~C-'y*C where C is the charge conjugation mat.ix (C-! = C* and
C' = —C). Of course, {*7,7'T} = 2g* as well as {3, 7"} = 2g"".

In the present paper we propose to interpret all leptons and quarks as spin-1/2 mass
eigenstates of the phenomenological superparticle. To this end we introduvce some color
and flavor dynamical variables for our supeiparticle and tentatively propose a form of its
effective mass operator m.

2. Leptons and quarks as superparticle eigenstates

We presume that the color and flavor can be described, on the level of quantum
mechanics, through the operators ¢, 4 = 1,2, 3, and &,, a = 1, 2, respcctively, that satisfy
the anticommutation relations

{CAv C;} = 5‘489 {CA9 CB} = 0 (IO)
and

{éua 5:} = (snbs {é’a’ fb} = O (11)
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Further, we assume that the color and electric charge of a phenomenological superparticle
are given by the operators

Fi=%c%c (12)
and

Q= -&lh+ice (13)

respectively, where 4, i = 1, ..., 8, are {charge conjugated) Gell-Mann matrices. Other
electroweak charges will be identified later (cf. Eqs. (16) and (17)). It follows from Egs.
(10) and (12) that ¢ (when acting on the vacuum ket) transforms as a triplet under
the color SU(3) generated by F,. On the other hand, transformation properties of &)
(acting on the vacuum ket) under the electroweak SU(2) ® U(1) will be determined later.

Now, we can see that beside the “intrinsic Fock space™ given by the basis (6), there

are defined for our superparticle two extra “intrinsic Fock spaces” spanned on the basic
vectors

color
<0j, 1
(A} = <0lcy, 3*
, 1
(A] = <Ole pc —== cgtcs 3
NDY
, 1
<0} = <0le pc —= cacptc 1 (14)
V3!

corresponding consecutively to the Fermi excitations c*¢ = 0, 1, 2, 3, (where ctc = c;c,)
and

<01,
{al = <0l¢,,
. SR S
0! = <0iez —= <uls (15)
V21!

that correspond consecutively to the Fermi excitations ¢-¢ = 0, 1, 2 (where &+¢ = &) &,).
In Egs. (6), (14) and (15) the vacuum bra (0! denotes three different vacuum bras ,(0i,
0] and ,O{ with respect to three sets of Fermi annihilation operators y = (y,), ¢ = (c,)
and ¢ = (&,), respectively: ,(Oy; =0, (0lc; = 0 and 5(0&5: = (. The full “intrinsic
Fock space” for our superparticle is spanned on the tensorial product of three bases (6),
(14) and (15) (the full vacuum bra is ,{0] (0] <0}).

Then, it can be seen that the color and charge content of the “intrinsic Fock subspace”
of n = Py = 1 is identical with that of four generations of leptons and quarks (including
the three familiar generations). In the case of such an identification the remaining spin-1/2
“intrinsic Fock subspace” of n = $p = 3 would imply the existence of four extra genera-
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tions of leptons.and quarks that, when charged, should be much heavier than, at least,
the three familiar generations. However, in this case, the Cabibbo-Kobayashi-Maskawa
mixing of quarks would require a complicated mixing of ‘basic vectors involving {a| (4]
and charge conjugate. of (x| {A| (cf. the color assignment of {4| and ‘(4| in Eq. (14)).
Since such a mixing would be impossible in our formalism, we choose another option,
where four generations of “conventional” leptons and quarks (including the familiar three
generations) are given by the “intrinsic Fock subspace” of both n = $p = 1 and 3, but
only with ¢t¢ = 0 and 1. The remaining spin-1/2 “intrinsic Fock subspacc” of n = Py = 1
and 3 with ¢tc = 2 and 3 predicts the existence of four extra generations of ‘‘mirror”
leptons and quarks that, when charged, ought to be much heavier than, at least, the familiar
three generations. In this case, the Cabibbo-Kobayashi-Maskawa mixing of quarks requires
only a simple mixing of the basic vectors involving {a| (4| and (x| (4| and so correspond-
ington=1, ctc =1 and n = 3, ctc = |, respectively.

Note that the “intrinsic Fock subspace” of n = {y = 2 gives a rich spectrum of spin-0
particles that are not intended to be discussed in the present paper.

-Going over:to details we propose to make for leptons and quarks the identification
presented in Table L

In Table I, v,,, o and h, f denote the leptons and quarks of a new fourth generation
that appears here beside the familiar generations i.c., the first: v,, e~ and u, d, the second:
v,, b~ and ¢, s and the third: v,, T~ and t, b. In addition, there are predicted four extra
generations of “mirror” leptons and quarks distinguished by the prime-sign from the
“conventional” leptons and quarks. In Table I, beside Q, color muitiplicity, c*c, ETE,
and &; &,, there is indicated also the difference of baryon and lepton numbers, B—L, as
defined in Eq. (18). The essential physical conjecturc made in Table I is that leptons and
quarks of the second and fourth generation are spin excitation n = 3 of leptons and quarks

TABLE 1
Full list of possible leptons and quarks

} <l E "¢l Q i Color B-L cte &te, £fe,
<01 <0} ‘ Ve a 0 ’ 1 -1 0 0 0
Ay | d s 3| 3t -1/3 1 0 0
K IR B ¢ o3 | 3 13 2 0 0
o1 L e uT 11 1 3 0 0
O<al v e ove, wm | 0, -1 | 1 -1 | 0 1,0 0, 1
<Ai<al ' b, u f, c 13, -2/3. 3% -1/3 1 1,0 0,1
Al <al U, & h,s 23, -13 3 1/3 2 1, 0 0,1
‘Ol <ai e vyl 1,0 11 1 3 1,0 0,1
R I N S s B S | -1 0 1 1
A0}t ©h ] -2 3% —1/3 1 1 1
AV, b 13 3 /3 2 (O
70} *<0 A 1 1 3 11

For example: the basic vectors <%| {A| <a] and "<x| <Al <a| with a = 1, 2 correspond to the pairs b, u and
f, ¢, respectively.
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of the first and third generation, respectively, which in turn are spin excitation n = 1| of
the vacuum state.

