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Lagrangian and Hamiltonian descriptions of classical particles with spin and colour
are presented. We take into account a new classical observable which is due to a possible
coupling between spin and colour degrees of freedom. In a configurational space of the particle
we find a topologically non-trivial gauge structure related to a generalized Hopf fibration.
S7 — CP3.

PACS numbers: 11.15.Kc

1. Introduction

Motivation for this work is twofold. First, it has been pointed out in the book [1]
that Lagrangian description of a simple classical system, e.g. a non-relativistic spinning
particle, leads to a beautiful, topologically non-trivial gauge structure in a configurational
space @ of the particle. In particular, it turns out that a global Lagrangian description
Tequires an explicit introduction in Q of unphysical degrees of freedom, and that Lagran-
gians containing only physical degrees of freedom can be constructed only locally, in some
map on the configurational space. In this paper we would like to present a new example
of such a non-trivial gauge structure in classical mechanics. Its topological non-triviality
is due to the fact that a generalized Hopf fibration S7 — CP? is non-trivial. Examples
considered in [1] involve only the standard Hopf fibration $% — §2,

The second part of our motivation is the following. In the paper [2] we have noticed
that a complete set of dynamical variables for the so-called classical particle with spin
and colour moving in an external Yang-Mills field should contain a new dynamical variable
1in addition to the more common classical spin and colour. The presence of the new variable
is due to a possibility of a coupling between spin and colour degrees of freedom on a more
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fundamental level of quantum mechanics which underlies this classical model. In the partic-
ular case of absence of such a coupling the new variable reduces to a product of components
of the classical spin and colour. However, in the general case the new variable is an inde-
pendent dynamical variable. Classical equations of motion for the particle with spin and
colour were obtained in [2] as a classical limit of a Dirac equation. They contain 15 internal
dynamical variables, namely the classical spin (%), the classical colour (/) and the new
variables (J""), where @, k = 1, 2, 3. These internal dynamical variables are constrained
by 9 independent constraint relations. Thus, the internal configurational space of the
particle is a non-trivial 6-dimensional algebraic submanifold of R'*. Therefore, the resulting
dynamical system is by no means simple. In particular, it is not a trivial superposition
of the well-known classical mechanics of a spinning particle [3], and of the classical me-
chanics of a coloured particle [4]. For this reason one may expect that it is rather a difficult
task to formulate Lagrangian and Hamiltonian descriptions of such a particle with spin
and colour. However, it turns out that we can construct the Lagrangian and Hamiltonian
descriptions once we adopt ideas presented in Ref. [1]. Especially inspiring is a Lagrangian
description of the spinning particle given in Chapter 3 of Ref. [1].

The main step consists of regarding the 15 dynamical variables S*. 1%, J°* as composite,
secondary quantities which are built out of a smaller set of primordial dynamical variables
W™, a, 7 = 1, 2. The variables w™ are chosen in such a way that the nine constraint rela-
tions are satisfied automatically. Such interpretation of the classical variables Sk, e, J*
looks a little bit unnatural on the grounds of classical mechanics. However, it is perfectly
suited for our case because the variables S¥, 1%, J* have been defined in [2] just as some
secondary quantities, namely as expectation values of certain quantum mechanical oper-
ators. Let us quote here the relevant formulae:

I* = 1 Tr (Wolwh)/Tr (W), M
St=1Tr (v;}*akv@)/Tr wiw), @
J* = 1 Tr (Wowho})/Tr (W), 3y

where oy, 6, are Pauli matrices, @, k = 1, 2, 3, T denotes the matrix transposition, 2
by 2 matrix w = (W*™), a, 7 = 1, 2, is a time-dependent and x-independent spinor. The
index « (n) refers to the spin (colour) degrees of freedom. Here we do not assume that
w is normalized, i.e. Tr wiw # 1, in general. The obvious choice for the primordial dynam-
ical variables is the spinor w = (w*"). It is clear that the new primordial variables can be
interpreted as coordinates of a point of R8\{0}. Zero is excluded because of the denomina-
tors in formulae (1)-(3).

