Vol. B19 (1988) ACTA PHYSICA POLONICA No 8
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A general Kerr-Schild metric gix = i+ HE;& is considered in connection with Einstein-
-Maxwell field equations. The vector &; generates a shear-free null geodetic congruence both
in' Minkowski space and in the Kerr-Schild space-times. In addition, we have assumed that
&; is hypersurface orthogonal. Two types of exact solutions are obtained. One is the solution’
for an accelerated charge given by Bonnor and Vaidya with a A-terrg. The other is a similar
solution where a space-like curve plays the role of the time-like curve describing the world
line of the acceleratmg charge. Taub’s solutions describing high-frequency gravxtatlonal
radiation in ‘Kerr-Schild space-times are derived as particular cases.

PACS numbers: 04.20.Jb

1. Introduction

In general relativity, the field equations are often simplified when we deal with’ nuil
vector fields. One important and noteworthy example is the Kerr-Schild (1965) space-
-times. The metric tensor of such space-times can be expressed in the form,

8 = Mu+HEE, €))

where 7, is the flat metric tensor in the Cartesian co-ordinate system, H is a function
of co-ordinates and ¢&; is a null geodetic vector field. Kerr-Schild spaice-times have been
investigated by many relativists and a vast amount of literature is available on these space-
-times. One of the reasons for the importance of these space-times is that the familiar
solutions like the Schwarzschild solution, Reissner-Nordstrom solution. Kerr (1963)
solution, Vaidya (1943) radiating-star solution etc. are of Kerr-Schild form.

Kerr and Schild (1965) have considered the space-time with metric tensor (1) and
obtained exact solutions of the vacuum field equations. These include the Kerr solution,
from which the Schwarzschild solution follows as a particular case. Misra (1970) has given
a unified treatment of Kerr and Vaidya solutions. Kowalczynski and Plebanski (1977)
have studied Kerr-Schild type solutions of R;, = Ag; where A is the cosmological constant.
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Bonnor and Vaidya (1970, 1972), Debney, Kerr and Schild (1969), Biatas (1963),
Debney (1974), Patel and Misra (1975) and Patel and Koppar (1986) have discussed various
aspects of Einstein-Maxwell fields in terms of Kerr-Schild type metrics.

Kerr-Schild metrics with energy momentum tensor of pure radiation are investigated
by Vaidya (1972, 1973, 1974), Vaidya and Patel (1973), Kinnersley (1969), Urbantke (1975)
and Herlt (1980). Taub (1976) has considered the high-frequency gravitational radiation
in Kerr-Schild space-times.

The principal aim of the present investigation is to obtain the electromagnetic generali-
zations of the solutions derived by Taub (1976).

In the present paper we give such generalizations in the form of exact solutions of
Einstein-Maxwell equations

Ry = —8a[Es+0& ]+ Agu, &' =0, (2)
Fik;k = 4nJi (3)

in terms of the metric (1) where £; is a null shear-free, geodetic and hypersurface orthogonal
vector field. Here the semicolon indicates covariant derivative. F, is the electromagnetic .
field tensor, J* is the 4-current vector, Ej is the electromagnetic energy tensor, A is the
cosmological constant and o&;£, is the tensor arising out of following null radiation.

We shall be freely using the method of real tetrad introduced by Vaidya (1972, 1974).
The next Section is devoted to a very brief description of this method and other related
results.

2. The real tetrad method

Consider Minkowskian space-time with signature —2 and assume that it is pervaded
by a null geodetic and shear-free congruence &; so that

8 =0, éi,kék =0, (éfk'i'ék,lnu)éfi—(éfi)z =0 4

a comma indicating ordinary derivative.
We use the geometrical framework developed by Vaidya (1972) to obtain a real tetrad
system in the Minkowskian space-time appropriate to the congruence £;. In such a space-
-time we can always obtain four uniform vector fields such that (/) any two of them are
mutually orthogonal and (i7) one of them is time-like and the other three are space-like.
Let A’ be the unit tangent to the time-like vector field through a point P (co-ordinates x°)
and A, B', C' be the unit tangents to the three space-like vector fields. We raise or lower
indices with the aid of 5™ or #;,. These four uniform vector fields give rise to a Euclidean
reference frame with co-ordinates x, y, z, ¢ for P such that
x;=A4, yi=B, z;,=CGC, 1

»