From Table I and Eq. (13) we can read off that in the “intrinsic Fock subspace”
of n = Py = 1 and 3 the weak isospin T and weak hypercharge ¥ which generate the electro-
weak SU(2) ® U(1) group are given by the operators

1 =3+ s (—eps) = 31, 3 (L—epy),

o

I, = 2(53—5;)%(1—8?5) = 3127 (1—eps), (16)
Iy = (3-&8) 3 (1—eys) = S 13 5 (L—eys)
and

1Y =G-8 F(l+ey)+icte~3. (17)

Here, ¢ = 41 or —1 when it is acting on basic vectors representing fermions or anti-
fermions, respectively (cf. Table I). Thus,

Q= -G+t cte =147,
1(B-L)=1Lcte-1, (18)

the last formula defining the difference of baryon and lepton numbers, B—L. Due to the
sign operator ¢ in the definition (16) of | all leptons and quarks, both “conventional”
and “mirror”, are coupled to W weak bosons through lefthanded currents. This is in con-
trast to the other “mirror” leptons and quarks (having righthandcd coupling to W) that
are sometimes introduced in grand unification theories in order to construct — jointly
with the “conventional” leptons and quarks — real representations of unifying groups
(e.g. of SO(n) groups with n # 4v+2 where only real spinor representations exist).
It is interesting to remark that the operators

Hl"%( S: ) (1—33’5)—2/12(1 €7s),
($1—¢0) + (L—eps) = § 42 3 (1 —ev9), (19)

Hy =G —¢léNi—eps) = Ly T (1 —eys)

generate a lefthanded horizontal SU(2) group that commutes with the second factor of the
electroweak SU(2) ® U(1) group, but does not commute with its first factor. In fact,
{I,, H} = 0 for k, ! = 1, 2, though [/,, H;] = 0 and [/;, H,] = 0 for k,/ = 1,2, 3. Note
that in terms of 2x2 Pauli matrices the operators 1, and y,, k,/ = 1, 2, 3, introduced
in Egs. (16) and (19) may be represented as follows:

T, =001, 1,=0,81 1;=0;®1 (20)
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and

11 =030y, ) = 0380, )3 =1Q®0;. (21)
The new SU(2) is a horizontal group for two pairs of fermion generations scparately:
for the first and third (where n = 1) and for the second and fourth (where n = 3).

The minimal compact group containing both the electroweak SU(2) and the horizontal
SU(2) as its noncommuting subgroups is the lefthanded SO(5) group generated by the
operators: [, H, k,I = 1,2,3, and 2i[.H,, k, | = 1, 2. It is locally isomorphic with a left-
handed Sp(4) group (for a discussion of the use of simpletic groups Sp(6) and Sp(8) as
cxtensions of the electroweak SU(2) in the case of three and four generations, respectively,
treated on the same footing cf. Ref. {6]). Ten matrices § 7,, + z,, k, { = 1, 2, 3, and % it.y,,
k,'=1, 2, generate a nonchiral SO(5) (its spinor representation) that is the diagonal sum
of the previous lefthanded SO(S) and the analogically defined righthanded SO(5). Here,
T = O ticynt, and  yy = Syt iEymxm but {7, x} =0 for k,I=1,2, though
[t 23] =0and [t5, ] =O0for k, [ = 1,2,3. Thus ¥ 7,, k = 1,2,3,and L y,, [ = 1,2, 3,
generate two nonchiral SU(2) groups, one vertical and one horizontal, respectively, that
are noncommuting subgroups of the nonchiral SO(5). Note that the operators § ¢+, ¢,
k=1,2,3, where o, arc 2x2 Pauli matrices, generate another nonchiral SU(2) group
which is the third SU(2) subgroup of this SO(5), noncommuting with two previous SU(2)
subgroups. Here, {*a,& = §i(t, 3, —1201), £102¢ = T i(tix +T2%2) and Era,¢ = § (13~ 13).
The operator 1 —&+¢ = 1 (75 +y5) is an invariant of this third SU(2) subgroup.

Taking for example the “conventional” leptons, the action of three spin-type vectors
17, 1% and 1 ¢+6¢ may be depicted ‘as follows:

¢ !
- >
/ : f :

+ - +>

] ]

yf-o(vg g>oe" Y, 0 € : §>0#“

\ % A\ 7

() °

T w-

The transitions v, <> 7~ as well as v, <> ®~ are generated by the operators  i(t, ), +7,);)
= &8 +E78s and S ity —T22) = U(E.E, — &} &;) that together with § (134 x3) = 1 — &+
define the fourth SU(2) subgroup of SO(5), commuiing with the third. Of the twelve
4 x4 matrices active in the above diagram only ten are linearly independent because of
E*o3¢ = L (13—y3). These ten generate the nonchiral SO(5) (its quartet representation)
which is just a part of the group of our algebraic abstraction leading from the idea of
compositc particle to the concept of superparticle in an analogical manner as the act of
abstraction based on the group of spatial rotations SO(3) has led the way from the orbital
angular momentum to the spin (cf. a remark in Introduction).



606

Of course, the electroweak SU(2) ® U(1) group is embedded in SO(5) ® U(1), where
SO(5) is our lefthanded group. Such an SO(5) ® U(l) may be broken down to SU(2)
®U)® U'(1) and further to SU(2) ® U(l) and Ugy (1), where U'(1) is an extra U(1)
gencrated by H;. Thus, the group SO(5) ® U(l), if it was a broken gauge group, might
be a broken unification group of electroweak and horizontal interactions. In our case, these
hypothetical horizontal interactions would operate separately between the first and third
generation (where n = 1) and between the second and fourth generation (where n = 3).
Being an orthogonal group, SO(5) is anomaly safe. For eachn = 1,3 and ¢tc = 0, 1, 2, 3
it has one real spinor representation (one real quartet) only. Due to the factor U(1) in
SO(5) ® U(1) this quartet becomes a complex quartet for SO(5) ® U(l).

