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The °Be-nucleus is considered as a three-body problem composed of two alpha particles
and a neutron. In treating this problem, we follow Faddéev’s formalism using the technique
proposed by Dabrowski. The two-body interaction used is assumed to be non-local and
separable. The relativistic correction, adopted by Gupta and Mitra, was included. It is found
that the relativistic correction improves the results of the calculation of the binding energy
of °Be-nucleus. The results obtained are satisfactory and in better agreement with the exper-
imental value.

PACS numbers: 21.40.+d, 21.10.Dr, 21.10.-k, 27.20.+n

1. Introduction

The °Be-nucleus is one of the interesting examples of the three-body problem. It can
be well described, to a good approximation, to be composed of two-alpha particles and
a neutron, since the dissociation energy of °Be-nucleus into a+o+n is small (1.67 MeV)
compared to the energy required to break up an alpha particle (~20 MeV) [1]. Many
attempts have been made to study the structure of °Be-nucleus [2-8].

As a three-body problem, Grubman and Witten [9] described a new angular momen-
tum decomposition of the Faddéev equations for the general case of three-particles with
spin. They applied this formalism to calculate the ground state binding energy of the system
consisting of two-alpha particles and a neutron. They represented the n-o and a-o interac-
tions phenomenologically by local potentials and the corresponding two-body T-matrices
were approximated by a Sturmian expansion. Fonseca et al. [10] treated the Be-nucleus
as a three-body problem using the Born Oppenheimer Approximation (BOA) in which
the presence of the neutron produces an effective potential added to the original a-o interac-
tion. Fonseca’s work is extended by Révai et al. [1] using the adiabatic one-level approxima-
tion with the correct angular momentum. They used the non-local separable potential
for the n-o interaction, for which the two-center problem is solved exactly [11]. Also for
the o-o interaction, the form of Ali-Bodmer [12] potential was used. Their calculated
spectrum for ®Be-nucleus agrees only qualitatively with the experimental values.

There are two approaches to improve the results obtained theoretically for the binding
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energy of the three-body system. The first is the inclusion of three-body forces which gener-
ated much interest in recent years [13-18]. The second is the introduction of the relativistic
corrections. Recently there has been much interest in describing the nucleus as a relativistic
system [19-22]. The relativistic effect may be significant, since the velocities of nucleons
in nuclei can be of the order of one third of the velocity of light. Indeed, there are two
approaches to incorporate the relativistic effects into the three-body calculations. One
approach stems from the field theory and the Bethe-Salpeter (BS) equations [23]. In the
other approach, the relativistic Quantum Mechanics was used and had been discussed
extensively [24-27], where one identifies the Hilbert space of a relativistic system as a repre-
sentation space of the Inhomogenous Lorentz Group (IHLG) and the problem of finding
a relativistic theory is equivalent to a search for a set of Hermitian operators satisfying
the well known commutation relations for IHLG [28].

In the present work, we have followed Faddéev formalism [29] using the technique
proposed by Dabrowski [30-32]. In this technique, the three-particle system is considered
to interact in pairs. The potential of each pair is assumed to be non-local and separable.
Accordingly, the three-body wave function will split into three-terms, each describing
a pair. The Green’s function of the full three-body system is used. For the n-a interaction,
we have taken the form used by Révai et al. [1]. For the a-o interaction, we have used
the usual form of the non-local separable potential with three-different types of interac-
tions, i.e. Yamaguchi (Y) [33, 34}, Gaussian (G) [35] and Tabakin (T) [35] forces. The
relativistic correction can be considered using the method given by Gupta et al. [36].
This method is based on the requirements that the Hamiltonian, together with the correc-
tions, remain approximately invarjant to the second order in v/c under Lorentz transforma-
tions. In Sec. 2, we introduce the different forms of the non-local separable potentials used.
In Sec. 3, the three-body non-relativistic Schrodinger equation is considered. In Sec. 4, the
relativistic correction is included. In Sec. 5, numerical calculations and resuits are given.
Section 6 is devoted to discussion and conclusion.

2. Non-local separable potentials

In the analysis of the three-body problem, separable potentials were found to be very
useful in studying the three-nucleon system. This reduces the computational work by almost
an order of magnitude.

For the n-o interaction we can use the non-local separable potential that is spin and
angular momentum dependent whose parameters are fitted to the low energy s,,,, p,, and
P32 phase shift analysis [1, 11]. This potential is given by the form
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TABLE 1
The parameters of the n-« interaction [1]
S1f2 Sif2
(attractive) (repulsive) 2z l b2z
B (fm1) 1.494 0.700 1.177 I 1.449
At 0.0616842 —0.151978 0.0412992 ! 0.00942794

The values of the parameters of the n-o interaction are given in Table I
For the o~ interaction we used the separable potential of the form

Vid@: @) = 4V @V(q)- (3

The used S-wave a-o interactions can be chosen to fit the scattering length and the effective
range, which can be determined experimentally neglecting Coulomb effects. These potentials
are suggested in a way that both attraction and repulsion can be given. For the separable
potential between a-particles each of mass m,, we have

2
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In this work, three types of non-local separable a-a potentials are used. These are
Yamaguchi (Y) {33, 34], Gaussian (G) [35} and Tabakin (T) [35] potentials. The Yama-
guchi (Y) potential has the form

Ale) = Gz—f}b—) . ©)
The Gaussian (G) potential has the form
fol@) = o(g: —q%) (a+bg®) exp (—dg’). (6)
The form of Tabakin (T) potential is
£(@) = a(g2~¢*) [(¢® +d)g* +b3)] (¢* +a¥) . ™

The values of the parameters for the Yamaguchi potential are those suggested by Harring-
ton [33, 34]. Those of Gaussian and Tabakin potentials chosen to fit the S-wave a-o nuclear
scattering phase shifts are listed in Table II, where g, = 1.70046 for all interactions.