It follows from (1)—(3) that an overall time-dependent phase factor, as well as a normali-
zation factor of w do not contribute to the expectation values. Thus, two of the eight
primordial variables (w*") seem to be superfluous. This impression turns out to be true
in the case of the normalization factor and false in the case of the phase factor. The phase
factor cannot be globally eliminated essentially because of the mathematical fact that the
generalized Hopf fibration S7 — CP? is non-trivial, [5]. In other words, the considered
system exhibits a U(1) gauge symmetry in the configurational space Q for which does not
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exist a global gauge fixing. Local gauge fixing is possible, i.e. the phase factor can be elimi-
nated locally, in a map on the space R®{0}. In this framework, the composite variables
S*, I°, J%* should be regarded as gauge invariant observables of the classical system.

Utilising the variables w it is rather easy to find the Lagrangian. It turns out to be singu-
lar, partially because of the gauge symmetries. Nevertheless, Dirac’s method [6, 7] allows
us to construct the corresponding Hamiltonian explicitly.

The plan of this paper is the following. In Section 2 we present the classical equations
of motion and the constraints on S*, I, J%. In Section 3 we write the appropriate Lagrangian
and we discuss the gauge invariances of it. In Section 4 we construct the corresponding
Hamiltonian. In Appendix we invert the relations (1)~(3), i.e. we express w* by S, 1°, J ok,
The obtained relation is not smooth, unless we divide the CP? space into several patches.
This fact reflects the non-triviality of the Hopf fibration S7 — CP3.

2. The classical equations of motion

We shall consider the following classical equations of motion
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where g is a non-Abelian coupling constant, F;,, = 9,4,—0,4,— W
c

EapcAnA; is the Yang-

-Mills field-strength tensor, (D,F, ,w) = 0,F,,— a,,cAeF“ is its covariant derivative.
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The equations (5)—(7) have been obtained in the papers [2] by taking a semiclassical, non-
relativistic limit of the Dirac equation with the external Yang-Mills field 4;. The Eq. (4)

In our opinion this term has to be negligibly small if the semiclassical approximation
is to be a good approximation. Therefore this term was neglected in [2]. However, even
such a small term can be important when considering the question whether the system
of Eqs (4)~(7) admits a Lagrangian which would exactly reproduce these equations. Actually
for the system (4)-(7) we can write the Lagrangian, whereas we are not able tc do this for
the system consisting of Egs (5)-(7) and of Eq. (4) with the last term on the r.h.s. excluded..
The classical observables S*, 1%, J%, characterising the internal motion, are defined
by (1)~(3). From these definitions it follows tHat they are not independent, €.g. one can
prove ‘that ([2])
11— J*s* = 0, )

4% gat _ gkgl — »(%_72)5@ )

Detailed analysis carried out in the paper [2] (see also Appendix to the present paper)
has also showed that knowing (I%), (S¥), (/%) one can determine the normalized spinor
w = (w™) up to an overall phase factor. Such a phase factor does not contribute to the
expectation values (1)-(3). Therefore, of the eight variables (w™) just two and no more
are superfluous, namely the phase factor and the normalization factor.

It is easy to check that the Eqs (5)—(7) will be satisfied if the spinor w*" obeys the
following equation

dw -~ a - h f
ih— = gwds— £ Atsiy g—e,ksSs Ey
dt c 2me
gh ES AT g~ g
— o ey X SWEY 4+ Aw = Hy,w+Aw, (10)
2mec

where 1 can be any real-number-valued function of time, and w = w/(Tr wiw)'/2. wu follows
from this equation that

ih - = —gdAgwt+ —e—A'T Txt fn—zs,ksFi{w*S’
h N
+ zg—i eu BT — At an
mc

The function A(z) will be specified later on. We use here a matrix notation A = A,T",
F = F,, T, where T* = ¢,/2 are generators of SU(2) group. S* = 0,/2 are the spin opera-
tors The terms like $*w £, etc., are to be interpreted as ordinary products of 2 x 2 matrices.
Eq. (10) is the basis for the Lagrangian formulation presented in the next Section. Let us
notice that from (10), (11) it does not follow that the norm ||w|{| = (Tr wtw)*/? is constant
in time. Actually it can be any function of time.
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3. The Lagrangian formulation

