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Certain aspects of the pedagogical character of the Polyakov bosonic strings
are discussed. In particular we use expansion in terms of the eigenfunctions of the operators
2, P*P and PP* to study: a) the ambiguity present in the definition of the path integral
measure; b) Weyl invariance as the local property. Next, one-loop calculation is discussed
and, as its new illustration, the dilaton tadpole amplitudes for open oriented and unoriented
strings and the four-graviton amplitude for the closed oriented string are presented.

PACS numbers: 11.17.4+y

The first three Sections of this paper contain a slightly different presentation than
in Ref. [1-3] of a) the ambiguity present in the definition of the path integral measure;
b) Weyl invariance as the local property. In Section 4 we calculate the 1-loop vacuum ampli-
tude for closed and open bosonic strings recovering for the closed strings the result of Ref.
[2]. In the last Section we present the explicit result for the 1-loop four-graviton amplitude
in the closed oriented string theory and for one-dilaton tadpole for the open string (both
oriented and unoriented). When completing this paper we became aware of Ref. [4, 5]
where some of those points are also discussed in the way similar to ours.

1. Polyakov string and gauge redundance

The Polyakov path integral formulation of the bosonic open or closed string theory
starts with the Euclidean path integral for the vacuum-to-vacuum transitions

W =Y DgDX"e /(¥ ¥ p). 1
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Equation (1) deserves longer discussion. The integral is over the space of all metrics on
the manifold M of a given topology and over all maps X*(s,, 0,) to space-time from the
two-dimensional manifold M. The action S is given by the classical string action and by the
quantum counterterms

T _
S = - j d*c \/gg™d,X"3,X" + counterterms 2
M

which we will discuss later on. Classically, the first piece gives g, = 7,, Where y,, is the
induced metric,

ox* ox* G

Yoo = ot o6b )

and it is equivalent to the Nambu-Goto expression for the string action as an integral
over the area element of the world sheet of the string.

Classically, the string action has several symmetries. It is invariant under the group
of diffeomorphisms i.e. differentiable one-to-one mappings of M into itself

¢'eM —-d%cM
such that
X'(¢') = X(0), gulc')do’de’® = g,(c)do’da” @

which generate the transformation

8a(0) = 8a(0),  X*(0) = X"(0). )

We take here the active view at the symmetry transformations i.e. keep the coordinates
on the world sheet fixed and change the fields g,,(¢) and X*(g). Classical action has also
Weyl symmetry which means invariance under transformations

X'(0) = X(0),  gu(0) = *Vgu0). (6)

It is our physical requirement that quantum theory preserves classical symmetries. This
demand is quite natural as far as the world sheet reparametrization invariance is concerned
and easy to satisfy at least for diffeomorphisms homotopic to identity. Weyl symmetry
is more difficult to preserve: as it is well known it constrains the dimension of the space-
-time to be D = 26. The physical origin of Weyl symmetry can be understood as follows:
since there are no “internal forces” (that keep the string together), expanding or contracting
the string from the two-dimensional point of view should not give rise to any change in the
lagrangian; otherwise strings would not be fundamental. From the D-dimensional point
of view, expansion or contraction of strings needs some kinetic energy. Therefore, the D-
-dimensional metric has its scale fixed in terms of the string tension 7.

With the two symmetries present at the quantum level we see that the integral over
&, counts physically equivalent configurations related by the Weyl transformations and
by the group of coordinate transformations. The volumes of the two groups can be factored
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out and divided out. This is the origin of the factors #";'and ¥"; in the denominator of
Eq. (1). Nearly all the metric -degrees of freedom are eliminated this way and only finite
number of physically inequivalent degrees of freedom remains.

The full volume ¥}, should be discussed in some detail. Several examples given later
will illustrate the discussion which follows. We ‘have

V'p = "//DOVMa @)

where 77p, is the volume of the subgroup of diffeomorphisms which are homotopic
to identity and ¥"y; is the order of some discrete group of the remaining diffeomorphisms,
called the group of modular transformations, which are global (disconnected) coordinate
transformations. We can now consider the space of all metrics g,, on the manifold and the
ratio

G/Dg x Weyl ®)

which includes all the metrics inequivalent under Weyl and D, transformations. This
subspace of G is called the Teichmiiller space and it is finite dimensional. It also contains
the metrics related by the discrete group M of modular transformations. If we introduce
the Teichmiiller variables 7;, i = 1, ..., ¢, which enter the path integral through the gauge-
-fixed metric ¢*g,,(1;), then we conclude that some values of ; are related by the modular
transformations and they are therefore physically equivalent. Physically equivalent values
of t; must be eliminated by the proper choice of the range of integration over the Teich-
miiller parameters. This range is called the moduli space.

