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NONPERTURBATIVE GLUON MAGNETIC MASS IN THREE-
-DIMENSIONAL GLUODYNAMICS
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The infrared behavior of the Euclidean three-dimensional gluodynamics in axial
gauge is investigated. A nonperturbative expression for the three gluon vertex is constructed
and with its aid the Schwinger-Dyson equation for the gluon polarization tensor is solved
in the infrared limit. A nonzero gluon magnetic mass proportional to the square of the
effective coupling constant g2 = g27T is found.
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1. Introduction

Four-dimensional Quantum Chromodynamics at finite temperature (QCD,) has
been studied in the last years with great interest and success {I-4]. These investigations
provide a good basis to construct from the first principles a reliable quantitative theory
of a quark-gluon matter which is supported by the present experiments in most of the im-
portant points. Today a special interest is focused on the study of the QCD phase dia-
grams [5, 6] and on the predictions of the experimental signals 3, 7] inherent to the different
phase states of this matter. The information obtained must clarify the statistical peculiari-
ties of modern chromodynamics and refine their predictions related to neutron stars and
the evolution of the early Universe. However, in spite of the great advances achieved, the
infrared behavior of QCD, remains an open problem. In particular, the question about
the existence of a nonzero gluon magnetic mass [8] and its dependence on the temperature
and the coupling constant do not have a conclusive answer.

Two essentially different nonperturbative infrared limits at T # 0 for the transversal
part of the QCD, polarization tensor (the limit of I7;;-components) are known today:
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the logarithm one [9] and the asymptotic behavior of the finite mass type [8, 10-12]. At
present, however, there is no reliable way to choose between them, although the hypothesis
of a finite screening of the gluomagnetic forces at T # 0 seems to be preferable. The known
nonperturbative schemes (intended for studying the infrared limit of the QCD, polariza-
tion tensor) face actual difficulties (when the closed approximations have to be built for
vertices [13]) and all the results obtained need an additional support. At the same time,
the three-dimensional version of the chromodynamics (QCD; as the Euclidean theory in
quantum field limit [14]) with the dimensional coupling constant g2 = g?T seems very
useful to solve this problem. The infrared limit of QCD; must be qualitatively the same
as the infrared limit of the temperature QCD, but the three-dimensional chromodynamics
is more simple (the superrenormalized theory) and one may hope to obtain essential
progress in this way. Moreover, all quarks may be omitted in this case since their contribu-
tions do not change the infrared behavior of the temperature chromodynamics [15].

The use of the nonperturbative calculation schemes leads to the intensive exploitation
of the axial gauge

nA, =0 1)

for which the Schwinger-Dyson equation and the Slavnov-Taylor identities take their
simplest forms, due to the absence of ghosts. Two main gauges are selected according to the
choice of the gauge vector n,: the temporal axial gauge where n = (0, 1) and coincides
with the standard vector u, in QCDy,, and the spatial-like gauge for which n = (n, 0).
The latter gauge is usually applied for QCD; and reduces to the three-dimensional condi-
tion n;4; = 0.

In the present paper the effective three-dimensional QCD with the gauge n- 4 = 0
is studied. We use a nonperturbative method [14, 16] of solving the Schwinger-Dyson
equation for the gluon polarization tensor which exploits the special Ansatz proposed by
us for the three-gluon vertex. The case of a finite screening of the gluomagnetic forces is only
considered and an appropriate gluon magnetic mass is calculated. The result obtained shows
that besides the trivial solution m,,,, = 0, there is another nonzero solution which is pro-
portional to the square of the dimensional coupling constant g2 of the three dimensional
theory (here g2 = g?7).

The content of the paper is as follows. In Section 2 we briefly outline the main features
of the Euclidean QCD; and sketch the nonperturbative approach we use. In the next
Section we discuss the properties of our Ansatz for the three-gluon vertex I'y, which plays
an essential role in the nonperturbative scheme. This expression for I'; is used in Section 4,
where the equation for the gluon magnetic mass is obtained and solved. Finally, in the last
Section, we discuss our results.