It is easy to guess the Lagrangian corresponding to the equations (4), (10),

A

1 42 ih ~d :\_r_ A A.t_ A A.I_ ~ Af ~
F =smx+ 5 Tr (w'w—wiw)/Tr (w'w)—Tr (W H;,w)/Tr (w'w). (12)
Here the dot denotes the time derivative, and w'H;,w has the form

Tr (WHH, W) = Tr (gwtwdg— f—»&%é”x"

gh ok NF s S i
+ Eg_mc W SSWEy — 53 Eps X WS WE'T), (13)

which follows from the definition of H,, given by (10). The action integral $ = | & dt
yields the Eq. (4) under variation with respect to x’, while the Eqs (10), (11) follow from
(independent) variations of (W), (w™"), respectively. In particular, we obtain that

;1) = <—Tr (WHH W)+ % Tr (whe— »W)) / Tr (W) (14)

The Lagrangian (12) is gauge-invariant with respect to simultaneous SU(2) gauge
transformations of the external Yang-Mills field and of the spinor w. This kind of gauge
invariance is very important of course, however in the present context much more interest-
ing is the fact that the Lagrangian (12) exhibits also entirely different types of gauge invar-
iance. ‘

Namely, let us consider the following transformations of the spinors (w™), (W™):
LG I BN O (15)

where «(?) is a time-dependent, real-number valued phase. The external gauge field does
not transform under this new kind of gauge transformations. Thus, the transformations
(15) act only in the internal configurational space R®\{0} of the particle. Under the transfor-
mations (15) the Lagrangian changes by a full time-derivative, namely

¥ - ¥ = F—ha (16)

Thus, ¥ and &’ are physically equivalent. Because in general & # %', we shall call
this invariance “the weak gauge invariance” (in this we follow Ref. [1]). The equations
(4), (10), (11) with 1 given by (14) are invariant with respect to the transformations (15).

The Lagrangian (12) is also gauge invariant under a change of the norm of w, i.e.

w(t) = e PO%(r),  wi(t) » e POwt, an

where f(¢) is a real-valued function of time. In this case we have the gauge invariance in
a strong sense, i.e. ¥ = Z. Eqs (4), (10), (11) with 1 given by (14) are invariant with respect
to the transformations (17).
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It is natural to regard the fact of the presence of the gauge symmetries (15), (17) as
an indication that the internal configurational space R®\{0} contains superfiuous variables,
namely an overall phase of w and a normalization factor of w. It turns out that this impres-
sion is true as regards the normalization factor, however it is not true in the case of the
phase factor. Let us first analyze the case of the norm. Any (w*") € R® {0} can be uniquely
written in the form

wi(1) = &OwH(1), (18)
where oft) is real and
Tr wiw = 1, (19)
ie. WM eS’, and
a(t) = L In (Tr wiw). (20)
Therefore, we can write
R*\{0} = S"xR,, (21)

where Ry = {r:r > 0}. It follows from (21) that R®{0} is a trivial bundle with the base
S7 and the fibre R,. Therefore, we can find a global, regular section of this bundle, i.c.,
in other words, a gauge condition which eliminates the arbitrariness of the norm. For
example, we can use (18), (19), (20). Substituting (18)~(20) into the Lagrangian (12) we
obtain a new, reduced Lagrangian &, which contains only w™, w*" constrained by condi-
tion (19). Thus, the resulting configurational space is the sphere S7. Now the internal
dynamical variables are coordinates on this sphere. The new Lagrangian Z leads to the
same Eqs of motion for the gauge invariant classical observables S*, I, J° as those obtained
from 2, i.e. to Eqs (4)—(7). Therefore, & is physically equivalent to ..