In the case of SO(5) ® U(1l) being a broken gauge group there would exist seven
massive horizontal vector bosons (four charged and three neutral) in addition to the familiar
four electroweak vector bosons W+, W-, Z° and vy. Six of these seven horizontal vector
bosons would be coupled to flavor-changing currents: four to the charged ones correspond-
ing to 2il,H,, k,1 = 1, 2, and two to the necutral ones corresponding to H, and H,. The
seventh would be coupled to the flavor-conserving neutral current corresponding to H,,
the generator of our extra U(1). Some of these horizontal vecetor bosons should be much
heavier than the weak vector bosons W+, W~ and Z° in order to suppress potentially
dangerous processes. It would be certainly true for the horizontal vector bosons coupled
to the flavor-changing neutral currents. In contrast, the horizontal vector boson coupled
to the flavor-conserving neutral current (cf. Appcndix) might be rather light having mass
2 100-300 GeV because it would be a particular realization of the extra Z° (for a general
discussion of the extra Z° cf. Ref. [7]).

3. Mass operator

Looking at our Table I of leptons and quarks we can see that their spectrum results
from an interplay of four types of Fermi excitations: spin excitation n = @y = 1, 3,
color excitation N = ctc = 0, 1, 2, 3 and flavor excitations 7 &, = 0,1 and £5¢; = 0, 1,
the last excitation being in fact the charge excitation Q = —¢&; &, +4 ¢*c at any fixed
ctc. Observe that 1 —¢7&, = § (1 +yx;5) and & &, = 1 (1 —y3) are the projection operators

H
upon states with &7 &, = 0 and & &, = |, respectively, while &, + &7 = 1, — (&1~ ¢7) = 12,
i

1-2¢7 &, = y5 generate the nonchiral horizontal SU(2) that is a subgroup of the nonchiral
SO(5). Note also that O = Yr3+4cte—% and &8¢ = E[E,+E5¢E, = 1—% (13+13).
Thus, in constructing the effective mass operator for the phenomenological superparticle
we have to our disposal the following operators not changing its spin, parity, color, electric
charge and B-L: 1° scalars built of y and ¢, 2° c*c, &5 &, and &4, €7 or — in place of the last
four — c*e, t3 and xy, )2, ¢» of which cte, t; and x5 are diagonal. In our constructing,
the zero mass for neutrinos will be required, what maybe an excellent approximation at
least.

Then, after a guesswork, we tentatively propose the following form of effective mass
operator for our superparticle that parametrizes masses and mixing angles of all its eigen-
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states:
G [m™M LA +x)+M™ F(L—x3)]Pw

+ O [AM L (14 13) + 4D 3 (1= 1)] 5: (Fr)*: (22)
+QF(0{"1; + 08 x; + 0813 (Pee 2Byd = \/— Yy, ¥s+hic),

where m™, M, A™ A® and o'V, 0, 0 (with N = ctc = 0, 1, 2, 3) are real constants
of mass dimension (that will be chosen as positive) and: (Pyy)*: = (Pyy)* — 4Py denotes
the normally ordered product. Here,

. 23 2 _ 1 3 _fo for N=0,3
F—F_4ZFi L N3 N)-U for N—1.2 (23)

i

is the normalized quadratic Casimir operator of the color SU(3) group and G is conjectured
as G = Q+F™M1;+ M y;) with some real numbers o™ and ™. In our calculations
we will try the assumption that o« = ™ = 1. Then

G =Q+F 5 (t3+2)

Q for N=0,3 and for N =1,2 with ¢*¢ =1,
£, , for N=1,2 with ¢¥¢=0, (24)
—-5,-% for N=1,2 with ¢*¢=2,

b

where {a, b} = a or b if |Q| = 2/3 or 1/3, respectively. Thus, G* = Q? for leptons and
foru, c, b, fand d’, s’, t', h’, while G®> = 25/9 for u’, ¢/, t, h and G®> = 16/9 for d, s, b’, {’
(cf. Table ).

When neglecting for the moment the mixing of n = 1 and n = 3 (for quarks) by the
third term in Eq. (22), we obtain in the case of four generations of “‘conventional” leptons
and quarks i.e.,

1. n=1, ¢&¢ =0:<Z°_> and <
v“.) and <
n

) and <
v'},’,_) and (
o

[~a =%

G Ol »wj
N’ N——_——

=2 Baurl}
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the following masses parametrized by m™, M®, ;™A™ with N = ¢te = 0, 1:

1 (21(0)> ’ (;i;ﬁi)i )> ) (25)
> <?3rn‘°’ - /‘L“”l) ’ (%;6;;1’:1‘(’1)——%é}_‘;1(’1\)i) ’ (26)
3. <(,)W(o ») s (é O_shg;()l )) s 27
4 (,03 MO — 4@ |) ’ (é{w:;:l,__%‘%/l:f;,_) , (28)

respectively. Thus, our predictions based on formulae (22)-(24) are in this case

m,_ = my, =my,=m, =0 (29)

and
my:mg=1:4, m :mg>=4:1,
mermy =25:1, myimp >4 (30)
because 4" » m'V and AV> MY (as here 2P = Im.+%-m, and A = 9Im;
+27my,, while m" = 3 m, = %emyand MD = Zem, = 9m,). So, putting m_, ~ 1.5 GeV
and m, ~ 5 GeV we predict m, ~ 0.37 GeV and m, ~ 125 GeV. Note that in the predic-
tion (30) the inequality of up and down quark masses for the first generation is correctly
reversed in comparison with that for higher generations, though the ratio my/m, = 4
is too high (this ratio will be changed when the mixing term in Eq. (22) is switched on).
Masses for the predicted “mirror” leptons and quarks are also easily obtained if we

neglect for the moment the mixing of # = 1 and n = 3 (for quarks). For their four genera-
tions i.e.,