Final point about Eq. (1) is how to define the functional measures Dg,,, DX ® and also
others which will appear in the subsequent discussion. There is no reference to Schrodinger
equation like in ordinary quantum mechanics and one proceeds as follows [2]. First the
space of small variations in the fields is converted into Hilbert space by defining the scalar
products

Hag’HZ = jdzo- \/§ (Gade+Kgab Cd)ogabbgcda
6x|* = § d*c \/g 6 X*8X*, 9)
where G**? = L (g%g™ + g*g" — g"°g) is the projecting operator on the space of traceless
2

symmetric tensors and K is an arbltrary constant which we set to zero in the following.
Then the measure is defined implicitly in terms of the values of the Gaussian integrals

[ doge msll%ll* — 1 [ dsxe meslXI® = (10)

where a, and a, are arbitrary constants. {The measures in the tangent space ddg and déX
can be identified with the measures Dg and DX because the spaces are linear.) We will
show later that the final results do not depend on the values of constants a, and a,. Here
we only notice that a change a, — a, changes the measure by

ay
\/det —
ay
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taken in some infinite dimensional space. We will show that this determinant, after regulari-
zation, can be absorbed into the counterterms present in Eq. (1). We also observe that the
measures defined by (9) and (10) are not Weyl invariant,

To perform any concrete calculations we must divide out the volumes ¥ "¢ and ¥
in Eq. (1) explicitly. This requires certain care in change of variables of integration and in
counting zero modes of various operators. In metric (9) the general variation 8g,; admits
an orthogonal decomposition

08ap = O¢gap+0h,, (1
where 0k, is a traceless symmetric tensor. We can define separately
[6cl® = [ d’0 /g 6c%,  |IBh|* = [ d*a /g g*8"6h,,0h., (12)
and the tensor 62 admits further orthogonal decomposition
Shyy = (P6V)+0t(¥"), (13

into a part which can be generated by some vector ¥ and a part which cannot be generated
this way. Explicitly we have

(PV)ab = (Vqu + va; - ga,,Vch)
= (Va8se+Vogac— 8aVIV", (14)

where V, is the covariant derivative. The tensors ¥; form an orthonormal basis (with
respect to (12)) in the space ‘orthogonal to PV. Since any infinitesimal diffeomorphism is
generated by a contravariant vector

% — 6 +56V°,

we conclude that PSV describes the effects of diffeomorphisms on 8/ and 5z,7* — the effects
of varying the Teichmiiller degrees of freedom. Since the adjoint operator (with respect
to the norm

6VI? = § d®0 \/g gadV sV, (15)

transforms traceless tensors 8/ into vectors 8V, the tensors ¥ are zero modes of P+, We
rewrite, therefore, relation (13) as

5hab = 5h:-b+5ti(qﬂ)ab’

where 6k, denotes the space of tensors 8k, orthogonal to the kernel of the operator P+,
Explicitly, for any symmetric traceless tensor A

(P*h), = —2V'hy, = —28,V'hy, (16)
and ¥' are solutions to the equations

g%hy =0 and V°h, = 0. an
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For later use we also record the formulae!

(PTPV), = =2V (V. Vy+V,V,~ g, VV))

= —-2(V’V,+1R)V,

or

(P*P)uV’ = —~22a(g" VoV, +3 RV’ (18)
and

(PP*h) = —2(V°V,—R)h,. (19

Using (11) and (13) the measure Dg can be easily expressed in terms of d¢, POV and 6¢; and
it reads

Dg = DcD(PV),, [] ot. (20)

These variables are however, not convenient from the point of view of dividing by volumes
of the Weyl group and “small” (i.e. homotopic to identity) diffeomorphism group which
are generated by the Weyl variable ¢(c) (g — ¢®g) and by the vector 6V, respectively. Also
a more convenient form of the measure for the Teichmiiller deformations can be obtained
if we express them through the gauge-fixed metric e®g(r;). We consider then a change

32, a0, 02, n ng 08
08 = 2 5r, = L 6t s ot 4 (B 5y L 51,00t Q1)
or; at; or; o,

which we have again written as a superposition of the traceless part and the remaining
part. Since for the infinitesimal diffeomorphism we have

08ap = V, 0V, + V0V, = (V6V.)80+(POV ) (22)
the full change Jg,, reads

~

Ny 08
08 = (5?5 +VV 4+ btigag™ iigr d) 8ap +(POV )

i

agA b CAA agAcd
+ (22 61,— L 61,8,,8 . 23
( 6Ti T; 5 0T; 808 61:,- ( )

We are now ready to perform the change of variables
dc, Shy, 8t — 8¢, 8V°, o1, (24)

where we define
167,11> = | d*e \/g drdx;

' R%cq = 8:.I"pa — ..., Roa = R%a4, R = R%,.
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and therefore
] H dvexp (—n Y 16%,1%) = ([ d*e Jg) ™2 (25)