2. The nonperturbative approach

Our goal is to investigate the infrared limit of the finite-temperature gluodynamics
(QCD,) through the study of the effective three-dimensional Yang-Mills Euclidean theory
[14] with the dimensional coupling constant g? = g2T.
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We use the axial gauge of a special kind [17]
mA; =0, i=1,23 )

which is more suitable for QCD; if one exploits the nonperturbative methods. The prop-
erties of this effective theory were explained in [14], together with the basic aspects of
a nonperturbative approach used. In the following we only outline the main features of
interest.

The gluon propagator D, (p) and the “inverse” gluon propagator 15[1-‘( p) are connected
as follows

Dy(p)Di;'(p) = 8:;—(pin,)/(np), 3

where all indices belong to the 3-dimensional space. Here D, (p) is orthogonal to the gauge
vector n;

niDij(p) =0 @)
and Dj;'(p) is transverse to p;
piDj;'(p) = 0. )
The gluon polarization operator II,,(p) is defined by the standard expression
DNi} Y(p) = 5i}1(1’)(0)+ni1‘(1)), (6)
where
5-':'1(17)(0) = p*8;;— pip;- )

Since I1;/(p) is transverse, its more general tensor structure is given by the following
expression

II;i(p) = (5ij‘“ Pin/Pz)P2H1(P)

2
" < - pin;+np; nngp

+
(np) (np)*
where the structure functions IT,(p) and I1,(p) depend on the two independent variables
ipl and (p-n). Here (p-n) = p - #/|p] |n].
We will study the nonperturbative behavior of IT;,(p) only in the infrared limit [p| — 0,
and we will calculate the gluon magnetic mass following its usual definition

) (np)*I,(p), (8)

|p|—0
We assume that the infrared limit of IT;;(p) when |p| — 0 is independent of n. (We
will check the validity of this assumption at the end of the calculations, when we show
that a solution of such kind does exist.) Under this assumption one finds that

lim p’H,(p) =0 (10)

|pi—0
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and due to this fact all calculations become rather simple. We also note that IT,(p) does
not depend now on (p - n).

Consequently, IT;,(p) in the infrared limit |p| — 0 reduces to the following expression
(Ipl = 0) = (8;;— pip;/ p*)1(Ip)p*. (11)

The gluon propagator, as it follows from (11), has the same tensor structure as the
free propagator and depends only on one structure function IT,(|p|)

1
PPt =0 = e )
mp;+n;p; - pipih
x |8~ ——1— + —2 > 12
( T (np) (np)* 12

It is worth noting that our assumption is analogous to the one made by Baker et al.
[18] in their study of the gluon propagator in 4-dimensional gluodynamics at T = 0.

In order to determine the nonperturbative behavior of IT,(|p|), we use the Schwinger-
-Dyson equation for the gluon polarization tensor (see, for instance, Ref. [14]) contracted
with nn;

. nn; d3r abec
0 bninjHij(p) = - TJ l: f(27r) S)k)lb Dyy(r)

dsr bed
+ J\(Zn)s s (s 4, DDl @)D (N o — P, — 4, —r)] . (13)

Equation (13) is exact within QCD; for the gauge accepted, because after contraction
with n;n; the higher-order exact graphs in which the four-gluon vertex I', is present reduce
to zero. No other equation is needed for our aim, and it is important to note that only
the exact three-gluon vertex I'y determines Eq. (13).

The closed equation for I7,(|p!) is obtained from (13) if the exact three-gluon vertex
I'; (in the infrared domain only) is expressed in terms of II,.

The crucial point for the nonperturbative approach suggested is to construct the Ansatz
for I'y(p, g, r) that correctly approximates all the infrared peculiarities of the exact vertex
when one of its momenta goes to zero. We are going to discuss now this point in detail.

3. The three-gluon vertex

The constructed three-gluon vertex I's(p, g, r) must be expressed only through the
structure functions IT; — which define expression (8) —and must satisfy a number of exact
properties of the real vertex. Particularly, it must obey the Bose symmetry condition

I'(p, g, i = I(q, p, ik = I(r, ¢, )i = T(p, 1, Q7 (14
as well as the exact Slavnov-Taylor identity
pl(p, 4, N = igf*[Di'(9)~Di'(n] (15)

and must also have some correct limits.
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The problem is that the vertex I'“)(p, ¢, r)i satisfying these properties is still too
arbitrary. Any function I'(p, q, r ;’J’.’,f which satisfies (14) and the usual transverse condi-
tions

pI(p, g, N = ;T (p, a, )ik = r I (p, q, i =0 (16)

is not fixed by Eq. (15), and the new function
I(p, ¢, iz = I'p, q, N+ Ap, g, 1) (17)

also satisfies (14) and (15). Thus, we need to complement Properties (14) and (i5) with
another requirement in order to specify the form of the Ansatz for I';.