+7 ’
— ste . ¢ < u
1. n=1, ¢/¢& -0'(\3;) and (d')’

+ 7
e o}
4. n=23&é = 1:<§, ) and

we get the following masses parametrized by m‘™, M™, ;™A™ with N = ¢7c = 2, 3:

m® 25
. 31
l (0 > E (% ’71(2) s ( )
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]3m(3)—i(3)l |2_3 2) 4 2)
2. <0 s i%’ (2)_% A’(Z){ ’ (32)
3. M® A MP
(0 , o po) (33)
|3M(3)_A(3)| Ii M(2)_5_ A(Z)i
4. (0 I s Ij?q M(2)_9% A(2)| s (34)

respectively. In particular there are four “mirror” neutrinos (with N = ctc = 3) of mass
zero, giving together with four “‘conventional” neutrinos (with N = c¢t¢ = 0) the total
number of eight massless neutrinos. All of them are neutral spin-1/2 eigenstates of our
superparticle.

4. Quark mixing

Switching on the third term in the effective mass operator (22) we introduce for quarks
the well known phenomenon of generation mixing. In the case of Eq. (22) no such phenom-
enon could appear for leptons (even if neutrino masses were nonzero and nonequal)
since for them F = 0. Note that even without the factor F in the mixing term there would
be no effective lepton mixing because neutrinos would be still massless, and thus degenerate,
due to the factor Q in the mixing term.

Then, labelling rows and columns of the appropriate mass submatrix m™ or e
in the up and down sector of “‘conventional” quarks by u, ¢, t, h or d, s, b, f, respectively,
we obtain from Eqs. (22)-(24) (suppressing the superscript N = 1 in the parameters):

im % o, 0 ~-iw
m® = -%o} tm-%. -%o 0 (35)
0 2 5N 2, ’
“for 0 Fof M-t
18 m 1o, 0 lo
m@® — ol Em—g2 Fo 0
0 1 o* M —Llo, ’
1 o* 0 1o} iM-14

where = w, +iw, and so w* = ©, —iw,. Here, % = w,. If m and A were zero, the mass
matrices (35) would be of the Fritzsch type [8] with a trivial choice of phases. In our
approach, 4 is expected to be quite large, larger than |w]|.

Denoting by U™ and U'¥ the unitary matrices that diagonalize the Hermitian mass
matrices m™ and m?,

myga O 0 0
~ 0 —-m 0 0
(u,d)+ B (u,d)rr(ud) _ c,s
U m®9y 0 o m, o0 | (36)
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we can write the four-generation counterpart of the Kobayashi-Maskawa mixing matrix
[9] as ¥V = UM U, 1t transforms the down states d, s, b, f into the mixed down states
dw. Sw, bw, [w appearing in weak interactions along with the up states u, ¢, t, h. Thus,

dW Vud I/us Vub I'}uf \ d
Sw Vcd I/cs }cb ch S
. = , ; 37
bw| (Vo Vo Vil 37
fw ; Vaa Vas Vao Vae/ \f

or ¢ = ¥q'¥ for short. The minus sign at m, and m,( in Eq. (36) is consistent with
the minus sign at y* - p in Eq. (9), though sign at the mass in a Dirac equation is irrelevant.
In order to calculate for our superparticle the generalized Kobayashi-Maskawa matrix

¥ we split the mass matrices (35) into two parts m®® = m§»? +m®?, where
0 0 0 o
- 0 0 o o
& _
m P = -G, =g . 0 ol (3%)
©* 0 0 0

Here, {a, b} = a or b for u or d, respectively. Then, in the first step, we diagonalize m§?
and m§? exactly. After some calculations we find the following formulae for the eigen-
values:

Moug = 4 [4{1, 4m+({4, 132 —8{1, 4}m) L (V1 +tan® 204 — 1)),
—moes = & [4{1, 4Im—({4, 1}A-8{1,4Jm) 3 (v 1 +1an?209 4+ 1)],
Mos = & [{25,1}M +({4,1}4-2025,1}M) 1 (v 1 +tan’25@9 — 1]),

—mepe = # [{25,1}M — ({4,134 -2{251} M) 1 (V1 +1tan®28%Y 4+ 1)], (39)

where
3w
tan 209 = {1, - 3
/—2‘1 16’m
tan 209 = —{1, -2} - 3oy (40)
’ A-1{25 1M’
while the diagonalizing matrices are v
cos 69 gin Y 0 0
] (u,d) < glu,d)
(u, ~—sin 6 cos ¢ 0 0
v = Y 0 cos 9™ gin 9P |- (41)
0 0 —sin 9™ cos 9

Note that in Eq. (40} we can approximately pass to oo with the mass scale A4 of the fourth
generation quarks h and f, since we expect that n, > m, and m; > m, (then A> M > /.
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Z ws as me> my» m, R w3). So, M{A - 0 and w,/A — 0 approximately. Thus, we
can put 9% - 0 and then get from Egs. (39)

Moy = 5 {25, 1}M,
Moy ¢ — %(—3{25, 1}M+{4, I}A) - % {4, I}A (42)

in consistency with Eqs. (27) and (28).