The jacobian is given by the determinant of the transformation matrix

¢ L, -, -\ [o¢
5halb =10, Pabcs : (() ve s (26)
6ti \0} 0 s XU 6Ti
where, taking ¥’ to be orthonormal vectors in the metric ¢®g, we have
N — q/i agA 1 "cd (‘}gcd 27
Lij = 50 28 g (27)

and
1/2

aé 1 "ed eécd
"°‘< PRI

‘ og ~cd O,
1

- A A an 1/2
08 ab 1~ ~ki 08u abcd C8ed 1~ Ak agkl
= — — & et G —_—— ‘——T P —_—
[( or  28af m,-) (61" 2 8cd 50

rac [08ab o ort 8kt ~pa [€8ea n oy 081
= det!/? acf 7200 1 ki 7oK b "6cd 1 3 ki Z5ki
g P 2 8an8 o b4 v 7 8cd8 o0l

We have used the fact that ¥ |¥'> (¥'} is the projection operator for the h,, onto the space
i

(28)

~

of the Teichmiiller deformations and in the space of the traceless tensors -‘(ggg—

-~

ooy OB
— 388" -;g%'— it can be replaced by G*.
[¢xs

Finally there remains the change of variables 6h%, — 6V with, according to (26),
the Jacobian given by

det P = (det P*P)'/?,

where P*P is a hermitean operator given by (18). The complication which arises here is due
to the possible existence among the set of vectors ¥ of the zero modes of the operator P, the
so-called conformal Killing vectors V¢ which generate infinitesimal diffeomorphisms
which are pure conformal transformations. Therefore we must split 8V = §V*8¥V e
where V'* are orthogonal to ker P and

Sht = (det’ P*P)/25V* = (det’ P*P)' 25V [6Vix. (29)
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2. Path integral measure ambiguity

A simple way to discuss the independence of the path integral of the choice of the
arbitrary constants a,, a,, @,, which are present in the definitions of the measures

Jdoxe e IXI® = 1 [ dohe N — 1 | doVe miVIF < 1

is to rewrite the measures in terms of the coefficients of the expansion in eigenfunctions
of the operators —V?, P* P and PP*. They are positive definite hermitean operators (we
assume that this is assured by the appropriate choice of the boundary conditions as discuss-
ed by Alvarez [1]). We introduce the orthonormal set of eigenfunctions

X(0), X(0) (=V2),
Vek(0), Vi(o) (P*P),
¥i(o), hi(o) (PPT),

where the first columns are zere modes. Using the expansions (we work on a compact
two-dimensional mamfold)

X* = abXGh+akXh, V= BoVi+BV, h=t¥yht (30)

we can write the measures as

= Va, dot T] Va, dot,
pV = [[Va, d, [[Va, dp,,
Dh = [[Va, df [[Va, dy,. (1)

‘We observe first that the non-zero eigenvalues and eigenvectors of P+P and PP+ correspond
-one-to-one.. Indeed
PP*PV, = 2PV,
so that
hf ~ PV,.
Using
VPPV, = 4,

we conclude that

hy = — PV,

\/ P
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Therefore

L 1 _
h = PV, = B,PV,.

e
Vg
The last equality follows from A* = PV, when we use the expansion for V. Thus

Yo = V2 B (32)
and we have

Dh = [[Va, dtiI;I\/tZ_. Vi d,
= [1Va, d' [ Viiaa,ja, df, ]V a, e/ T1 Va, b}
= oV [1VAayja, T]Vay df T] Va, df; (33)
= ov]] Vayla, (det’ P*P)* ] Va,dr [V a, dpb.
If we put g, = a, = | we recover for the DA* the formula (29). Let us study the factor
N= UJZ/ZUJZ/[]JZ
= VayJa,” 4™ P (det /a,/a,) V a, TP g, SimRer P (34)

where we decide to calculate det +/ a,/a, e.g. in the basis of eigenvectors of P+P. Since zero

modes of P*P are not zero modes of the constant we have the additional va,/a,” ™ "
on the right hand side of (34). Thus
N = (\/a_‘;)dim ker P* —dimker P jo¢ (). (35)

As it is shown in the Appengdix det (C) can be absorbed into the counterterms and since

3 -
Z;jdza JgR

3 -
——fd%JgRﬁ- stk
4n

oM

dim ker P—dim ker P* = 3y (M) = (36)

the same is true for the first factor (the counterterms must include therefore the terms

on the rhs (of (36)). The dependence on @’s amounts to the renormalization of the overail

normalization constant which anyway has to be fixed by the unitarity arguments.
Similarly we have

= Va, dos T[] Va, do. &%)



667

Remember that

(X Xy = [ d°0 /8 X, X n = Oum (38)
and since the zero mode of the laplacian on a compact surface is a constant we take
2 1
X3= . (39)

fd% /g

Altogether

T _ HD — H T 17
IDX“ exp {-— > Idza JEXIVV X = | Va, J.daﬁ[ ma Anx]
u=1

n

D
B v g2yg-Di2qep-piz [ T 2r \"P? do* .
= [det (-Vv )] det (27:6!,) (5 d%c \/E) L1 J“/j' o \/EJ‘DXO. (40)