Now, let us consider the phase factor and the gauge transformations (15). These
transformations do not change the norm of w, i.e. they operate within the sphere S”. There-
fore, in order to eliminate the phase degree of freedom we would have to write the sphere
S7 as a trivial bundle with a fibre U(1) = S!. Then we could use a glabal, regular section
of this trivial bundle in order to eliminate the phase from the Lagrangian. The class of
points of the sphere S7 which differ only by the phase factor can be regarded as a point
of CP? space. Thus, the question is whether S7 could be regarded as CP3 x S!. It is a weli-
-known fact that it is not the case, [5]. For example, 7,(S87) = 0, while 7,(CP?*x S!) = Z®Z,
where Z is the additive group of integers. However, it is true that S7 >~ CP?x S! locally.
Therefore, the phase factor can be eliminated only locally, by 1ntroducmg local patches
on S”. Any effort to eliminate the phase factor globaily would necessarily lead to singulari-
ties in the corresponding new, reduced Lagrangian. In other words, in the case of the gauge
invariance (15) a global gauge fixing is not possible. Let us also recall that the Lagrangian
(12) is invariant with respect to (15) in the weak sense because of (16). Therefore, when
eliminating the phase factor locally, we can neglect the total time derivative — ho, where
w is the phase factor present in the considered local section of the bundle S7 (thus, now « is
a function of the point of the space CP?).
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The quantities S¥, I, J® are invariant with respect to the gauge transformations (15),
(17). For this reason it is natural to call them the classical observables. The formulae
(1)—(3) can be looked upon as relations between the classical observables and points of the
CP? space. In the Appendix we invert this relation. In order to do this, we have to introduce
local patches on the CP? space. The fact that such inverse relation is possible means that
S* I°, J form the complete set of classical internal observables — any other observable
is a function of them.

Let us stress that from the preceding considerations it follows that it is not possible
to express & in terms of the classical observables S¥, 1%, J® only, just because it is not
possible to reduce ¥ to a Lagrangian on the CP? space. At best we can have the weakly
gauge-invariant Lagrangian on the sphere S7 with the unphysical, gauge degree of freedom
(the phase factor) which cannot be globally eliminated for the topological reason.

4. The Hamiltonian formulation

In order to obtain the Hamiltonian formulation we apply the standard procedure
presented in many text-books, see, e.g. [6, 7]. We shall restrict our considerations to a con-
crete local coordinate map on the R8\{0} space. (We could proceed in a coordinate-inde-
pendent manner. However, this would lead to rather lengthy computations, especially
when classifying constraints, with no extra insight gained.) Passage to another map can
be done by a standard patching. As the local coordinate map M on the internal R®\{0}
space we shall use (r, o, &, {*) which are introduced in the following manner. If (w*") e M
< R3{0} then w*" can uniquely be written in the form

Wi = re’™, (22)
where
r>0, 0<a<?2rn Trolo=10=@0"), Imos''=0,

Rep'! = V/1_lvlzlz__’1)21|2_!Uzzl"2‘ >0,
E= @, 8,8 SR (012, 0, 7Y,
Z’ - (Cl, Cz, (:3) af Im (012’ 021, 022). @3)
In these coordinates the Lagrangian (12) has the following form

52

£ = "o —ha+ WE-ED~Tr ("Hond). 24)

The corresponding canonical momenta are defined as follows

0% _ 0¥ 02

pi = ax, s P, = a& s pr = 6;‘ ’
K 0% Z ad i=1,2,3 25
i 65“ i (3C.i, L= [t R v ( )
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Poisson bracket has the usual form

7. G} = oF G  OF &G .
e oq' op,  ap, oq')’ (26)
I

where we have introduced the abbreviations (¢¥) = (X', a, r, &, {5, (1) = (i, Pu> P Kis Z1),
I=1,2,...,8 We obtain from (24), (25) the following eight primary constraints

path =0, p, =0, 7)
K,—hi'=0, Z,+h& =0, (28)

where i = 1,2, 3. It is easy to check that the constraints (27) are first class constraints,
while the constraints (28) are second class constraints. It is also easy to verify that there
are no secondary constraints.

