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ELECTROMAGNETIC FORM FACTORS OF DEUTERON
ELECTRODISINTEGRATION NEAR THRESHOLD
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Polarization effects near threshold of the electrodisintegration of the deuteron, e +d
— e +p+n, are analysed. Polarization observables are defined in terms of 5 electromagnetic
form factors (EFF) of S-state two-nucleon production. The EFF are calculated in the frame-
work of the relativistic impulse approximation with the final state interaction taken into
account. Sensitivity of the obtained results to both the choice of the deuteron wave function
and the way of parametrization of the nucleon electromagnetic current off mass shell is investi-
gated.

PACS numbers: 24.70.+s, 25.30.Fj

1. Introduction

The importance of investigating polarization effects (PE) in ed-scattering has already
been indicated in the literature [1-3]. The development of polarized electron beams [4],
polarized deuterium targets [5], and polarimeters of new design for measuring final particle
polarizations [6] has made it possible to carry out various polarization experiments, Thus
experiments on electrodisintegration of the deuteron (EDD) with a tensor polarization
were initiated at Novosibirsk [7].

Different problems of PE applied to EDD have been considered in Refs [1, 2, 8-10].
It is evident that PE near the EDD threshold are of great importance, since the available
experimental data obtained in this region with electrons scattered at backward angles
are treated as an evidence of a large contribution of mesonic exchange currentsf[l 1-13).
In so doing, it is usually neglected that the “one-body” contribution to the EDD cross
section is calculated using standard methods of nonrelativistic nuclear physics in the frame-
work of the impulse approximation with a further extrapolation of the results to the region
of high momentum transfers.

In the present paper we analyse the PE in the EDD near threshold. It was shown earlier
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[14] how, proceeding from such general properties of hadron electrodynamics as the electro-
magnetic current (EC) conservation and P-invariance, the amplitude of the process y*+d
— n+p (where y* denotes a virtual photon) can be parametrized in terms of 5 electro-
magnetic form factors (EFF) of two-nucleon production to the S-state.

To estimate the corresponding PE near threshold, we have calculated the EFF in the
framework of the relativistic impulse approximation (RIA). Naturally, a realistic parametri-
zation of these form factors in the threshold region must satisfy the unitarity condition
for the multipole amplitudes of the y*+d — n+p process.

Here we also investigate in detail the sensitivity of the form factors obtained to the
choice of the y*NN-vertex, which is related to the uncertainty of the nucleon EC parametri-
zation off the mass shell.

2. Polarization effects

The matrix element of the EDD within the one-photon approximation has the form

2
e —

M= = W(k)puk), 0
where J, is the EC of the y*d — np transition, k,(k,) is the 4-momentum of the initial
(final) electron, k = k, —k,.

Taking advantage of the conservation of leptonic EC j, and hadronic EC J,, the
matrix element (1} can be written as

Mo=meed,=e e, eg=Ssin e = Npe @)
k ko
In the c.m.s. of the reaction y*+d — n+p we can write .4 = eg, Fo,¢, , where ¢,(p,)
is the spinor of p(n). In the general case, # is characterized by 18 scalar (generally, complex)
functions of three independent kinematic variables [2]. Near the EDD threshold, however,
the spin structure of the amplitude & is substantially simplified [14] and can be defined
by five EFF

F = ig,-e*Uxic+g2-o'lAc‘e*U+g3-e*o" Uk
+g4 - e*k - ok - UI:'+g5 - e*k - Us,
k=K, g =gk, 3)

where U is the deuteron polarization vector.