Det (C) can again be absorbed into counterterms.
Taking into account (40), (33)-(36), (25), (28) we get at this point the following ampli-
tude for the vacuum-to-vacuum transition

W=y _[H{dt | d*c \/g) det'*T;;[det'(— V)]~ P2

top i

____271: P i i Yy~ 1/2 ¢ p+pyl/2
* j' o \/E (det (Vek, Vék)) (det’ P" P)

D

1
* 1)), ¢+ s 41
H ® ¥ N *D

p=1

where the determinant of

(VéK’ VCIK) = j d*c \/ § gabVé‘ll(V({l’; 42)
takes into account the fact that the conformal Killing vectors may not be chosen to be
orthonormal, and the last integration gives just the energy-momentum d-function. The
¥ cx is the volume of the group generated by the conformal Killing vectors, N is the order

of the subgroup of the modular group which preserves g,, and the range of the Teichmiiller
parameters is understood to be restricted to the fundamental region.

3. Weyl invariance in D = 26 in the eigenfunction basis

Let us study the Weyl invariance of W. Since S, is Weyl invariant we have to study
the effect of the transformation ¢’ = ¢ +3J¢ on the ratio (see (31))

[1ar H dyn ’
J dog H doty, e — 1_[ T H 7 (metric e’g) (43)
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i.e. compare it with

H dr¢ H dy?
(dao (44)

¢
J Hdﬁ Hdﬁ,. |

where the superscript ¢ denotes the coefficients of the expansion of the conformally trans-
formed DX, Dh, DV in terms of the operators —VZ, P~P, PP+ in the metric e’®¢?g. X* do not
change under Weyl transformation and working to order ¢ we only need to know the
diagonal term in the change of eigenfunctions X*: X% = (I +A”)X + Y AnX,. 1t can be

m¥n
read off from the normalization condition

(XX = [dPo Jg XXt = [d’0 /g X, X, = Oppm.

Hence
X4 = (1-31fd% g 0¢X, X)Xt ... = (1=%(8)x, )X,
and since
X = agXo+ ¥ @, X, = alX$+ Y a?X?,
we get

ah = (1+3 5%, )0

So the Jacobian of the transformation af — «,, reads

i+l Z (6bdx.. (45)

5V = V.

det

For the contravariant vectors we have

The orthonormal basis changes according to
§ %6 /8 gusViVi = [ 470 8 ™™ VsVmg = Oum

wo = (1863 )V, +

and since
Z ﬁnVn = z B‘anf
we get

BY = (14+{3¢>y B+ .. .
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=1+ Z . (46)

Shly = (1+64)3h,,
and the basis &, (including zero modes of PP+) transforms as (from (12))

h = (1+% 6> )+ ...

Therefore

oB:

det
¢ aﬁm

Finally, from (14) and (23),

From
5hab = Z ynhn
and
(1+8¢)0h,, = Y v2h¢ = ¥ y2(1+% 59Dy )y
we conclude that

¥ = (141 <6@> It ..

=1+3 Z 0P e “47

Combining everything together we get the following full Jacobian for the transition from
(44) to (43):

and
0

®
det | 2"
OYm

1+3 Y 6D, Y. 66Dy, +D 3 3. {6¢Dy,,

where the sums include zero modes of the respective operators. The traces are evaluated
in the Appendix. For D = 26 the resuit is Weyl invariant.

4. Vacuum 1-loop amplitudes

The two dimensional manifolds for the 1-loop closed oriented and open oriented and
unoriented bosonic string amplitudes have the topology of the torus, the cylinder and the
Mbius strip, respectively. In this Section we calculate in each case the vacuum amplitudes.
For the closed string this is a summary of the Polchinski calculation. For the open string
our result coincide with those of Ref. [4, 5] obtained independently.

The torus is topologically equivalent to a parallelogram with boundaries identified.
We can take 0 < o' < 1, 0 < 6? < 1 with X* and g,, subject to periodic boundary condi-
tions

X*(e?, 6% = X*(e' +1, 6%) = X*(o', a*+1) = X*(e'+1, 0% +1).
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The metric can be transformed into the form

T 1

1
@ 3.0 _ i 2.2 =
gapda’do |de” +1do”| (‘51, T

) do*ds®, (48)

where © = t,+it, is the complex Teichmiiller parameter. Hence
Jg=1,, [doJg=1,

Ty

MWER)

3
T, = ;2 (T, is defined in Eq. (28)). (49)
3

o

(Equivalently we can keep the gauge g,, = J,, and choose the parallelogram 0 < ¢! < 1,
0<e?<1)
Since, according to (18)

(P P)ay = 224800, (R =0)

the conformal Killing vectors are zero modes of the laplacian i.e. constant vector fields.
There are two independent solutions