The one-loop perturbative calculations [19] point out that the standard relation for
IT;; which is known as the differential Slavnov-Taylor identity

B5'(p)

I(p, —p, 0K = —igf™ —
0Py

(13)
must hold. But for the nonperturbative calculations within QCDj this requirement is not
acceptable, because in QCD, it is exactly equivalent to impose that

lim I;(p) = 0. (19)
lpl = ©
However, it is precisely the validity of (19) what we want to investigate, and we expect
that it does not take place in general.

The fact that requirement (18) is equivalent to condition (19) was verified in the one-
-loop nonperturbative approximation [20]. But it is a specific of QCDj; that in the exact
theory, to require (18) is also the same as to demand (19). Our proof of this is analogous
to the one made by other authors in four-dimensional gluodynamics at zero temperature
[21], and it is important to stress that only exact properties of QCD; are used here.

From the Slavnov-Taylor identity (15) once the momentum r is equalled to zero we
obtain the more simple expression of this identity

pl(p, —p, 0% = igf*[Dx'(p)— D' (0], (20)

where the existence of a vertex limit is proposed in the usual way, without singularities.
If for QCD; expression (18) takes place, this means that identity (20) reduces to the follow-
ing equality

oD;'(p) _

- igf (D7 (p)—Dx(0)] ¥1))
D

—igf*™p;
which can be rewritten as

oD'(p)

D0 = DiM(p)+pi = -

(22)
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The last expression is equivalent to the important condition
~_y d <,
D (0) = — (pDi; (p) (23)
opx
from which we obtain the nonstandard result

Dj'0) =0 24)

taking into acount the transversality (5) of D~,.} !(p). Then, having in mind Eqs (6) and (7),
we must conclude that

11,(0)=0 (25)

and therefore, that no finite gluon magnetic mass exists if the differential Slavnov-Taylor
identity holds.

The equivalence found above is a very important result. Now, the additional require-
ment we shall impose on I’y is not that (18) holds for any IT;;, but instead, that our Ansatz
for I's(p, q,r) depends on the structure functions of IT,(p) in such a way that

~ rape ODi;
lim I'(p, g, )iz = —igf™ 9Dy; () 26)
Iri=o opx
only when
lim Hil(r) = O_
[ri=0

The vertex which satisfies requirements (14), (15) and (26), without any assumption
on the behavior of I1, and IT, can be constructed. But, in the present paper, we are not
considering the general case for I';, since we only exploit this vertex to close Equation (13)
in which we have already adopted the approximate expression for IT;(p).

Therefore, in order to be consistent with the approximation made, we use here the
more simple Ansatz for I,

I'(p, 4, Vi = T'(p, 4, Nixc +I'V(p, q, 1%, (27

where '™ is built in a standard manner
F(L)(p’ q, r)‘:flf = -‘iéfﬁbc
x(au{pk[t+nl<spz>]—qk[1+nl<iqa>]}

I,(p))—H,(lq!
+[qip;—6:i(p - q) —I(Lplg-_q;-(g—') (pk—qk)) + cyclic symmetric terms (28)
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and I'" is introduced in order to satisfy requirement (26)
2
p2 + q2 +r2

x [, (1pD) +11,(1g) + 1,([r()]

r'(p, q, r)i5e = —igf™

TiPiqx— 4iDi!'j

X [(q CTpe—D  Tq)0;;+ 3 } + cyclic symmetric terms. (29)

The proposed vertex is free of kinematic singularities and reproduces the exact bare
vertex when II, = 0.

The main assumption within this nonperturbative approach is that the constructed
Ansatz (27)-(29) for I'; coincides with the exact vertex in the infrared limit, and due to this
fact our master equation (13) can be solved exactly.

We now return to Equation (13).