Note that expression (3) is also valid for the production into the S-state of (np) with
a nonzero relative momentum. Then g; = g(k?, E,;) (where E,, = W—2m, W is the (np)
invariant mass, m is the nucleon mass) and the quantities g, _s can be related to the scalar
amplitudes f; (Appendix 1) defined in [2]. It should also be noted that the EFF g, describes
the absorption of the isovector y* (M1 — !Sj-transition), while the EFF g,_ describe
the absorption of the isoscalar y* (transitions to the 3S,-state of nucleons).
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The EFF g; determine all PE in y*+d — n+p near threshold. It appears most con-
venient to carry out the general analysis of PE in terms of the structure functions (SF).
Thus, the tensor H;; = J.J; (where the bar denotes the summation over nucleon polariza-
tions) for the polarized deuterium target in the T-invariant hadron electrodynamics is
defined by a combination of eight SF:

H,‘j = Sijul +E£i€ju2 -+ igiﬂglu:; + iaiﬁl‘eléi( ‘Ug
+ Sakoky - (Bius+kikjug)+ Sijus+(Sikak;+ S;uk ks,
u; = ui(kz, Enp)> Sij = éij" Eikj (4)

where {(S,;) characterize the vector (tensor) polarization of the deuteron. Formula (4)
describes the PE not only near threshold. This is a general expression for the dependence
of the inclusive tensor both on vector and tensor polarizations of the target.
Expression (4) results in the following general structure of the differential cross section
for the EDD near threshold at scattering of longitudinally polarized electrons with the helicity

A2z =k, y = kxkJlkxk,,x = yxz):

d’¢s o E |p| 4n
dE'dQ, 64n° E MW (—k?)

{vy+xo,

FAN1=12 E oy + AN K(1—K) EX v, +Q,0s

+ K(Qxx - ny)UG + Kszv7 + \/K(l - K) szus]’

% 0.
Ls. tgz = (5)

Tl=1-2
* P

where E(E’) is the initial (final) electron energy, and 0, is the electron scattering angle in the
lab system, p and k, are the c.m.s.- momentum of the nucleon and the energy of virtual
photons, respectively; M is the deuteron mass.

Components of the deuteron quadrupole polarization tensor Q,; in the lab system
are related to components of the tensor S;; by the boost along the z-axis: S,, = Q.. * ©/M,
S,; = 0,,({w/M)?, where w is the c.m.s. deuteron energy. Relationships between the quanti-
ties v; and the EFF g,_s and SF u; are presented in Appendix 2.

While analysing relative contributions of the S-wave multipole form factors to v;, it is
advisable to make use of the following inequalities:

Ve
-1<T,—T, <1, Txx—Tyy=%l_—;
‘1

v

—1<TP <2, TP =3
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U4
—1 < Fx < 1a T, = s
vy Hu,
” 1 Us
_1<Tx2<19 rxz=7 N
l71+l72
-~ (L) w_ 1Y
05 < T <1, TV =17, (6)
Uy

These inequalities result from the formulae of Appendix 2. The closeness of T, to +1
and T,,—T,,, T to —1 must indicate the dominance of the EFF g, (of the M1 — S,-
-transition) contribution to the amplitude of transverse y* absorption. If one of the ampli-
tudes of the E2 — 3S, — or M1 — 3S,-transitions is zero, then T,,—T,, and T} values
must coincide. If T — +1, then the E2, — 3S,-transition dominates in the amplitude
of the longitudinal y* absorption, and if T~ » —1/2, then the main contribution comes
from the EO, — 3S,-transition.

The polarization of the nucleon produced in the e-+d — e~+n+p reaction can be
analysed in a similar way. In this case, the proton polarization vector P (the deuteron being
unpolarized) can be written as:

p. d% o« E |P| 1 4n
dE'dQ, 64n° E MW 1—x (—k?)

[x-ivVk(1—K) P,

—y Vr(l+K) P4z 2J1=? P,]. 0]

P,_5 can be written in terms of the EFF g; as

1

3k, M

2V —=2k%
=_:/_._.Re[

o 2
—(g1+g2)gs + (w) gs(gz+g3+g4+gs)*] ,

2V -2k?
P,=————o««—1Im H,
2 3k (g185)

2 * o \* 2
Py = 3Re|2g,8;+ oM lgsl” }. ®

Note that P,, P, = 0 at 6, = 0° and 180" (it is a natural kinematic restriction valid not
only near threshold). The P, component (transverse polarization) is nonzero only if the EFF
are complex. The expression for the final neutron polarization can be derived from (8)
by changing the sign before the EFF g,.