Vi=261, Vi=8&
corresponding to two coordinate directions and generating transformations
o° = a* V",

where ¥ is a constant vector with components in the interval [0, 1]. The ¥ '¢x = 1 and the
normalization of the conformal Killing vectors is

(Vi’ V;) = jdza \/E g‘abVia ij = ngij’ det (Vu Vj) = Tg' (50)

The modular group consists of transformations 1’ = (et +b)/(ct+d) where @, b, ¢, d
are integers satisfying ad—bc = 1. One can eliminate this gauge freedom by restricting
11 < 142, 1, > 0, |t] > 1. There remains only the 2-fold discrete invariance ¢* —» 1—0?,
6? > 1—0¢? so that the order N = 2.

Before we calculate the determinant of the laplacian let us summarize the analogous
information for the 1-loop open oriented and unoriented strings. A manifold with the
topology of the cylinder can be obtained from the square representing a torus

0<aei<l1, 0<Ke?2<1
when we consider a mapping [6]

o' - 1-¢!
02 - g2

M(T ~Ac>{
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of the torus into itself and identify points related by the mapping. Then the cylinder is repre-
sented by the
0<at <12, 0?1,

All the quantities of interest for a cylinder can be obtained from those for the torus by
requiring the invariance under M(T — C). In particular invariance X*(¢') = X*(1 —¢?)
results in Neumann boundary conditions at 6* = 0 and ¢* = 1/2. The Teichmiiller param-
eters are obtained by demanding

(do')? + (1} +13) (do?)* +21,do' do?
= [d(1 —6")*]+ (12 +13) (do?)* +21,d(1 — 6')da® (51)

which gives 7, = 0. For the torus we have two constant linearly independent vectors in the
direction ¢! and 62 as the conformal Killing vectors. Under the mapping M(T - C)
only the one in the direction ¢? remains invariant. Denoting 7, = t we get

Jeg=1, [deg=r1/2, detT =2/,
Vexs Vex) = fdza \/g gab‘sg‘sg = 173/2 (52)

and the volume ¥’ =1 and N = 2.

The last topology to be considered before writing the final resuits for partition functions.
is the topology of a M&bius strip (open unoriented string). We consider the mapping from
a cylinder into itself:

gl - 12—
o2 - 1/2+4 62

M(C - MS){
and identify points related by the mapping. The Mobius strip is represented by
0<ot <12, 0<o?< )2
The Teichmiiller parameter is the same as for the cylinder. We have now
Je=1, [dPoJg=1/4, detT =2/,
(Ve Vex) = Idza NE 89303 = /4 (53)

and the volume ¥ ¢ = 1/2 and N = 2. We proceed to calculate the determinant of the
laplacian 4 = — g*°3,8,. Let us begin with the torus with the periodic boundary conditions
X*ot, 6%) = X*o'+1,0%) = X', 6*+1) = X*(g'+1,6%2+1).

The orthonormal eigenfunctions of the operator.

A,_xzza)zzaa 62] s
== gler() - () () °Y
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are

1 . .
X;,,(o", 0'2) = — ezﬂlmd‘162nma2 (55)
T2

with the eigenvalues .

2

4n
= [(2 +12ym* —2mnt, +n?]. (56)
2

SRR TEAVEA
7= (@) )

and imposing the Neumann boundary conditions

For the cylinder we get

ox*
oot

_0x*

=— =0,
cl=0 66'

ol=1/2

or equivalently the invariance under M(T — C) i.e. under ¢' —» 1—¢', 6> - 0® one has

1
Xﬁn(al, 0-2) = 75 X;'"(O'l, 02)+X;fm(1 —01’ 0'2))
1 2grina? /5 1
= ﬁ e*™" /2 cos (2nma’) (58)

with the eigenvalues

4n?
= [*m®+n*].

We can now calculate the determinant of the laplacian in space of scalar functions e.g-
for the open oriented string with Neumann boundary conditions (the prime omits the zero
mode n =m = 0):

4 2
In det’ A€ = In [—7;— (t*m? + n2)]
: / T

m>=0,n v
’ 4 2 ’ 4 2
= E In [12(12m2+n2)]~+ E In [—”7 nz]
T . T

oo

= Z In ll—e“z’""[—‘% 7+1n 7% 59

n=1
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The details of the calculation are given in Ref. [7]. Finally we get
det’ A€ = 2 ™9 fe” P, fe” ™) = [] (1—e” ™). (60)
n=1

The determinant of the P*P is also readily obtained. One should, however, remember,
that P+P acts not on scalars, but on vectors. On a torus, the only requirement for both
components of a vector is periodicity —in that case

det’ (P*P)T = det’ (—2g,8~ 204/ £°°0,)) = (det’ A7) (det’ 2)*. (61)