= J;

Let us denote by S the 3-flat at right angles to A’ at the point P. If /; is the projection
of &; on S at P, we shall take &; = 4;41. In the 3-flat S let /; have the spherical angles « and
B with respect to the triad A4;, B;, C;.
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We can now define an orthonormal triad I, 1, m; as follows:
L, =sinam;+cosaC;, 1, =cosam~sinaC;,
m; = cos B A;-+sin B B;,, m; = —sinf A;+cos f B,

The derivatives of these vectors are listed in the Appendix B. We take « and f as functions
of x'. The conditions (4) after some simplification will lead to

“,i‘:i =0, ﬁ,iéi =0 (5)
and
Ta,—m'sinaf, =0, ma;+Fsinaf,=0. (6)
It can be verified that if we define
u=x sin o cos f+ysinasin f+zcosa+t,
V = xcosacos B+ycosasin f—zsin a,
W = xsin 8~y cos B,
then u,f' =0, V,&' =0, W& =0.
Therefore, the conditions (5) can be integrated and exhibited in the form
V=VWuuop), W=Wuabpb.
In terms of the variables ¥ and W, the conditions (6) may be written as
VV,—WW,+V,—~Vcotat+ W, coseca = 0, )

WV, +VW,+W,—W cot a—V, cosec « = 0, ®)

oV
where V, = rm etc. We take ¢ and Q, the expansion and rotation parameters for the
u

congruence &; as
0= f,i.', Q= (fi,k""fk,i)é.il’?“'

The principal results of this real tetrad method which are used in the present paper are
reproduced in the Appendix B for ready reference.

Let us now assume further that ¢; is hypersurface orthogonal. Taub (1976) has shown
that this condition is equivalent to Q = 0. Using the results of Appendix B, it can be seen
that Q = 0 implies

VW,+W, = 0. )]

We shall limit our discussion to the solutions of equations (7), (8) and (9) to the situation
when V; = 0. Taub (1976) has shown that this gives rise to two cases: case (a): W =0
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and case (b): ¥, = cot a. He has integrated these equations for the two above-mentioned
cases.
For case (a)

V = sin a h(g), (10)
where h is an arbitrary non constant function and

g =u+Vcota = u+h(g) cos a. (11)
For case (b),
U = K(w) sin « sin (w— ),

V = K(w) cos a sin (w—f),
W = K(w) cos (w—B), (12)

where K is an arbitrary function of w and the function w satisfies w ¢ = 0.

The remaining part of the paper will be devoted to the derivation of the solutions
of (2) and (3) in terms of the metric (1) for the two above-mentioned cases.

Here, it should be noted that the solutions discussed by Vaidya and Patel (1973),
Herlt (1980), Patel and Misra (1975) and Patel and Koppar (1986) do not satisfy the hyper-
surface orthogonal condition.

3. The Maxwell field

We now take the Maxwell equations in a Riemannian space-time described by the
metric (1) in which ¢, is null, geodetic, shear-free and hypersurface orthogonal. It is easy
to see that

ik

g = ﬂik—Héiék’ g=lgul = —1. 13)

The results (3), (13) and 2 = 0 will be frequently used without mention.

Here it should be noted that the congruence £; continues to be null, geodetic, shear-free
and hypersurface orthogonal in the Kerr-Schild space-time described by (1) (see Vaidya,
1974). We choose the electromagnetic 4-potential ¢, as

¢: = PO&, P =0. (14

A simple calculation using (14) leads to the following expression far the electromagnetic
field tensor

Foo = ¢ip~br:
Fy = (P0) 18— (PO),:&i+ PO(E; 1 — &)
The electromagnetic energy tensor can be casily computed. It is given by

Eq = [% HP*6* —n"(P6) (P9),, )¢k
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—1 PO*[(PO) (& +(PO)4&)]
~P eﬂab(Pg),a[fk(fi,b =& )+ E(Cup— fb,k)]
—P20°n™ (¢ 0~ E0) (Eip—Eop) — % P20%n,. (15)

Let us now turn our attention to the Maxwell equations (2). Patel and Koppar (1986)
have shown that F* ., = 0. They have also proved that the results F*,]; = 0 and
F ”‘,kr‘n"i = 0 give the following two differential equations for the function P:

P,+VP,+2PV, =0 (16)
and
WP, +2PW,— P4 cosec o = 0. a7n

We shall now try to integrate these two equations for case (a) and case (b).