To estimate a relative contribution of the real and imaginary parts of the EFF g;, we
employ the unitarity condition (Fermi-Watson theorem [15]). According to this condition,
the multipole amplitude phases of the y*+d — n+p process must coincide with the cor-
responding phases of (np) scattering up to the pion production threshold (E,, <X 140 MeV).
The reality of the EFF g; at E,, = 0 is a result of the unitarity condition.
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The expressions obtained above demonstrate the necessity of setting up polarization
experiments in order to measure all five EFF even at the EDD threshold (where only the
S-state of the (np)-system is of importance). With the knowledge of the contributions of
longitudinal and transverse y*-quanta to the cross section, it is possible to determine the
magnitudes of all EFF by measuring the corresponding asymmetries of scattering of un-
polarized electrons by the tensor polarized deuteron.

Measurements of the asymmetries caused by the vector polarization of the deuteron,
and the polarization vector components of the final nucleon (the deuteron being unpolar-
ized) are important for extracting information on the relative phases of the EFF. However,
even these measurements are not sufficient enough to provide a complete set of experiments
in the e"+d — e~+n+p near threshold.

3. Unitarity condition and the final state interaction

We calculate the EFF g; by the use of the RIA [9] defined by four Feynman diagrams
(Fig. 1a—d). The presence of the deuteron diagram (Fig. 1¢) is an important feature of this
approximation, since its contribution increasing near threshold due to the propagator
factor (W2— M3 ~ (4mé4)-! (where &, is the deuteron binding energy) leads to the
results [16] qualitatively different from the corresponding nomrelativistic calculations
[12, 13]. The interaction of nucleons in the final S,-state was taken into account in [16]
by the use of the unitarity condition, while the real part of the multipole amplitude was
simply set equal to the corresponding Born amplitude (Fig. 1).

The EFF g(k?, E,,) can be calculated in a different way making use of the dispersion
relations for the multipole amplitudes [17]. As a result, we have

g1(x) = exp [i5,(x)] - [gw(x) €08 5(x)

L el f i )0 L= 0] s3],
T

'
X —X

(=)

_x+x; , d(x") 2
o(x) = - P_[dx T tx) x =p’, )]

d(d) n(pz) df(d) n
a d

7¥(K) 7*
(p,)
P p7 n J* ’*
P{p;) nip,)
+ + d(d’) 4 P
d p d
b c

Fig. 1. Feynman diagrams of the Born approximation for the e~+d — ¢ +n+p process
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where x, is the subtraction point, g, is the Born diagram contribution (Fig. 1) to the EFF
g1, 0, is the (np)-scattering phase. Neglecting the x dependence of g, (it is justified at
k| > |pD), Eq. (9) takes the form

g1(x) = g1 " exp [o(x) +id,(x)]. (10
Describing the phase 8, by the effective range formula
Jxetgd, = —a;  +rox/2

and setting r2.x, > 1, we obtain the result of [18], i.e.,
o VT
Xros+ <\/1-—~ 2 +1)
aS
2Fo, 2
xrag+ <\/1-— - —1)
as

The factor (11) results in a bump in the EDD cross section near threshold due to the final
nucleon interaction in the 'S,-state.

Near threshold, the EFF g,_. are dominated by the deuteron diagram contribution.
Since the d’ — np transition is expressed here in terms of the >S; — 3D, -state wave functions,
we proceed from the assumption that the absolute EFF g, _ 5 value is defined by the Born
approximation, while the phase is given by the unitarity condition:

exp [e(x)] = (1n

g2-5(x) = go_sa(x) - exp [id(x)], (12)
where 6, is the (np)-scattering phase in the 3S;-state.
In our calculations we have used the parameter values from [19]: a, = —23.679,

ros = 2.505, a, = 5.395, rq, = 1.752 (in units [fm]), which are consistent with the experi-
mental phases of (np)-scattering up to E,, ~ 5 MeV.