For a cylinder, the situation is different. For scalars (like X*) we impose Neumann boundary
conditions. For vectors, first component satisfies Dirichlet and the second one satisfies
Neumann boundary conditions. Hence

det’ (P*P)° = (det’ 43) (det 4p) (dety, 2) (detp 2) (62)
and
In det’ A5 +1ndet 4}, = (Z 2) In ( m2+n2))
m>0,.n m >0 n
' 4’ 2.2, 2 -2
= In| —-(m’+n) [ =4 In(1—e %)~ —‘C+1n‘t (63)
T
mn n=1

To calculate the determinant of a laplacian on the Mdobius strip we need the set of
eigenfunctions

cos 2nn,0")e*™**  n, >0 (Neumann)
sin 2nn,6)e®™*  n, > 0  (Dirichlet).

The symmetry ¢ — 1/2—¢?, a* - 1/2+ 62 requires that n,, n, are both odd or both even.

We have then
' AMS 4n® 2.2, .2
In det’ 4¥5 = + In{— (z°ni+n3) ), (64)
T

ny20,n2 >0,
even odd
In det AW = ( 5 E )ln nf+n§)>. (65)
ny >0 na n; > 0,02

even

Using the techniques described in Ref. [7] we get
‘Cz =
det’ AN = .Ze-’"/” | I (1 —(=1)e"™)?, (66)
n=1

det 485 = e ™2 [T(1~(—D)"e”™)?, (67)
n=1
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and
det’ (P*P)™ = (det’ AY®) (det AY°) (dety 2) (dety 2)

-
12

=7 e ™/12 H (1= (=1)"e”™)*(dety; 2)(detp 2). (68)

n=1

For all three topologies, in the final result one should regularize the determinants of the
constant. When we include the zero mode, for arbitrary value of n,, n, runs from —oo to
o including 0.

Hence

IndetC=F ¥ InC=YQ&0)+1)=30=0, (69)

ny np=-—o ny ny

(we used zeta-function regularization). When we exclude the zero mode, for n, = 0, n,
runs from —oo to oo excluding zero and therefore

Indet! C= Y Y IC+2 Y InC=2§0)InC = —InC. (70)

n1#0 ny=—o0 ny=1

Therefore we use
detC =1 det’'C=1/C.

Collecting the relevant factors for all three topologies, we get for W (Eq. 41) the follow-

ing results
13
VVtorus = J‘dTIdTZTZ ) |:‘C2 —mtaf3 | I 11 elmmt :I
2n _ B 6
* (? 15312 2 % ‘cé’_e nr2/3 ‘1 _e2n¢nt|4 7

n=1

L26 © : ‘ 8
= W jdtldfzf; 14e41|:rz | | .Il_eant -4 , (71)
n=1
T 2 - m-13
chlinder = fd‘t’ \/—T— \/___ [‘L’ze‘ml6 (1_e—-2nm)2]
2 1 Il ! |
27 13 T
L3 e p -3/2 2 —nt/6 1 e"thm: 2 L
(T) (2) V2 | I (

L26
2(8n2 ’)13 dT‘C—“' 27t | | (1 e—27m:)-—24 (72)
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2]

Y -13
Wasbius = IdT \/::* 1/1—2 I:% e /12 H (1"("1)"9-"")2]

n=1
on 13 T 13 s T 'w L26»
i e - /22 _ ~ne/12 “(1—=(—=1 ne-—nn 22__
(T) <4>T N H( (-1yey25

n=1

— L d,r,r—14e1tt (1;_(_1)ne—unt)~24 (73)
2(4na’)t? '
n=1

5. One-loop dilaton tadpole and four-graviton amplitude

In this Section we give several examples of calculations in the path-integral formalism.
First we calculate for the closed, oriented st ringone-dilatontadpole on a torus (such a tad-
pole vanishes on a sphere); next we calculate one-dilaton tadpole in one loop for the open
string (both oriented and unoriented topologies); at the end we calculate four-graviton
one-loop amplitude for the closed, oriented string.

To calculate any amplitudes in the path-integral formalism one needs Green’s functions.
The Green’s function on a torus is given in.Ref. [2] (t = 7,415, z = o' +10?)

_ l_—+—l 2 1 9 -t
G'(z,2') = — (_Z.LZ) ———In M . (74)
8T, 2T 81(0l7)
G" satisfies the equation
6%z —2' 1
_TAGT(z, 2y = 2 L (75)
T2 T2

i.e. itis defined on a space of functions with | dzdzf = 0 (this requirement is satisfied in the
physical amplitudes by the momentum conservation). Our conventions on the thetafunc-
tions agree with Ref. [8]. For a cylinder we have the symmetry o* - 1—o?, 6% = 62 ie.
z —» 1—Z. Hence the Green’s function (r = it,) reads