Next, in the second step, we treat Ut m{MPUSY and UP*m{PUSY as small perturba-
tions of the diagonal matrices U m3" U and U mPUSY, respectively. This assumption
will be justified a posteriori (cf. Eq. (80)). Carrying out perturbation calculations of the
first order with respect to @ = w,+iw, and w* = w, —iw, divided by m,, or mg, we
find up to O(lwl) the additional unitary matrices U{” and U'® such that U™ = UM UW
and U = UPU® have the property (36). It results up to O(|w]) into the unchanged
mass formulae m, 4 = My, 4 plus O(lw}?), etc., while the diagonalizing matrices in the
approximation of 4 — oo are

r c(\hd) s("’d) 0 0
0}
(u.d (u,d) 2
-5t ¢ $,-3}— 0
U = e 43)
* *
w (4]
2 1 ,d 2 K]
Go-8 s e 0
My My
. 0 0 0 1

plus O(|w(?), where s™® = sin 6% and ¢™% = cos 6. Here, in the denominators
we neglected m, /m,, (and m, ,/m, ) for simplicity. Thus, up to O(jw|) we can identify
the masses given in Eq. (39) with the physical masses m, 4, m,, M, p, Py ;.

Finally, from Eqs. (43) we calculate the generalized Kobayashi-Maskawa matrix
V= U™*UY in the approximation of A — w0, finding

Ve = Ve = ¢,
Vus = _Vcd =5,
w
_ {1 2 {u)
Ve ={3—+3—]s",
nty, m,
[0 w
1 2 (u)
o (12 )
My m,

Vie = Vag =1, others =0 (44)
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plus O(|w?), where s = sin (6" —6) and ¢ = cos (6 — ). Hence, 0 ~ 6@ — 6™,
where 0 is the Cabibbo angle. Of course, due to the approximation of 4 — co we got
here formulac for the ordinary 3 x 3 Kobuayashi-Maskawa matrix since in this approxima-
tion the fourth generation does not mix with the threc others.

From Eqgs. (44) we readily deducc up to O(lw|) the following relationships

ViaVa+ VoVl = = Vi VeaVa+ VeVt = =V (45)
and

VaaVip+Veabs = ~ Ve Vbt Vb = — Vi (46)

They are a part of unitary conditions for the ¥ matrix because of ¥, = 1. The rest of
these conditions is fulfilled trivially up to O(lw}), in particular |V 41+ V12 = 1 and
[V = 1. Two nontrivial relations following from Egs. (44) arc

11\
W2+ 1Vipl? = WP+ Vl? = [+ — +2—) jof (47)
Fily, 1

plus O(]w1?). They may enable us to esiimate |w| = J wa? from experimental valucs
of my, m,, V!, Vel and predict 'Vy*+ [V i* up to O(l»/?). Taking my, >~ 5 GeV,
m, ~ 125 GeV and [V,,] = 0—0.008, |V} = 0.037—0.053 [10] we obtain

i~ 0.51-0.74 GeV (48)

and \/1 Val?+1V,]2 = 0.037-0.054. Of course, this estimation for |w] is valid only if the
inserted experimental limits for ¥V,ol and [V ! arc both concistent with the present theory
(cf. Egs. (77) and (8L)).

We can see that through Egs. (39), (40) and (44) scven parameters m, M, 1, A and
®;, W,, @; determine (in the first order with respect (o ¢ = &y +iz, and 0¥ = @, —iw,)
eight masscs m,, 4, M. By p, My, ¢ and all clements of the generalized Kobayashi-Maskawa
matrix V (the latter in the approximation of /1 —oc). Alternatively, we may use
as parameters the other seven: m, (—m, g, My ¢— M, and o, 15, w;. In the second case
we can calculate m, M, A, A, m,+myq, My c+m, and all elements of V. In particular,
from the first two Egs. (39) we get m —im, 4 = ¢ ({4, 1}4—16{1, 4}r1) and have

m o= gy [me—m,—4(m,—my)] (49)
and

ho= %[4(”%— m,)—(my—mgy]. (50)

Similarly, m, ,+m,q = 3 ({4, 3A—8{1, 4}m) /1 +tan? 209, If {4, 1}4—8({1, 4}m + 0,
we also deduce that

(My g5 {1, 43m) (m 4+ {1, 4}1m) = § {4, 1} 03 (51)
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and

mya—g {1, 4m s

Slwd TR T tan? g9,

mg+3 {1, 4tm an ©2)
where we used additionally Eq. (40) in the first formula and the identity (\/ 1 +tan®2x — 1)/

/(V/ | +tan?2x + 1) = tan® x in the second. In the case of m = 0 but 4 % 0 we get from
Egs. (51) and (52) the relations

— — 4 2
mym, = dmgmg, = § w3 (53)
and
My m
'Y — 0™ = sgn 'Y arctan \/ —sgn arctan\/ *, (54)
my mg

respectively, the second being the Fritzsch formula [8] for the Cabibbo angle 8¢ ~ @ —06®.
Taking the reasonable bounds
m_—n,

s DT 6 (55)
Mg — My

we obtain from Egs. (49) and (50) that

m

0< s < e (56)

I

>

respectively. Then, Eq. (40) gives

s 2 w
3, -4 (~) 7
A J1/84

—-2>c> _:%, (58)

and

where ¢ = tan 209/tan 20, while (ws/4) and (m,/4);,s4 correspond to the bounds
(56) of mji. In general, Eq. (40) and Egs. (49) and (50) imply that

i—2m 3(m, —my)—4(m,—m,
oo g lTEm _ _3lmemmy) = dmmm) (59)
A—32m 2(m,—my)+2(m,—m,)

5. Estimation of mixing parameters

Making use of the first two Eqs. (44) we infer that

2 Vudl/us

tan 2009 -9y = 2, (60)
Vu2d - Vuzs
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where V2, + V2 = 1. Taking as the experimental value [10]

[Vl = 0.219 to 0.225 (61)
implying
[Vaal = 0.976 to 0.974 (62)
we calculate from Eq. (60) that
tan 2(6'Y —6))| = 0.473 to 0.488. (63)

With the value (63) as the input for the absolute magnitude of ¢ = tan 2(8‘ —8™)
we evaluate 1™? = tan 20“? from the system of two equations