Case (a)

Using (10) and (11), it is easy to see that Vg,+g, = 0. With the aid of this result
along with (10) and (11), it is easy to integrate (16) and (17). The solution can be expressed as

2P = e(g) [1 ~h'(g) cos a]?, (18)

where the prime indicates the derivative of h(g) with respect to its argument and e(g) is an
arbitrary differentiable function of g. For this case it is easy to see that

2
V, = h'sin a(1—h" cos oc)"‘,; 0= — —.
,

Here, and in what follows, r is defined by r = g—t. Using the above results and the results
of Appendix B, the 4-current vector J' can be evaluated. It is given by

) 1 s

4nJt = — — {e'(1—h' cos a)+2h""e} (L —h' cos a) "*E, (19)

r
. de

where again ¢’ = — .

d;
Case (b)

From the results (12), it is easy to check that

w, = Q~19 w, = —I/Q_l’ Wﬂ CoseC o = WQ—I, (20)

where
¢ = sin « [K’ sin (w— )+ K cos (w— )] @2n

and K’ denotes the derivative of K(w) with respect to its argument. In view of the results
(12), (20) and (21) Eqgs. (16) and (17) admit the solution

2P = e(w)o~2, 22)
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where g is given by (21) and e(w) is an arbitrary differentiable function of w. In this case

2 .
the expansion parameter 0 is found to be § = — i The 4-current vector J* in this case

can be expressed as
i Ng—2 =3 i / de
4nJ' = 2(2eA—e )"0 E, e =E—, (23)
w

where g is given by (21). Here, and in what follows, the symbol A4 is defined by
A = sin a{(K"' = K) sin (w—B)+2K’ cos (w—B)}. (24)

In both the cases the 4 current vector J' is a null vector.
In the next Section we shall direct our attention to the Einstein-Maxwell field.

4. The Einstein-Maxwell field

Vaidya (1974) has computed the components R; of Ricci tensor for the metric (1).
They are listed in Appendix A for the reference. From these expressions for Ry, it is easy
to see that the curvature scalar R is given by the amazingly simple expression

R = g*Ry = (HO+h) £°+(HO+h), (25)

where h = H .
We first note that the field equation (2) implies R = 4 4. This equation can be easily
integrated. The solution can be expressed as

44

H=LO+NO* — — | 26
+ 36* (26)

where L and N are arbitrary function of u, « and B to be determined from the
field equations (2).

From the field equations (2) one can see that the vectors &, T', ' are eigenvectors of
(Ry+8nEy — Agy), the corresponding eigenvalues being zero. Substituting Ey from (15)
and Ry from Appendix A in the equation (Ry+ 8nE, — Agy)¢' = 0, we get the following
relation between the functions P and N:

N = 4rnpP>. 27N

Using th; results of Appendix B, the equations (Ry+8nE;— Ag)l = 0, (Ry+8nEy
— Agy)’ = 0 are considerably simplified. A straightforward calculation will lead to the
following two differential equations for the function L:

L,+VL,+3LV, =0, (28)

WL,+3LW,—Lgcoseca = 0. (29)
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Eqs. (28) and (29) are similar to Egs. (16) and (17). These equations can be easily integrated
for both the cases. For case (a), it is found that

L = m(g) [1-K(g) cos o], (30
where m(g) is an arbitrary differentiable function of g. For case (b) L is given by
L = m(w)e™, (1)

where m(w) is an arbitrary differentiable function of w and ¢ is given by (21).
Using the relevant results of this section and those given in Appendix B, in the equation

(Rik + SnEik - Agik)li}.k = - 87‘50’,

one can determine the radiation density o for both the cases.
The value of ¢ for the case (a) is given by

876 = 2r 3 (1—h’' cos )~ *[r{m'(1—h' cos a)+3h''m}

+4me{e'(1—h' cos o) +2h""e}], (32)
where
, dm , de
= — and € =—
dg b4

The value of ¢ for the case (b) is given by

8no = 2t 30" %{to(gm’' —3mA)+4ne(ge’ —2eA)}, (33)
where
, dm , de
=—, &=—,
dw dw

and ¢ and A are given by (21) and (24), respectively.