Gy o IR L 02T
z = — - — . —
(2.2 4T, T | 6,0
_ 1 a 01(:’@-2 13)] (76)
2nT 01(0l7)

c

Because —4G® oc §—1 we can impose = 0 on all boundaries (it is not possible for

—AG® oc §). We recall that 0 < Rez < 1/2, 0 < Imz < 7,. For 2 Mobius strip we have



676

the symmetry ¢! —» 1—0', 62 - 1/2+0? ie. z > 1/2+i1,/2—Z. Using
0,(12+it,/2~v]7) = €™ 7YN0,(v|7), an
and

0,(v9)05(v) _ 0,(vI7/2+1/2)
0,(011)05(0lr)  63(0iz/2+1/2)

(78)

we get
0,(z~2'1/2+1/2)
0,(017/2+1/2)

(z—2z'—Z+2Z )2 1
Mz, z)= - - —— " -
@ 2) 2T,  2aT

1
- —1In
2nT

0,(Z+2'|t/2+1)2)

61(0lr/2+1/2) (19)

We recall that 0 << Re z < 1/2, 0 << Im z < 1,/2 for a Mobius strip. We proceed now to the

actual calculations.
The dilaton vertex is given by (for a torus we do not have any other terms in the
vertex)

T28p

8t
Vo(p) = | d’0 N N0 X" X7, (80)

where

n[.’;v = "/Av—nnpv_nvpua nZ = P2 = 0: n-p= 1.

Inserting this into (71) we get

81,8 dt . _
Ag(p) = (2n)26526(p)T13 (\_/_i%_o%)fdzo, JZ{? e4 z(2m,2) 12
2

ﬁ me: -4819 lim (8,07 +6;0,) (X@E@XEY

n=1 z—z'
4 24 d -
—@n )26526( ) (2Z;gb \/)'13 ) T R I I 11— e2%im 48
= ““47‘580 \l/i5 (zn)zsézé(p)u/torus' (81)

In the above calculation we used (see Eq. (74))
(XHD)X'(Z')y = n"G'(z, 7). (32)

The regularization of the 9,0;, In [z—2’|, ., gives a term proportional to R [9] and hence
vanishes for a torus.
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Inserting the dilaton vertex. (80) into (72) we get the dilaton tadpole for the open,
oriented string in one-loop

c _ (2n)26526(p) 8't2gD dz —Zzut -24
A = Sy (sz)j H“ )

| d*012 lim (8,85 +8;0,)G%(z, 2'). (83)

- »
z2—Z

It was shown in Ref. [9] that the regularized derivative of the term In |z—2'| (in our case
In |0,(z—2'|7)]) is equal to —./gR/(32=T). In another publication ([10}) we show that
in case of a surface with boundaries

{ d*e X lim (0,6; + 8;0..)G(z, =’

z=+z’

1 _ 1 W 1

- ld R+ | dsk) - d’e = - — : 4

1671T(2_[ o Ve +_{ S) 2T1J ’ s7 " arr,” &9
C

ac

We see that the Fradkin-Tseytlin vertex [11] for the zero momentum dilaton coupling
is always proportional to the Euler characteristic of a surface either with or without bound-

ary. Hence we have (x(C) = 0)

Ap(p) = ~4ngp \/24 21)*°6*(D)Woytinger- (85)
Performing the analogous steps for the Mobius strip we get (3(MS) = 0)
Aus(p) = —4ngp \/ 24 (2n)26526(PW)M5biug- (86)
To simplify these expressions we substitute w = e ™ in A}, and w = e~ ™ in A}, and
use the relations
wolf(w) 2 (—2nfin w)'? = g7 %f(gh) ™
and
wH(=w) (= mfln w)'? = g7 V2f (= Jq) %,
where
Ing =2r*lnw, fw)=[] A-w".
n=1
Hence we have
c (2m)*°6*%(p) -
Ap = — 2(87t2 3. 4n D\/24 —“—h(l-q2) =, (87)
n=1
26526 ! d
@m~o"(p) , 2dq 2ym - 24
Ans = — 24 I—(~q°) . 88
MS 2(47! )13 D\/ 77:q3 1] ( ( q )) ( )

0 n=1
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Finally we discuss one-loop four-graviton ampljtude for closed, oriented string. The
graviton vertex reads

8 .
V(p,, X) — ? ;v: 6WX"5;,X"e""x(W), (89)

where w = ¢! +102, or, in a more convenient form (EHE): = &F%)

8 0 o
V(pn X) = ?’ ¢Xp {1 (pr- lér%— - izr ow ) X(W)} . (90)

r

With the vertex written in this form we get

(27':);6526( px) o mint
A(plﬁ"'Q pM) __Z—_ 14 4 : ll 2 w48

2(4n’a'y'?
M
8
[1G#J=) “p{-—Z
o'
i=1 J.k
) " G, v oy O
pj_lfj a— —i i a pk—lék a —'lik <Xu(61)Xv(ak)> (91)
W
where the correlation function is given in Eq. (82) and (74). We will use the notation
<Xu(o.j)Xv(ak)> = ’1uv°"<j, k> (92)
and
2
L= Lk
Jk aw" <f >
62
Djk 6W16- <.]9 k> = jk’