(4 _ 4w £

@@ =h @@= (64)

where ¢ is taken from the range (58) corresponding to the interval (56) of m/i. Writing
t = n|t] with n = sgnt and choosing for the equation

1
t(d)2+__{ (1 —C)t(d)+c =0 (65)

resulting from the system (64) the root of smaller absolute magnitude, we obtain

et | sy
1@ = _ + \/ +le} 6
"[ 201 o) T (6)

as ¢ < 0. Hence, sgn t“ = sgn t. On the other hand, Eq. (40) shows that sgn t‘) = —sgn w;.
Thus, choosing w; as positive we getiy = —1 and so ¥ < 0 and # < 0.
Then, from Eq. (66) and the relation 1) = ¢-'r¥ we estimate ¢ and 1™ as follows:

~0.301 > Y = —0.346 to —0.310 = 1 > —0.356 (67)
and
0.151 = ™ > 0.110 to 0.155 > ™ > 0.113, (68)

where we inserted the respective bounds (58) for ¢ and the respective limits (63) for |¢].
Hence

—16.7° = 209 = —19.1° to —17.2° =209 = ~19.6° (69)
and
8.56° = 20™ > .25° to 8.80° = 26" > 6.43°. (70)

Of course for both bounds of ¢ we obtain the same
0o ~ 200 —0") = —25.3° to —26.0° (71)

in consistency with the input (63).
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Now, from Eqs. (57) and (68) we can estimate the ratio w,/. by evaluating iis bounds
(w3/4)o and (ws/;“)l,.!84:

0.0502 = 22 > 0.0357 to 0.0516 = c:— > 0.0367. (72)
A

The mass scale 4 may be estimated through Egqs. (50) and (55) that give
34GeV £ 4 £35GeV (73)

where we put m,—m, ~ 1.5 GeV. Hence

0.17 GeV 2 o, 2 0.13 GeV to 0.17 GeV 2 w5 2 0.13 GeV (74)

(here, exactly the same bounds appearing for two limits (63) of [#] are due to poor accuracy).
Finally, we come to estimating the elements of ¥ matrix. To this end we may use the

proportion

sin 6@

cos ™

cos 6@

lcos 0™,

Wenl s {Visl: 1 Wigl: [Via] = 1:itan 69 (75)

following from Eq. (44). It enables us to determine V!, |V, and [V,4] if we take as the
experimental value [10]}

V.l = 0.037-0.053 (76)
and apply Egs. (69) and (70) cstimating the mixing angles 6 and 0. Then,
(0.0028 —0.0040) > [V,,| = (0.0020—0.0029)

to (0.0018 —0.0041) = |V,,| == (0.0021—0.0030), (77)
while
WVl = WVl Vil = V] ltan 69 = 1e] ¥l (78)

with —2 <C ¢ { —41/13. The prediction (77) is consistent with the experimental esti-
mate [i0]

|V, = 0—0.008. (79)

Note that |V,,/V.,| = tan 8 independently of the experimental value (76). Here 0.0748
> tan 6™ > 0.0546 to 0.0770 > tan 6™ > 0.0562 due to Eq. (70).

Making use of Eq. (44) for V,, and its experimental value (76) as well as the estima-
tion (70) for 0™ we can evaluate |w|/m,, obtaining in all cases

O 0.10-0.15, (80)
My
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where we took m, = 25m,. Hence, in consistency with our previous estimation (48), we get
in all cases

jw] ~ 0.51—-0.74 GeV, (81)
where we put m, ~ 5 GeV. Note that, if all w,, @, and w; were equal, the relation

lw| = w, \/Q would hold. In the real case, Egs. (74) and (81) show for the ratio
x = |oljw, /2 that

(22-31) < x < (29-4.1)
to (_.1-3.0) < x < (2.8—4.0). (82)

The reasonable smallness of lwi/m, and so |o|/m, following from Eq. (80) justifies
a posteriori the use of our first-order perturbative calculation for the quark mass matrices
(35). Here, O(lw|/my) = O(0.1). It may be worthwhile to point out that in the first step
of our calculations (that was exact) there also exists a virtual expansion parameter of the
order O(Gw, \/i/,l) = 0(4w;/A) = OQR\w!/m). In fact, from Egs. (40) and (64) we can

deduce that
. (1—6 2_'.’1> %“’{ﬁ

3.2 A A
an 9P gy = - X° N e 83
an X ) 2m 2m\?* (3o, 2\ (53
1"'17—_‘+16 — — S
A 3 A
where
LN (84)
- A i) 7135
for the bounds (56) of mfA, respectively. In the first order in this parameter
2m
1—6—[ 9
AP —py = — - 293 rad (85)

plus O[(3w, V-”i//’.)z‘]. For instance, taking m/A = 0 in the case of [V 4! = 0.219 we have
m3/2 = 0.0502 from Eq. (72), and then the first-order formula (85) gives 20— ™)
= —0.452rad = —25.9°, while the exact value in this case is 2(6'—0™) = —25.3°
from Eq. (71).

In conclusion, our analysis of quark masses and mixing anglesin terms of the tentatively
proposed form (22)-(24) of superparticle effective mass operator is summarized in
Table II. The listed values of parameters for u, d, ¢, s quarks correspond to the end points
of ranges 0 < m/A < 1/84 and 0.219 < |V, | < 0.225. Additional inputs are in, ~ 1.5 GeV,
my =~ 5GeV and 0.037 << |V, << 0.053. For t, b quarks the approximation of A — o
is used, where M/A4 - 0 and ws/4 — 0.
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TABLE II

Quark masses and mixing parameters analysed in terms of the effective mass operator (22)-(24)

me—my = dms— nig) me—my = 16{ms— my)

