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A uniform cosmological model filled with a fluid which possesses pressure and bulk
viscosity is developed using extended thermodynamics. The Einstein and thermodynamic
equations can be exactly integrated for Friedman-like situation. One of the solutions is non
singular: it starts from a steady state behavior and expands to a situation where viscosity
dies out.

PACS numbers: 98.80.Dr

1. Introduction

Since the pioneering work of FEinstein, the material content of the universe has been
represented by a relativistic perfect fluid. The hydrodynamic properties of this fluid are
described and determined by Einstein’s field equations. The best description of the prop-
erties of the galactic fluid is furnished by Friedman’s solution, where the thermodynamic
roperties of the fluid are described by a model in which the fluid is in equilibrium state.
These two descriptions, the hydrodynamic and the thermodynamic, are in many aspects
complementary and independent and allow us to equate the observational data.

In this work we treat the following two problems that derive from this standard model;
{a) how the observed entropy per particle was produced and (b) how to avoid the singularity
inherent in the standard model.

Solutions for these problems have been investigated in various paper [1-7]. In all these
‘works, the description of the thermodynamic properties of the fluid was modified by the
introduction of heat production mechanisms (bulk and shear viscosities). A model for the
thermodynamical properties of the fluid was set up using the principle of local equilibrium
[8] and the standard equation of Gibbs-Duhem. The resulting theory which is not satis-
factory for consistency reasons has been extensively examined [9, 10].

To avoid the inconsistencies of the thermodynamics of non-equilibrium processes
‘based on the hypothesis of local equilibrium, new theories, known collectively as Causal
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Thermodynamics, were established [9—11]: In these theories the principle of local equilibrium
is abandoned and the dissipative variables are treated as independent dynamic variables,
thereby avoiding the difficulties of the previous approaches.

In the present work we use a causal and covariant formulation of the dissipative
processes [11]. This theory will be used to describe the simple dissipative fluid which is the
source of the curvature of the universe. We obtain and investigate exact solutions of the
Einstein equations for this source which in turn is shown to be compatible with both the
cosmological principle and observation.

2. Formalism

We start by contemplating the possibility that the source of our cosmological models
is a dissipative fluid. This, as we will see, can be made compatible with the cosmological
principle (of large-scale’homogeneity) and with the observed high degree of isotropy. The
absence of privileged directions in space reduces the stress-energy tensor of the fluid to be
of the form

Tuv = Qvuvv - (p + n)h‘;va (1)

where 7 is the part of the isotropic pressure due to the bulk viscosity, ¢ the energy density,
and p the thermodynamic pressure.

Writing Einstein equations in terms of the kinematic parameters and of three-curvature
of the hypersurface of simultaneity of the fluid, we obtain [16]

6* .
0+ 3= —1To+3(p+m)]+4, (2>
R=—20°+20+24, (3)
6 = —(e+p+n)o, 4)
U”“‘.Uv = a,, == 0, (5)

where 6 = V%, is the expansion parameter, R is the three-curvature of the hypersurface
of simultaneity associated with the fluid, @, the acceleration of the particles of the fluid,
and A the cosmological constant.

The hydrodynamic description of the fluid must be completed by specifying its ther-
modynamic properties. Thus, we must complement the representation of the fluid with
the entropy flux four vector s* that describes the heat content of the fluid per unit volume
and is determined by the generalized Gibbs-Duhem equation [11], the flux of particles
per unit volume four vector N® that determines the continuity equation, and the evolution
equation for the bulk viscosity. For the models we are analyzing, which consider only
first-order terms in the description of the viscosity, the equations that determine these
objects reduce to the set

Toh+n = —&6, )
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ns = —, O

=—-, ®

where n = U,W* is the number of particles per unit proper volume of the fluid, s = U,S*
is the specific entropy, ¢ the bulk viscosity coefficient, and 1, the relaxation time associated
with the viscous process.

To conveniently specify the source we must also define the equation of state for the
viscous fluid, which we assume as

where A is a parameter with values restricted by 0 < 1 < 1.

We now analyze two different situations specified by different viscosity coefficients
¢:¢ = const. and ¢ proportional to ¢. In both cases we take 1, = const. For simplicity,
we restrict our analysis to the cases where R = 0. For the sake of clarity in the interpretation
and to simplify the computations we define the Hubble constant as H = 1 § and rewrite
the dynamic equations for the system using comoving and isotropic coordinates.