A-= J—_ .’.s
e E P, aw,<l »

J#i
G0
BII( = ppi a"%l <l’.]> = Api' (93)
J#i
We will also use the fact that
O k= =ik = =" (94)
OWJ-OW,‘ S ja 1 ’ - 2T2
For M = 4 the exponent factor in (91) is equal to
H 0, (w;— wy|7)|* PP
2 I\ j k
—a'p - Ty TR K(, p,
exp {—a'p;pnty(0;—01)"} 0,000 * K¢, p, 7)

1g<k<j<4
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where
K= BepensuE i Enepes.
{[(gllngusuqclzci'n‘t + 2 more) (gvxvng3V4D12D34 + 2 more)

-—R

2
+ ('——21_ ) (glullzgv;ugp.v,guaucl2D13+4]_ mdre)
ATy /-

» 4

— .

+ ( ) ) (8uavsBusv28u2vi Burva T8 more)]
T, .

2t

-7
+ “’ [( ) (gmuzngzgﬁw3Au3BuCl 2D12 +107 more)
2

3
o -T
+ ( 21:2 ) (gmvsg-mv,gﬂz"gusuAvaz+43 more)]

+(a,)2 [(gu1p2g[l3ﬂ4cllc34 + 2 more)B\uBVZBvaBVA

+(8y1v28v5v.C12C34+2 more)A, A,,A,.A

3 lpq

+(8uiusAu;Au,C12 + 5 more) (g,,,B,,B,,D1, + 5 more).

—T
( 27 ) (841428usvs44s By, By, B, ,C 1, +35 more)
2

—T
+ (2‘[ >(gV1V2gV4ﬂ3Bv3Au1A”2A"4D12+35 more)
2

2
-%
( 212 ) (glllvsgnsvaﬂtAﬂszlBV4+ 41 more)]
+()? [(gm,,zA,,sAmCu +5 more)B,,B,,B,.B,,
+ (g,m,zBuBuCu + 5 I'[lore)14y114“21‘1‘“314“4

—-x
+ ("2—_[' )(gmvsAy,AmA“Bleszv‘+ 11 more)]
2

+(oc')4[(A,,IA,,ZAMA,,‘BHBVZBVJBN)]} . 95)
There are no g,,,,, terms in the expansion. Also g, and g, ,, are not distinguished in permu-

tations (the same applies to g,,,, and g,,, ). 8,,,, comes with C;j, g,,,, with D;; and g, with
one power of (—nr/21,).
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APPENDIX

In this Appendix we calculate the trace of a function fin the basis of the eigénfunctions
of some hermitean operator B:

Trf = 1im Y, <p,lf1pape” " = lim Tr (fe™*P)
t=0 n -0 -

= [ d’a Jg (alfe "oy = [ d’c /g fh(o, 0, 1),
where h(x, y,t) obeys the heat equation
B.h(x,y, ) = —,h(x, y, 1), hx,y,t=0)=¥dx-y).
Using (4.17), (4.38) of Ref. [1]

Tr (fe—tP+P) = Tt
Tt o

[ 26 o r+ -;; [ J dskfir 3 jdza Jz Rf] +O/D),
M

oM

Tr(fe™"F") = _'21* ndza Jer- %[f dskf+1 fdza Jg Rf] +0(,/1),
eM M

nt |

Tl

. -ty _. 1 [ 2 - 8 ﬁ a
Tr (fe )-.Z— d'o /g f+ 8__\/5? ja’sf—i~ - j‘dsn N
M oM
1 — .
+ Eﬁ[ J‘dskf+% jd’a Je Rf] +0(,/1),
oM M

(8 = —1 Dirichlet, # = 1 Neumann).

D
2 z 0¢>h,— Z Oddv.+ Z {0¢>x,

n n n

1 _ D] 1 _ D
= — |a PO P L e ~3 -4t —|.
— da\/gégb[z 1+ 4]+6n[fdsk6¢+2fdanR5¢][ S —4+ 4]
oM M

The first term can be cancelled by a counterterm p> § d¢ \/g and the second one vanishes
for D = 26.
For the traces of a constant we get
Tr C = lim Tr' (Ce™ PP+ Y

zero modes
of P*P

We see that

TrC=mTr (Ce™H+ ¥
zero modes *
of PP*
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Hence

dim ker P*P—dim ker PPt = —Tr 1+Tr 1

9 ; 2 —
= 67:”‘1”‘” fd a\/gR] = 3(M).
M

oM

For the determinant of a constant C
det C — eTr inC

we get a combination of exp (u? | d%0 ,/g) and exp (ay{M)) terms which can be absorbed
into the counterterms.
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