The second class constraints can be eliminated by passing to the Dirac bracket {F, G}p,.
We obtain that in our case

| [oF  oF G oG
F.Gly = (F G — — (2 n - 4
{F, Glp = {F, G} 2h(65‘+ azi)( a t aK,.>

+ 1 oF o oF oG h oG 29
— | — — 4 - .
a\" o Yl )\eE T ez (29)

Because it is allowed to use constraint relations inside Dirac bracket, we can altogether
eliminate the momenta K, Z; from the theory by using the formulae (28). Then F, G will
be functions of X, P, ¥, Py % Pa» &, ¢, and the Dirac bracket reduces

_OF oG oF 0G oF 0G oF 0G

- —— . — 30
o¢ ot ort oet (30)

oF &G oF 0G N 1 /0F 0G oF aG
or 0dp, op, Or 2h

Now, let us find a Hamiltonian H for our system. Following the general recipe, [6, 7]
we find that

1 g gh . 2
H=_— i_ 5 geife_ _SisEaJas
2m(p ¢ 2me?

h . .
FGASI+ S ey + R+, (3D

Here we have used the formulae (24), (13), (1-3). I* and J ° should be regarded upon
as functions of the variables &, {. The last two terms are due to the first class constraints (27).
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a and 7 present in these terms should be regarded as new variables independent of the
coordinates and momenta, [6]. Analogous terms for the second class constraints (28)
have been eliminated in a standard manner, [6, 7]. We may do this because we have already
passed to the Dirac bracket. So called physical Hamiltonian Hy for our system is given
by that part of H which is gauge-invariant with respect to gauge transformations (15),
(17). Thus,

H 1 i g Aaila gh EalJas ?
= - — 53 s
FEom\P T G 2me? !

aja, 8h e
+gAol"+ — ey Fud . 32)
2mc

It is easy to check that Hamilton equations of motion

dn

[ H s
d‘ {’7’ }D

where n = (X, p, E,0), coincide with Lagrange equations of motion following from the
Lagrangian (24). On the other hand, for a(¢) and r(t) we obtain merely identities

da . dr

= — =
dt

7.

Thus, a(t) and r(r) are not fixed by the equations of motion (plus initial conditions). This
reflects the fact that o and r are gauge variables. The only way to fix time dependence of
aft), r(1) is to impose a gauge condition. Of course, such a gauge condition has to be compa-
tible with the equation of motion (10). For r we can take, for example,

r=0, ie r=const

For o any gauge condition has to be local on R8\{0}, otherwise we would have a global,
regular section of the S7 bundle with the base CP3. This would contradict the non-triviality
of the generalized Hopf fibration. In the case of the local map (22), (23), we can take, e.g.
a = const.

5. Remark

Considerations carried out in this paper could be repeated in the case of a relativistic
spinning particle with color. Basic Lorentz covariant equations of motion, which would
replace our non-relativistic equations (4), (10), could easily be obtained by considering
Heisenberg equations of motion for quantum observables for a particle described by the
Dirac equation in Foldy-Wouthuysen representation. Then, in order to obtain Lorentz
covariant equations one has to use Lorentz covariant position, spin and colour operators.
Such operators have been constructed (in the m~2 order of the Foldy-Wouthuysen represen-
tation) in the paper [8].
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APPENDIX

It is easy to see that formulae (1)-(3) and (19) imply that

wiw = L oo+ 10, (A1)
ww! = L ao+S*s,, (A2)
O, - SF
wh -21‘ W= oo+ J%7, (A3)
- a;r ~y I° ok »
w e w' = ) oy +J%0, (Ad)

where o, = (1 9), T denotes the matrix transposition, and w = (w*") is the normalized
spinor introduced by formulae (18)-(20).

Now, let us write
~ a f
v (v 5)’

a = ae®, B =be" y=ce* 6=de”

where a, b, ¢, d are moduli of a, 8, y, 8, correspondingly. It follows from (Al), (A2), (A3)
that

o’ = 33+ +5°+27%), (AS)
b = L (G —-1P+5°-2%%, (A6)
¢ =L G+1P-857-2J%Y, (A7)
d* =13 -rP-5*+2J%). (A8)

We see that normalization condition (19), i.e.
Trwiw = @>+b*+*+d*> =1

is satisfied.
From (A1)-(A3) it also follows that

abe eV = L(I'+il)+J+1J%,

ace®e™ = 1L(S'—is?H)+ 73 —iJ*?, (A10)
ade™ e = JU i 24 g2, (Al1)
cde®e™ = L(I'+il?)—-J"—iJ?, (A12)
bee¥e™ % = JU i 2 4 iJ?t 4 J22, (A13)

bdee ™ = 3 (S'—iS%)—J¥ +iJ*. (Al4)
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From these relations we can determine the phase factors €', €™, e'%, ¢'. It is clear that
if we muitiply these phase factors by a common phase factor e, it will cancel itself in
Eqs (A9)-(A14). This freedom of the overall phase factor for w can also be seen from (A1)~
—(A3). Thus, we can actually compute w up to the overall phase factor. Such a class of w’s
determines a point of the CP? space.