[Vys| = 0.219 [ |Vus| = 0.225 [Vas) = 0.219 ’ [Vs| = 0.225

¢ ‘ -'2 ‘ -4|1/13
w3/2 ‘ 0.0502 | 0.0516 | 0.0357 } 0.0367
A(GeV)*® 3.4 i 3.5
w: (GeV)* 0.17 | 0.17 ; 0.13 | 0.13
m(GeV)* . Q 0.042
m, (MeV)*? 8.5b 9.0 23 : 24
ma (MeV)*? 83? 8.8 82 82
me (GeV)? 1.5° 1.5 | 1.5 ; 1.5
ms (GeV)? 0.38° ; 0.38 0.18 f 0.18
m (GeV)*© : : 125
my, (GeV) © 5 I
[Vapl (107499 ! 28-40 ! 28-41 | 20-29 | 21-30
iVep! 9 1 ! 0.037-0.053 |
o] (GeV)d 0.52-0.74 i 0.52-0.74 0.51-0.74 i 0.51-0.74
lolfos 429 2.2-3.1 \ 2.1-3.0 2.9-4.1 \ 2.8-4.0

Aif me—my = L5 GeV (input).

®my = 9.6 MeV, mg = 14 MeV, m. = 1.5GeV, ms = 0.37 GeV, when m begins to grow giving
me—ny = 4.25 (mg—my) ie., m/i = 1/1024.

Cif Mil—> 0, w3/ — 0 and mp, = 5 GeV (input).

4 if 1Vep! = 0.037-0.053 (input).

We can see from Table Il that our tentatively proposed form (22)-(24) of the effective
mass operator rcasonably organizes the experimental data on quark masses and mixing
angles, except for light quark mases if one wants to intcrpret them as the current masses.
In particular, the masses m, and m, are typically larger than the values m, ~ 4-6 GeV
and my =~ 7-9 GeV usually referred to as the current masses for u and d quarks, though
their order of magnitude is the same when #/4 — 0. Also the mass m, is too large in com-
parison with the current mass m, = 0.033 m, for s quark [13] that is m, ~ 0.165 GeV
if my, = 5 GeV. It is possible that our m,, my and m, are rather some effective masses. The
same is probably true for our m_, my and m,, but in the case of heavy quark masses differ-
ences between effective masses and current masses become less important.

6. Mixing phase

Our calculated Kobayashi-Maskawa matiix Vyy as given in Eqs. (44) with Egs. (46)
invoked, is of the form generally discussed by Gronau and Schechter [11] and also by
Fritzsch and others [12]. Namely, it can be rewritten as

Vie = Vs = €125 Vo =1,

ig2
3

P
Voo = —Veg = 512€
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— ip13
Vb = 5y3¢° 7,

) A igas
b = 833€°77,

— , P13 —i(@12+@23)
Vig == —€13513¢ +852823€ .

- a2 i(p12—@1y)
Vie = —¢€12823¢ Sy2813€ (86)

plus O(Jwl|?), where

Cipg =C. S5 =35,

(o lo]
S13 = ’%?i* +%“’“ Sm)’
‘ b m,

o
e = {112 g ﬁ”—') o, 87)

iy m,

and ¢,, =0, ;3 = 6 and @,; = 0+ with 0 = arg w. Here, ¢,3 = | plus O(lw|?) and
c23 = 1 plus O(lw!?). Then, our ¥y, has really the Gronau-Schechier form, where
s5;; = sin 0;; and ¢;; = cos 0;; with 0;; denoiing the mixing angle between the generation
i and generation j. The Gronau-Schechter rephasing-invariant mixing phase ¢ = ¢,
+ @23 — @3 18 here zero (imodulo 7), showing that in our case the PC conservation holds
though w = w,+iw, = |w|exp (i8) is complex. Consequently, through the vephasing
transformation of up and down quark states of three generations j = 1, 2, 3,

15" — 1g5 D) e (83)

with ¢, —¢, =0 and ¢,—¢; = ¢, —¢; = J, we eliminate from Eq. (86) the phase &.
Since the PC conservation is experimentally violated, a nontrivial mixing phase should
be introduced to our effective mass operator (22). To this end let us replace the factor

1
(@eaﬁw,—,_—_ wﬂ%%—{-h.c.) in the third icrm of this operator by the new factor
!

V

. 1
(ftpaeaﬂy,; —= YU, Y5 +h.c.> R (89)

V3!
where
F=1Q+t)f®+1 (- (90)

with £ = exp (ix®¥) is a phase operator. Then, the elements of quark mass matrices
(35) get the phase factors ™ at w; and @ as well as f™Y* at % and w*. Consequently,
in the diagonalizing matrices (41) and (43) there appear the phase factors f™% at s and
o as well as f&9* at —s™ and w*. Of course, mass formulae (39) remain unchanged.
So, our substitution implies that, now, Eqs. (44) for the generalized Kobayashi-Maskawa
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matrix ¥V = U™* U are to be replaced by

; , d
Vg = VE = )c(“)+f(d)*ﬂ“)s(d)s(“) ~ 1,

V= — Vi = f@5@e0 _ g @
» o]
e 1 W, 2
Vi =1 —f @42 — @) pew)
my, ni,

. 1] o]
e (e & o) e
m,

ny

w* w*
o 1 (d)% 2 {u)x dyk _(d)
Vi = = (3 o fOF 4 3 o) p0ns,
m, m,

w* ) ¥
Vi = (% ___f(d)as +% f(U)*) c(d)’
my, m,
Ve = Vog = 1, others =0 o

plus O(Jw|?). Obviously, the unitary relationships (45) and (46) do not change. Also |V,4/%
+]V41? = 1 does not.
Defining ¢2,, sZ, and R? by the formulae