When the electromagnetic field is switched off (i.e. when e(g) = 0 for case (a) and
e(w) = 0 for the case (b)) the expressions (32) and (33) agree with those given by Taub
(1976). This accomplishes the task of solving the Einstein-Maxwell equations (2).

5. Discussion
(i) Case (a)

For this case it can be easily seen that

2 4ne’ »
H= — M(l—h' cos o)~ 3 + EE(—g)(l——h’ cos o)~ 2 —1 A% (34
r r
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In order to write down the Kerr-Schild metric in an explicit form we use (g, «, 8, r)
as co-ordinates of an event in the space-time. Making use of (34), the line-element for case
(a) can be expressed in the form:

ds* = —r*(do? +sin® adf*)—2(1 —h' cos a)dg dr—2rh' sin adg da

+[1-h,2_ 2m(s) 4ne(g)

M= H cos ) 2 —L Ar*(1—H’ cos oc){' dg*. (35

The solution described by the metric (35) is the A-term generalization of the accelerated
charge solution of Bonnor and Vaidya (1972).

When 2’ = 0, ¥, = 0 and consequently we have ¥ = k sin « where k is an integration
constant which by the Lorentz transformation can be made to vanish. So, ¥ = 0 and
the metric (35) reduces to

2 4ne? |
me niz(”) 1 Arz] du®.  (36)

ds* = —r*(do® +sin’® adf?)—2du dr + |:1 - —
The metric (36) describes the A-term generalization of the solution discussed by Bonnor
and Vaidya (1970) in connection with the s'pherically symmetric radiation of charge. When
e(g) = 0 in (35), we get the metric describing the A-term generalization of the accelerated
point mass solution of Kinnersley (1969). If e(u) = 0 in (36), we recover Vaidya’s shining-
-star metric. Further, if m and e are constants, the radiation density ¢ and 4-current vector
J* become zero, and we get the Reissner-Nordstrom solution with a cosmological constant.
If m = e = 0 in (36) we get the well-known de Sitter metric.

(i) Case (b)
For this case it can be seen that
H = 2m(w)t Yo7 +dne’(w)t 20 * =1 As%, &dx' = dw, 37

where ¢ is given by (21).
One can use w, «, f and ¢ as the co-ordinates and write down the metric explicitly
in terms of these coordinates. The metric for case (b) can be expressed as

ds* = —t*(do® +sin’ adB?)+ 20dwdt —2tedw(cot ade~ W, sin adp)

2m(w)  4me*(w)
Py +342 |, (38)

—o%dw? [1 +cot? a+ W2 —

where oW, = K’ cos (w—f)— K sin (w— f§) and g is given by (21). The metric (38) describes
the geometry of electromagnetic generalization of the solution discussed by Taub (1976).
When e(w) = 0, the metric (38) represents Taub’s solution with a non-zero cosmological
constant. :

In the absence of electromagnetic field, Taub (1976) has shown that a space-like
curve (in the geometry of case (b)) plays the role of the time-like curve describing the world
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line of the accelerated mass in case (a). The same conclusion is true in the presence of
electromagnetic field also. The arguments for arriving at this conclusion are the same
as those made by Taub (1976). Hence, we shall not repeat them here.

The authors wish to thank Professor P. C. Vaidya for many constructive comments
concerning the contents of this paper. One of us (S.S.K) is indebted to the University
Grants Commission for financial assistance.

APPENDIX A
—2Ry = (HOA+h) &+ (HO+ h) 1 &+ (HO+h) (S0 + &)
—2H ﬂabf i,afk,b
— " LH(E  avCic+ Eans)
—2H (& a8+ i aCi)]

+[HRO+ Hh £ —n™H 4+ H2Q*[EE,

APPENDIX B
Eik = lig = aili+sin of i,
L = —log+cot wsin af /i,
M = —pm, My = - B m;,
00> +Q*)™ = —L(VV,+V,+u—1),

QO+t = S (VW + W),

0 1,—-V.E) Q(_+WV)
s T — = . — = —{m:; i)s
a,l 2(l ugt 2 i ugl

) Q .. 0
sinaf; = > G-vi)- 2 (m;+W,8),

0.8 =5(@ -6, Qi =-609,
6, +Q m* = QQV,+0W,),
0 77— Q1 = QOV,—QW,),
1%, 5+ (67 + Q%) cota = 0,

n*(sin o)k =0, "Iikéa,ik = %(92‘5‘92)1“-
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