4. Uncertainty of the y*NN-vertex parametrization

RIA calculations require the knowledge of the values of the invariant form factors
for dnp-, Y*NN-, and y*dd-vertices. For the dnp-vertex, we utilize the solution of the quasi-
potential equation of Gross [20] and the deuteron wave function (DWF) of the Paris
potential; the y*dd-vertex is described, similarly to [9], by elastic electromagnetic form
factors of the deuteron.

It is well known that the y*NN-vertex can be written in different ways: either in terms
of the form factors F,y, Foy, Or the form factors Ggy, Gun [22],

o Vk\'
O” = F1N(k2))’u— ;m qu(kz)’ 13)
. Gun(k?)
0u = s POan)+ g bitirs P2E2) 9
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or in the “intermediate” form

2 Pl‘ 2
Op = GMN(k )‘)"u—' FZN(k )’ (15)
2m
where © = —k?/4m?, Ggy = Fin—1F;n, Gun = Fin+Fn, P, is the sum of the initial

and final nucleon momenta. All these ways lead to the same result, if the nucleon is on the
mass shell. However, if we use these parametrizations for calculating amplitudes of the
y*4d — n+p process, then we obtain, naturally, different formulae for the EFF g,
A similar effect for electrons scattered by nuclei was investigated previously in [23].

The “catastrophic diagram” contribution (Fig. 1d) is found according to the method
of [24] through minimal substitution of the electromagnetic interaction term to the dnp-
-vertex with taking into account the nonlocality described by the nucleon form factors.
To provide the hadronic EC conservation, we have made the replacement J, — J,
—k,J - k/k*. Comparison of the expressions for the EFF g, in the Born approximation
at E,, = 0 (Appendix 3) with an analogous result obtainable from the standard impulse
approximation (see, e.g., Ref. [13]) shows that the main difference from a nonrelativistic
approach for the (M1 — 'Sg)-transition amplitude is determined by the DWF P-wave
contribution.

5. Numerical calculations

In conclusion, we discuss the results of RIA calculations for EFF g; and SF with the
final state interactions taken into account. Let us consider the threshold region, where
k| > |pl|. The EDD amplitude can be defined here in terms of the EFF g;. Besides, we take
into account the E, -dependence of the multipole amplitudes only in the deuteron propa-
gator and the dnp-vertex function. The final state interaction is described via the unitariza-
tion procedure.

0.71

has been used for the EFF of nucleons. For the EFF of the deuteron, the calculated results
of [25] and the measured data from [26] up to —k? = 2.5 (GeV/c)* have been used.

The analysis of the EDD differential cross section values calculated in the kinematics
of the experiment [11], shows that only for a particular form of the nucteon EC and the
Buck-Gross DWF (i = 1) with an anomalous large contribution of the 3P,-wave, the
results of the calculations (Fig. 2) are consistent with the experimental data. Note that
with 4 = 1 it is not possible to describe the inclusive spectra of electrons from d(e,e’ )np
[9]. The results are sensitive to the 4 value of the Buck-Gross DWF (Fig. 3) mainly because
of the DWF 3P, -wave contribution to the EFF of the M1 — 1§,-transition (Fig. 4). While
this sensitivity is qualitatively different with parametrizations (13), (15) of the nucleon
EC, parametrizations (13), (14) lead to close results and weakly depend on the P-wave
contribution of the DWF. With parametrizations (13), (14) there is a partial cancellation
between P-wave DWF contributions to g, from different invariant form factors of the dnp-
-vertex (see Appendix 3). The contributions to g, from S- and D-waves of the DWF are

k2 -1
The standard parametrization Gg, = Gyp/it, = Gup/its = (1 ) , Gga=0
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Fig. 2. Differential cross section for the inclusive electrodisintegration of the deuteron at 6, = 155°,