2, —cos? (0¥ — ™) = sin® (09 —0")—si,

= — 4O WO Gin? L (@ _ gy

2 . o ziwlzslwi2-21 @) @
RE=[|3— +5—] —g ——sin" 3 (¥ —a'") (92)
my, m, mym,
d , :
where o™ = arg Y and § = arg w, we readily calculate from Egs. (91) that
Wal? = ¢33 = cos? (89 —6") >~ 1,
. . S(d)S(u) sin (a(d)__a(u)) 0 (93)
@ = arg Vg = —arctan —5 . — o 1 =
u (DO L@ (o6 ()
and
12 2
%Vus! = 8125
v . s@e™ sin ¢ — D™ sin o' | 04)
@, = arg V,, = arctan —;.- 3
e s@e®™ cos g — ¢ D™ cos o™’
as well as

i 2 2 2 (u)2
|Vub§ "'313_RS )

@1y = arg Vo = @p3+o™ 47 (93)
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and
Vel = 835 = R,

my sin (9 +8) +2my, sin (™ +5)
m, cos (‘P +3)+2m,, cos ('™ +6)

@23 = arg V, = arctan + 7. (96)

Due to Eq. (95) the rephasing-invariant mixing phase ¢ = ¢,,+@,3— 5 is equal to

¢ = pp—a - o7

In the degenerate case of «™ = a‘® we obtain ¢,, = 0, ¢, = a), @3 = a™+6+7 and
@13 = 20 +6+7, so that ¢ = 0 (modulo =). The zero values @,, and ¢ imply that in
this degenerate case PC is conserved. In general, hdwever, ¢ # 0 and the PC conservation
is violated.

Carrying out the rephasing transformation (88) with ¢, — ¢, = @15, go— @3 = ¢33
and ¢, — @3 = @12+ @,5 and invoking Eqgs. (46), we get the V' matrix in the form

1 512 RsMe™ ™

. | —S12 1 Rc™ 0

Vo R(c™s ,—s™e)  —Rc™ i oy’ ©8)
0 0 0 1

where §,, = \/sfz, R = +R?, and @ = ¢;,—a —z with s?,, R? and ¢, , as given in Egs.
(92) and (94). Note that 5,5 = Rs™ and 5,5 = Rc™, while (after the transformation)
@12 =0, .3 =0 and ¢,3 = —¢. From Eq. (98) we have |V, |+ |V.l? = R® and
Vol Vi) = tan 0.

An especially simple case of PC violation would cosrespord to ¢, = 0 (before the
transformation). Then, from Eq. (97) ¢ = —« — 7 and from Eq. (94)

sin «™:sin '@ = cot 6™ cot 9@, (99)

In this case, under the additional simplifying hypothesis (not contradicting Eq. (99)) that
™ + oY = 90°, we should get

(an @ = 200 (100)
ng'® = —u . ,
tan 0@
Thus, modulo =
17° < g < —108° to —117° << ¢ < —108° (101)

when using our estimation (69) and (70) for 6 and 6.
To summarize, our tentative form of the effective mass operator, (22)-(24) with the
new factor (89), predicts in the quark sector that

0.38 GeV 2 my 2 0.18 GeV, m ~ 125 GeV
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and
0.0748 = [V,p/Vepl = 0.0546 to 0.0770 = |V,p/Vepl = 0.0562

and, under some simplifying assumptions,

Here, the left and right bounds correspond to m,—m, = 4(m,—my) and m, —m
= 16(m,— my), respectively, while m, ~ 1.5 GeV and m, ~ 5 GeV.

To compare, a recent analysis of PC-violation and B;— B,-mixing data within the
three-generation standard model [14] suggests the limits

u

43 GeV < m, = 180 GeV,
0.02 << {Vyp/ V! < 0.22 (102)

with the preference to the range
83 GeV << m, £ 180 GeV,
0.04 < [V Vil << 0.2, (103)
and probably
108° < |l < 175°. (104)
These numbers seem to be consistent with our predictions.

Of course, these predictions depend crucially on the tentative form (22)-(24). For
instance, if in place of the conjecture (24), G* = [Q+F 5 (15 +y3)}%, we take the non-
coherent sum G? = Q>+ [F1 (15+x3)]°, we get G2 = 13/9 for v/, ¢/, t, h and G? = 10/9
for d, s, b’, {" instead of G? = 25/9 and G* = 16/9 and then predict m, ~ 65 GeV instead

of m, ~ 125 GeV when m, ~ 5 GeV. The experiment will tell us more about the structure
of the effective mass operator when the top quark is found.

APPENDIX

After the generation mixing caused by the nondiagonal mass matrices (35) is switched
on, the quark part of the previously flavor-conserving neutral current of the generator
H;, coupled to our extra Z°, takes the form

(U(u)*U\u)+ U(U)*'r(‘u) bgl:_)*Ugt})_ UE_L;)*UW))Q(U)Y#(I -7 )q(”)
HUPUY U - UV - U UDT Ay (Ad)

which includes small flavor-changing corrections.
In fact, making use of the diagonalizing matrices (43) (and suppressing the matrix
7"(1—ys) between quark operators) we can rewrite the last form as

uu+dd+cec+ss—tt—~bb—hh—If
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+2 (2— st 4 h.c.) -2 (B_ s9db+ h.c.)

m, my
w _ -
-4 <—~— c‘“’ct-}-h.c.) +%(——w— c‘d’sb—!-h.c.) (A2)
m, my
12 1 |(l)‘ )] mb 1 |CUl (u)
plus O(lwi?). 1t follows from Egs. (44) that here + — 3" > — |V,], +—¢
mt m! t
m o] lw .
> —2 |Vl and §— [s9] = [Vl 3——c@ o [V, | = |V With [V = 2+ 3)| V.
m, my, b

Thus, in the order O(jw/), the coupling of quarks to our extra Z° induces for them slow,
Kobayashi-Maskawa-depressed, flavor-changing neutral transitions t<>u, be>d and
tesc, bess (but not those between the first and second generation, c«»u, s<«>d,
responsible for the potentially dangerous processes like e.g. K® — ptu~ or D® — p+p-).
The absence of terms with uc, cu, ds, sd in the order O(lw!) is due to a partial GIM
mechanism that is working in our case.
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