Case I (¢ =%0a)

Since in this case « is a constant, Eqs (2), (3), and (6) are written as

0 =3H>~4, (10)
p+n=A-2H-3H?, an

. ) \ 5 (A+1)
toH+H[1431,H(A+ )] +3 (A+1)H*—aH — ——A4=0 12)

Equation (12), obtained from Eq. (6) using the above-mentioned specifications and
from Eqs (9), (10), and (11), determines the scale function of the model R(f). Supposing
that H = s#(H) and changing the variables according to

y==H and x = H, (13)
Eq. (12) can be written as
A+1
Toyy +y[1+31,(A+ Dx]+2 A+ Dx? —ax— (—2—)/1 =0, (149
dy
here y' = —.
where y e

We use the power series method to integrate Eq. (14); depending on the relations between
the non null coefficients of the series expansion we obtain two different solutions.
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In the first case, y(x) is given by

y(x) = DGt (15)

and the constants «, 74, 4 and A are related by

_ 1+4ar,
1270+ (16)
In the second case, the constant a is necessarily zero and the model reduces to the
ones already studied by Robertson, Walker, Friedman and De Sitter.
From (15) and (13) it follows that the scale parameter R(z) and Hubble’s parameter
for the new solution are given by

2t (A+1)[At— ¢ e—t’ZtJ
R(t) = Rye * Grn®reel ) 17

H(f) = 210A(A+1)+C e~ 1%, (18)

The production of entropy for this model is given by (7) and can be calculated once
the temperature distribution is known. For the particular cases where 2 = § and 1 = 0,
the temperature is given respectively by [13]

T(t) = ToR™, (19
and
T(t) = ToR3. (20)

In both cases s — 0 when ¢ = o« and s — oo when ¢ — co. In these models the arrows
-of time determined by the expansion and by the production of entropy coincide; further-
more, the measured values for the matter density, Hubble constant and deceleration param-
eter can be used to determine the age of the universe, the integration constants C; and the
cosmological constants A. The relaxation time 7, can then be determined by the measured
value of the entropy per particle. This new result is a consequence of the use of the causal
thermodynamics, since it introduces a new dy;iamic degree of freedom in the description
of the dissipative fluid. The simplifications we have made, however, remove from this
model the complexities of the real universe. The next model offers some improvements.

Case II (¢ = Bo)

In a more realistic model, both the bulk viscosity coefficient ¢ and the relaxation
time 1, are functions of the internal energy and the specific volume of the fluid. In the
models we study below we keep the relaxation time 7, constant and for the viscosity coeffi-
cient we assume the following expression:

¢ = Po.
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Here, following a procedure analogous to the one presented in Case I, the equation
that determines the dynamics of this new model is

7. a E 9 3 3 2.4 3 A 4
1o H+H[31,(A+ 1)H+11-3 H’f+3 H(A+1)+3 BHA - —2—(A+l) =0. (21)

Maintaining as in Case I the same hypothesis H = #(H) and using (1) again, we
obtain

1oy +y[3re(A+1)x+1]— -—Ex3+ 3G+ 43 fAx— — (l+1) = 0. (22)

Using again the power series method to solve the differential equation, we find
Wx) = Ao+ A x+ A,x3, (23)

where A,, A, and A4, are constant coefficients determined alternatively by the following
two sets of algebraic relations:

A
Ay = — (A+1) (3y+1)
4n

1 /n+1
A, = — —{——1}, 24
! 7:0(311+1> (242)

A, =7 (A+D) (-1

A
Ao = 4 () Gr=1)

A, = —2(A+D)(n+))
where
____..EM#
n= \/1+ m. 25)

These relations impose an interdependency between the constants f8, 4, 1, and A for
each separate set of relations. For the set (24a), it follows that A is determined by

3 16n* 26)
T3+ DG+ DP(n+1)?
and for (24b),
16n*
1 @7

T 3200 — 1P — 12+ 1)
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From (23) it follows directly that

t—tg = —j . (28)
4A0A2
H+-A4,24,) + ——r—
(H+4,/24,)° 4,4{

For the values of 4,, 4; and 4; determined by (24a), we have two different possibilities:

44,4, — A2
-——"Ij-z—i =0 (29a)
2
if n =2+./5, and
44,A,— A2
——‘-’Z’iz—‘ <0 (29b)
2

for all n > 1 and 5 # 2+./5.
For the values indicated by (29a), the functions H(¢) and R(¢) are determined by

Hiy ==L ¢ | (30)
A | 24,
41
R092A2

R(t) = @i €25)

where R, is a constant of integration. The solution thus obtained has a singular point
at .t = 0.