TABLE 11
Parameters of the z-o interactions
Interaction a b d a?
Yamaguchi (Ref. [33, 34]) 0.736 fm! 2.3600 fm~*
Tabakin (Ref. [35]) 1.9 fm™! 1.300 fm™* 5.0fmt 3.1865 fm—¢
Gaussian (Ref. [35]) 1.0 fm™! 0.050 fm~? 0.5 fm? 4.4320 fm?
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3. Non relativistic three-body Schridinger equation

Dabrowski [30-32] treated the bound-state problem of three-particles of equal and
non-equal masses by solving Faddéev type equations for a simple but non-trivial two-body
interaction. In this technique the set of integral equations is obtained by rearranging the
Schridinger equation of the three-particle system, and defining the Green’s function
D = E—T of the full three-body system, in the barycentric subspace, where 7 is the kinetic
energy of three-particle system.

Following Dabrowski [30-32], the Schrodinger equation of the three-particle system
is given by

o(ak) = (1)2n)* § dk' D~ (gkKKIVik >k
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Equation (8) represents a set of linear homogeneous integral equations for the unknown
wave function ¢;. In the case of the °Be-nucleus, we have a system of three-particles, where
m; = m, = the mass of alpha-particle m, and m; is the mass of neutron m,. The set of
equations (8) is simplified greatly by introducing the non-local separable potential. Using
these types of the two-body potentials, we see that ¢; depends only on k, through the
factors V. So, we can write

¢(gk) = ¥ Villoxl@), i

]

1,2

= V3z(k)x3a(a)a i=3. (10)

Using equation (10) together with equations (1), (2) and (3), the system of equations (8)
becomes
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where
Ku(qk; §'K') = KGRIVD™ TRy,
= D™ (gh)KGkiVigE s,
and
¥#(q) = Qm) ™ [ dk' D™ (qk Wik YWVig(K). (12)

4. Relativistic correction

In this section we intend to introduce the relativistic correction adopted by Gupta
and Mitra [36]. An expression for the second order relativistic correction (4V) to the two-
-body potential V is effectively given by [24-27, 36]

a s 1 v = (s O v v, s, 0
kKAVIGEY = — ——= | @ +12(q-k)|q =) +12@ k) |qd =
{qklaVig'k"™> (m 1) [q +1/2(q )(q 6k> +1/2(q )(q ak')]
x (k\VIE'S. (13)
The kinetic energy correction (47;) for a particle of momentum B is given by [24-27, 36]

1
AT, = - — P} (14)
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After performing all the operations of partial differentiation appearing in equation (13)
we are left with the following correction terms

AF = ; @D+ 3| q'*dq'AK(aq (@)} (15)
where
ap — -3 I S 2 _ (LN (72
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We may notice that the correction for the kinetic energy part is included in the opera-
tors 9 and D defined above. These terms are incorporated into the original system of
equations (17) and the resulting equations are solved numerically.

m i
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5. Numerical calculations and results

The numerical calculation of the ground state binding energy of the ?Be-nucleus has:
been performed for the two-body potentials described in Sec. 2. The two main quantities
of the non-relativistic three-body Schrodinger equations (11) are 37*(g) and K¥(qq’) given
by equation (12). The quantities ¥?¥(q) may be calculated analytically. The integrals over
g’ in the system of integral equations (11) are approximated by summations. Thus, after
some algebraic manipulations the system of integral equations (11) is transformed into
a system of linear equations. This system of equations is solved numerically for the binding
energy of °Be-nucleus in two cases, one of them is without the relativistic correction and
the other with it. It is to be noted that the Coulomb energy between the two-alphas is not
included explicitly in the system of equations (11). So the calculated values of the ground
state binding energy of °Be-nucleus “E,” are corrected for the effect of Coulomb force
[37] between the two-alphas. Table III shows the calculated values of “E,” in the two cases
considered.

6. Discussion and conclusion

The aim of this work is to find out the role of the relativistic correction on the calcu-
lated ground state binding energy of *Be-nucleus which is treated as a three-body problem.
To see this effect we have calculated the binding energy with and without the relativistic
correction. The results of these calculations together with the experimental value [38]
are shown in Table III. We may notice from Table III that the results obtained using the

TABLE I

Ground state binding energy of ?Be-nucleus “Eg” in MeV

Eg
Non-relativistic

Eg
With relativistic correction

i
1
G | —1.890 ! ~1.309
! !
i
{ 1

Present work Y —2.020 —1.215
T ‘ - 1.980 —1.226
Experimental value ; -1.571

Gaussian and Tabakin potentials are closer to the experimental value than those obtained
using the Yamaguchi potential, in both cases of inclusion of relativistic correction or not.
This result has been obtained before by Osman [39] and it was attributed to the fact that
both the Gaussian and Tabakin potentials contain attraction and repulsion while the
Yamaguchi form is only attractive.

In conclusion, it can be seen that the relativistic correction plays a good role in improv-
ing the calculated binding energy of °Be-nucleus as a three-body problem.
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