4. The self-consistent equation and its solutions

Substituting our Ansatz for I'; in Equation (13) and taking within it the limit |p| - 0
we obtain a closed equation for IT,(|p}), because in this limit the gluon propagators are
approximated by only one function according to Eq. (12).

In order to solve the equation found we consider the simplest Ansatz for I1,(]pl)

2

M
I(lp) = I (30)

where M? is a positive constant directly connected with the gluon magnetic mass. After
assumption (30) is taken into account all algebra is easily performed and the resulting
equation for M? has the following form

~2

R N
MG ] =55

a’r 6 {(n-r) i+ 1
@T)s”"é_i{rz—mz[ (ﬁ'?)z}}

+g’NM? a1 2(n - P +2(7 - p)*
g an® (Pt MR (n- P)"+2(7- p)

_Z(ﬁ'ﬁ)(?'ﬁ)
(n-#)
1-2n-p*  (n-p)(*- P)

+ (n-#)? + (n-#? ]

+3(i - B2 =5(n - p) (P p) (n - )

31)
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where N is the dimension of the SU(V) group considered (here N = 3). It is important
to note that calculation of all integrals within Eq. (31) is straightforward.

The first integral in the right-hand side of Eq. (31) equals zero. This fact can be verified
by taking the derivative and evaluating the resulting integral with the use of both, dimension-
al regularization {22] and the principal value prescription [17] for the poles (n-r)™™

(n-r)"" = lim t[(n-r+ie)""+(n-r—ie)”"]. (32)
&0

The second integral in the right-hand side of Eq. (31) is free of infrared and uitraviolet
divergences. The only singularities present are the axial gauge poles, which must be handled
by means of prescription (32).

Performing all the integrations, the right-hand side of Eq. (31) gives the expression

g’N
12n

[1—(n-p)Y*]iM| (33)

whose (n - p) dependence exactly cancels the term [1 —(n - p)*] in the left-hand side of Eq.
(31). This agrees with our initial hypothesis about the independence of the infrared limit
of I1;; on n.

The equation obtained for M has the form

g’N
M? = IM 34
12 | 34)
and besides the trivial solution
M| =0 35
contains the other one
~2
g
M| = 36
M| 2% (36)

which corresponds to the nonzero gluomagnetic mass.
Solution (35) reproduces the situation known from the lowest order of perturbation
theory [23]. In this case I7;(lp| = 0) = 0, and the vertex I's(p, ~p, 0) satisfies (18).
Solution (36) corresponds to a new situation where IT;(|p| = 0) # 0 and I'; does:
not satisfy (18). In this case | M| represents a dynamically generated mass which regularizes
the infrared domain of the three-dimensional theory.

5. Conclusions

In the present paper we have obtained the nonperturbative infrared behavior of the
gluon polarization tensor which demonstrates the finite dynamical screening of gluomagnet-
ic forces when |p| — 0. The basic equation (34) found for the gluon magnetic mass possesses
two solutions which are gauge invariant within the class of axial gauges n;4; = 0, but
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have different physical senses. Solution (35) repeats the standard perturbative result and
does not seem to reflect the correct infrared behavior of QCD;. The other solution has
a completely nonperturbative nature and represents the possible mechanism for the dynam-
ical screening of gluomagnetic forces. For QCD, Solution (36) (which is qualitatively
the same as the one obtained in Ref. [24]) leads to the analytical behavior for the gluon
magnetic mass

N
Mg = 1271 g’ T (37

which has been discussed by many authors (see, for instance, Refs. [8, 10]) but is not
supported (if the QCD; results are rejected) by direct calculations. Moreover, calculations
performed within QCD, [6, (2] have given the different result

mi.e = a’g*T? In (1 +k*/g?) (38)

for the gluon magnetic mass, which is probably more inherent to the real gluodynamics.
Unfortunately, the present state of knowledge makes it impossible to choose between
these limits, since there are no arguments to insist that the infrared limit of QCD; is exactly
equal (not only qualitatively) to the appropriate infrared limit of QCD,. According to this
fact no disagreements exist, and we consider result (37) found for the gluon magnetic mass
within QCD; as a good infrared limit for the QCD,, polarization tensor. Particularly, this
limit coincides (up to the numerical factor) with the behavior of my,,, found in Ref. [10].
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