The values indicated by (29b) determine however another solution with the functions
H(t) and R(t) expressed by

A — —
H(t) = Jz —+/|Bl tgh (4, V|B| 1) (32)

4, 1/4 TR
R(f) = Roe 4z ' sech'*2 (/|B|4,1), (33
where R, is a constant of integration and B is given by

_44 A, — A3
R Ml (34)

443

The function H satisfies the restriction

H+A24

ViB|

This solution is non-singular.
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The set of values determined by (24b) furnishes another solution. It is directly verified
that in this case G = 44,4, — A%/44% is always negative and A > 0. In this case H(z)
and R(¢) are determined by

H() = IG] cotgh (ViG] 4510~ 44 35)
214,]
R(1) = Ree 345 senh"M2(\/|G| 4,1) (36)

where R, is a constant of integration and H(t) is restricted by the inequality
H+A,24,
VIG|
We have obtained three different solutions, one non-singular and two singular, which
we represent graphically below:

//

[ T Y] ] 0 !

RI1)

Fig. 1 Fig. 2

aR(1)

Fig. 3

Following the same procedure as in Case I, we can compute the production of entropy
for the solutions we obtained. As we shall see below, the first solution does not satisfy the
weak energy condition, and therefore should not be considered a physical solution. The
third solution has a singularity for ¢+ = 0 and violates the weak energy condition; therefore
it should not be considered either. For the solution (33), supposing that the temperature
is determined by (19) and (20), we can compute the production of entropy, and the result
is such that s — 0 when ¢ » —o0 and s » o when r — co. This result shows that, con-
veniently adjusting the free parameters of this solution, it is possible to make it reproduce
the observational data for ¢, H and the entropy per particle s.
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3. Energy conditions

It has been suggested that every solution associated with a physical system must
necessarily satisfy the strong and the weak energy conditions [14]. The weak energy condi-
tion is expressed by

TV, V, 2 0, (37)

for an arbitrary time-like vector K*.

The models represented by solutions (17) and (33) satisfy this condition for all values
of ¢. In solution (33), this condition is satisfied because # is restricted to the interval 1 < g
< 4. The models represented by the solutions (31) and (36) do not satisfy this condition
for certain time intervals,

The strong energy condition establishes that the energy flux is also timelike. For the
source of the models we have studied, this condition is written as ¢ > tg+n|. Using the
field equations, it can be equivalently rewritten as —o < H(t) < 0.

The solutions expressed by (17) and (33) satisfy this relation only for 1 < 5 < 4.

Below we give graphic representations of the matter-energy density g(¢) for the solu-
tions that satisfy both energy conditions.

pp(t) et

o g 0 t

Fig. 4 Fig. 5

In Fig. 4 we observe that, although the expansion is not null, ¢ is asymptotically
constant. This can be explained if we interpret the bulk viscosity as the macroscopic
phenomenological description of the microscopic phenomenon of particle production
by the gravitational field [15]. In this case the singularity is removed to ¢ = —co.

In Fig. 5 we see that the density g is asymptotically constant in both directions of the
t axis and the solution is non-singular.

4. Conclusion

In this work, without deviating from a purely classical context, we have tried to find
a way to solve some of the problems inherent in the standard model, especially the initial
singularity and the high entropy per patticle. We have closely followed other attempts,
as in Murphy [7], Heller [5] and Novello [15]. The basic difference we have introduced
in our model concerns the thermodynamic properties of the source. To describe the source,
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we have used causal thermodynamics, and the resuiting model is different from its prede-
cessors in that it has an additional dynamic variable. This additional dynamic degree of
‘freedom leads to a differential equation of the third order for the scale factor R(z) that
determines the geometry of the model, while in all the previous works the differential
equations obtained are always of the second order. The conclusions of Pavon and Fustero
{12} concerning the relaxation time and the production of entroi)y in a cosmological model
do, not hold, since we have used a different background. Two of the solutions we have
obtained, both compatible with dust (2 = 0) and radiation (1 = 1/3), are non-singuiar
and explain the origin of the observed high entropy per particle. With this extremely simpli-
fied and abstract model, we do not intend to describe the real process to which the material
content of the universe is subject. We only intend to show that, from a purely classical
point of view, taking into account only the bulk viscosity of the fluid, it is possible, without

violating any physical law, to set up a model for the universe which is both compatible
with the observation and non-singular.

We would like to acknowledge prof. M. Novello for his interest in this work and for
some very stimulating discussions.
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