Eqp = 1.5 MeV. Full, dashed, and dotted curves correspond to the calculations with the Buck-Gross DWF

for A = 0, 0.4, 1, respectively. The dash-dotted curve shows the calculation with the Paris DWF, and the

double-dash-dotted curve depicts the transverse y* contribution in the 2 = 1 case. The nucleon EC is given
by (15); experimental points were taken from Ref. [11}

Fig. 3. Sensitivity of the results for d?o/dE’dS2, to the choice of the DWF with nucleon EC parametrizations
given by (13) — (a), and (15) — (b). The ratio R = d?c¢ (Paris DWF)/d?c (Buck-Gross DWF 1 = 0, 0.4, 1)
is shown. Correspondence of the curves to the DWF is the same as for Fig. 2

the same for (13) and (15), whereas for (13) and (14) these contributions differ by a factor
of (1+1/2)/(1+1).

Taking into account the absorption of longitudinal y*-quanta at 8, = 155° is of
special importance at —k? > 1 (GeV/c)? (Fig. 2). The o, magnitude is essentially determin-
ed by the deuteron diagram which makes ¢, insensitive to the details of nucleon pole
diagram calculations.

The deuteron diagram contribution is also essential for transversal photoabsorption
cross section o (v,, Fig. 5) and fairly masks the minimum in the k2 dependence of the cross
section which is present in all nonrelativistic impulse approximation calculations due to the
behaviour of the M1 — 1S,-transition amplitude. The k2 dependence of v, is determined
by the balance between M1 — 1§, and M1 — 3§, -transition contributions. Both these
contributions have minima: the former due to the destructive interference between the
amplitudes of the transition from (np) 23S, 3D, 3P, bound states to the ! S,-state, and the
latter — due to the minimum of the deuteron magnetic form factor (at —k? = 1.5 (GeV/c)?
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Fig. 4 Fig. 5

Fig. 4. The EFF g, (E,p = 1.5 MeV) for different parametrizations of the DWF with the nucleon EC given
by (13) — (a), and (15) — (b). Symbols have the same meaning as in Fig. 2

Fig. 5. SF »; of the transverse y* absorption (see Fig. 2)

in the model [25] employed here; the experimental data obtained recently [26] confirm
the presence of the minimum of the magnetic deuteron form factor).

Thus we may conclude that for correct treatment of experimental data for the EDD
near threshold it is necessary to carry out various polarization experiments to determine
form factor values of the corresponding multipole transitions, in addition to the separation
of transverse and longitudinal contributions of the y* absorption.

The results for T, T,,—T,,, T2’ (Figs. 6, 7) show, in particular, that the contribu-
tion of the EFF g; dominates in the amplitude of transverse y* absorption at —k? < 0.15
(GeV/c)* as well as in the region of minimum of the deuteron magnetic form factor. The
quantity 7,,—T,, presents a particular interest, since it has a negative value when the EFF
g; contribution is dominant.

As for the final-proton polarization vector P, here the suppression (reversal of sign)
of the EFF g, or gs/k, immediately results in a similar behaviour of the P, component
(Fig. 8). According to our calculations, the EFF g5 changes its sign at —k? < 0.45 (GeV/c)?
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1 2
b
k2 Gev?
) c2

Fig. 6. k* dependence of T, see Fig. 2

Fig. 7. The k? dependence of Tg) (a, ©) and Txx—Tyy (b, d). For notation, see Fig. 2



737

Pz/(V7+V2) P7/(V7+V2)
05 T | | ] ' i ' I

Fig. 8. Ratios P,/(vi+v;) —(a, ¢), and P,/(v,+v,) — (b, d). For notation, see Fig. 2

Fig. 9. Ratio P;/v;. For notation, see Fig. 2
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because of the reversal of sign of the deuteron charge form factor. The model also predicts
the P, component of the proton polarization to be greatest (Fig. 9) for polarized electron
scattering at backward angles.