The relations (A9)-(A14) can be solved with respect to the phases if the coefficients
ab, ac, ... are nonvanishing. Because in general they can vanish, we have to use patches
covering the space CP3. For example, in the open subset A of CP? defined by the condition
a # 0 (let us explicitly state that this condition does not exclude vanishing of b, ¢, d)
we can use the formulae (A9)-(A11). Using them we can compute be', ce'*, de*® and,
subsequently, we can form the matrix w = w,. The resulting formula for w, contains Fad
as the arbitrary, overall phase factor. In the case of the open subset B of CP* defined
by b # 0 we can use the formulae (A9), (A13), (A14) from which we can compute ae',
ce't, de’ — in this case " is the arbitrary phase factor. The resulting matrix w we shall
denote by wp. Similarly one can consider the other cases, i.e. ¢ = 0 and d = 0.

In the overlap region A ~ B, i.e. when ab # 0, the spinors w,, wy are related by the
following non-trivial phase factor (in the gauges ¢ = 0 in A and y = 0 in B)
=il 42" - iJ%)

JE+S P42

A _

In order to check this formula it is very convenient to use identities (8), (9) and the following
two identities

Epacd®J S = £4, ST, (A15)

RIS = L ST+ £, S (A16)

Eabe

The identity (Al5) follows from

0k ~ Oc Ske, of
Yk ~ Yo ~p~ < a
Tr( %5 w"w> =Tr |:< 5 +J”"0'T,,> —2—~(%00+I O'E)]
ey Ok ~ OF
= Tr | wwt =% = wt
2 2

1 Ok I’ cr
=Tr 7(60+S”ap)~2— 70'04-.] o ),

where we have used formulae (A1)-(A3). In order to prove identity (A16) consider

T
Tr(wt 2y 2ot O
2 2 2
S or (S°
= Tr [( 5 ao+ % T) - (—2- 6o +J“a§>]
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Ok 1“ a Os 1 r
= Tr 5— 70'04—,] pg’p 5(70'0-}-50',) .

The fact that we have to use the local patches reflects the nos-triviality of the generalized
Hopf fibration S” — CP3. Namely, let us assume for a while that there exists a single smooth
function w(S¥, I°, J%) of the variables S¥, I°, J® such that its values lie on the sphere S”.
According to the definitions (1)-(3) S*, 7%, J* can be regarded as a smooth function on the
CP? space. Therefore, w(S¥, I, J**) can be regarded as a smooth function on the CP?
space with values in the sphere S”. Thus, we obtain a smooth section of the bundle S7 with
the base CP3. This contradicts the non-triviality of the generalized Hopf fibration. There-
fore, such a single smooth function w(S¥, I, J*) cannot exist.

REFERENCES

[1] A.P.Balachandran, G. Marmo, B.-S. Skagerstam, A. Stern, Gauge Symmetries and Fibre Bundles,
Lecture Notes in Physics 188, Springer — Verlag 1983.

2] H. Arodz, Acta Phys. Pol. B13, 519 (1982); Phys. Lert. 116B, 251 (1982).

[31 F. Rohrlich, Classical Charged Particles. Foundations of Their Theory, Addison-Wesley 1965.

[41 S. K. Wong, Nuove Cimento LXVA, 689 (1970).

[5] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Modern Geometry. Methods and Applications,‘
Part 1I, Ch. 6, Nauka 1986, in Russian.

[6) D. M. Gitman, I. V. Tyutin, Canonical Quantization of Fields with Constraints, Ch. 2, Nauka 1986,
in Russian.

{71 A. J. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems, Roma: Academia
Nazionale dei Lincei 1976.

[8] K. Golec, Phys. Rev. D, in press.