6. Conclusions

The RIA predictions for the observables in EDD near threshold depend on the nucleon
EC parametrization, this dependence being caused mainly by the P-wave contribution
of the DWF. Thus, another source of uncertainties arises in addition to mesonic exchange
currents, isobaric configurations and quark degrees of freedom in the deuteron.

PE measurements near the EDD threshold could be of advantage in reducing theoreti-
cal model uncertainties. Of particular interest here is the extraction of the (M1 — 1S;)-
-transition amplitude. To accomplish this, it is enough to measure the corresponding
asymmetries of unpolarized electron scattering by the tensor polarized deuteron along
with the separation of transverse and longitudinal y* contributions to the cross section.

Useful discussions with A. P. Rekalo and G. I. Gakh, as well as their assistance in
providing numerical calculations, are gratefully acknowledged.

APPENDIX 1

The EFF g, _, are related to scalar amplitudes f; of Ref. [2] as (# being the c.m.s.
angle between y*-quantum and proton momenta):

1 1
g = _].1 dcos0-(fs—fo)l4, & = —jx dcos 0 (f3+/111)/4,
1 1
g3 = -51 deos 0 (fo+fa)/4, g,+83+8a+8s = _fl dcos 8- fi52,

1
8 = ,fl dcos 0 (fi6+/18)/4,
and correspond to the multipole transitions
g1 = (ML =18), g+gs=(E2-7S), g—g=ML='5y,
g2+g3+gs = (E2. > °S)), gs = (E0 - °S)).

APPENDIX 2

Expressions for v; in terms of the EFF g,_s are:
vy = 4gl* +18. " +1gs "0/ M?) 3,
vy = —4k°(1g2+ g3+ 84+ g5 0w’ IM? +2|g51)/(3k3),

U3 = 2(!8112 + [8212):
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vy =2 \/Tkz/ko “o/M - Re [g:(g,+ g3+ g4+ 25)* ~ 21851,
vs = 2Q2{gs1*0?M? —|g,|*— (g, /%),
vs = 2(g21" —1g,i%),
vy = —4K*/kg " 182+ 83+ 8at 8510’ M~ |gs]),
vg =2 \/“—2’;3//(0 "o/M - Re [g5(g2+83+84+85)* — g:83 ).
The quantities v; and SF u, are related by
vy = 2uy, vy = =2k u,lki, vy = 2(us+uy),
L, = \//~:2~1:2 2uzfky, s = 0?/M? - Qug)—u,,
ve = 2uq, Uy = —2KkP[kE - @?IM? - (ug+uq+2ug),
vg = 2 \/'j——ZkE/ko - o/M - (ug+ug).
APPENDIX 3

The Born diagram contribution (Fig. 1) to the EFF g, at E,, = 0 has the forms (t, — m?
= k%2—Mé&,):

 [F-Gyun f Fi\ for the parametrization of the nucleon
g8g = —4mik|

to—m>  4m? ) EC given by (13)
F-GY
gip = —4mlk| - Y2 for the BC (15)
o—m
and
Gun Fra S
= —4mik — — ) for the EC (14),
818 mi }1+‘r ((to-mz)Zm a2 ) for the (14)

where Gyy = 1/2(Gyp— Gwmy) is the isovector form factor of the nucleon; F, f are the
invariant form factors of the dnp-vertex, which can be expressed through the relativistic
DWF of S-, D-, and P-waves [20]

F(q) = n \/2M (2E,—M) - [u(q)— %(%2 + -:;l\/% vx(q)],
__2E. .
flq) = —n2M f V3 vda),
where
_ M m’-y,

E, ==+ ,
27 M

q

q* = E;-mz.
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