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SCATTERING OF COMPOSITE PARTICLES AT VERY HIGH ENERGY
WITH APPLICATIONS TO QUANTUM ELECTRODYNAMICAL
PROCESSES

By W. Czyz

Institute of Nuclear Physics, Cracow*
(Presented at the X" Cracow School of. Theoretical Physics, Zakopane, June 12-26, 1970)

It is shown that a straightforward generalization of the multiple diffractive scattering model
used in high energy nuclear collisions leads to the correct expressions for the high energy limits
of the cross-sections of various quantumelectrodynamical processes.

1. A simple model and its applications

We shall start by considering a very simple, well known, and naive model of the high
energy multiple scattering at small angles. Let us suppose that a very fast particle scatters
from a collection of particles and that we know the individual scattering amplitudes and the
spatial distribution of the particles in the target (Fig. 1). Let us assume also that the scattering
angles are so small that the process is, to a good approximation, two dimensional. Then,
one can immediately construct the scattering amplitude accepting that, e.g. the total phase
shift equals the sum of the individual phase shifts

A
2(b) = ; 2/(b—s;) )

or that the total profile is composed of the individual profiles as follows

4
I'(b,s,, ... s,) = 1— T[] N—y;(b—s)]. @

=1
Eqgs (1) and (2) lead to identical results for the total scattering amplitude since the relation

between the phase shifts, the profile, and the amplitude is:

ik 0y ik ) )
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* Address: Instytut Fizyki Jadrowei, Krakéw 23, Radzikowskiego 152, Poland.
(35)



36

where k is the incident momentum and § is the momentum transfer. From (1) or (2) and
(3) we get for the total elastic amplitude

A
ik ; o
M= S d2bd?s, ... d%s 46480 (s;...54) [1 — H (l—yj(b—sj))] 4
j=1
where 4 is the total momentum transfer, and the amplitude obtained from (1} or (2) and (3)
is averaged over the ground state density o(s,...s4) projected on the plane perpendicular
to the direction of the incident momentum. We shall discuss below in more detail the

Fig. 1

construction of p(s;...s4). Let us also point out here that (4) can eesily be generalized to
the case of elastic scattering of two composite objects (Fig. 2) 4 and B:
ik

M= — o d2bd?s,...d2 sq €8 Bp(st... s3)oB(sE . ..5B) X

A4 B
x 11— ITTL 0057+ 5] 5)

One can give some plausibility arguments for (1) and (2). One may interpret (1) as, e.g.,
a result of accumulating the phase shift by a fast particle in subsequent collisions with the
“subunits” of the target. Eq. (2), on the other hand, expresses precisely the probability

Fig. 2

of hitting the target if the probability of hitting one (j-th) subunit is ;. The y’s can
indeed be interpreted as probabilities, if the target is purely absorbing (black). We would
like to argue that the formulae (4) and (5) — in spite of their “‘naivete” — describe an
enormous wealth of physical phenomena. Strictly speaking, a few additional refinements
need to be introduced in (4) and (5) in order to analyze some specific process (e.g. spins
were neglected so far), but they are not essential. They will be discussed as we go along.
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The model described above has been fairly extensively applied to analysis and inter-
pretation of the nuclear scattering at several energies starting from ~1 GeV up to 20 GeV.
The projectiles were protons, antiprotons, neutrons, deuterons, and pions and the targets
covered a wide range of nuclei (D, 3He, %He, ©Li, °1i, Be, C, O, Al, Cu, Pb, U). Some results
of calculations are shown, together with the experimental data, in Figs 4-9. One can conclude
that the agreement is very impressive.

One should emphasize that the cross-sections shown in Figs 4-9 were computed virtually
with no free parameters: the incident hadron-nucleon amplitudes (hence profiles) were
taken from experiment and the densities were constructed from the ground state nucleon
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Fig. 3. The role of Coulomb interactions in elastic 4He—%He scattering Gaussian single particle densities were
taken for 4He. The three curves show the elastic scattering cross-section for point charges, extended charges
(Gaussian distribution) and without Coulomb interaction (Ref. [3])

wave functions which, as far as the spatial distributions of nucleons are concerned, are known
well enough for our purposes (the experimental data are still not very accurate). One may
find more detailed discussion of this material in Refs [1, 2] and the papers quoted there.

Here let us mention only two important extensions of Eqs (4) and (5) which were
widely used in computations. First of all the Coulomb phase shift was added to the “‘strong
interaction phase shift” (1). The role of Coulomb scattering is quite important for almost
all target nuclei (especially around diffractive minima). Fig. 3 shows doy/d@2 computed
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for 4He—4He [3] scattering (not measured yet). It illustrates the important role of Coulomb
interactions even for such light nuclei. The second extension concerns the so-called poor
resolution scattering cross-section (denoted do,/df2). This is a scattering cross-section
which is measured with incident and scattered beams whose particles have energies uncertain
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Fig. 4. The relative magnitude of doy/df2 and da, [df2 for *C. The curves are taken from Ref. {1], the data
from Ref. [19], [20]

to about 50100 MeV. Such experiments sum over ¢ll nuclear excitations but discriminate

against meson production. One cannot compare such cross-sections with de,/dQ2 = |.#/|®
of (4) or (5). Instead one has to compute a sum rule {see Refs [1,2]):

dosc k 2 2bd2h’ d2 2, oA (b b) + ?

-0 = \3; d?bd?b’d?s,...d3%s € o(sy---say (b, s1...54) (B, 51...54). 6)

Fig. 4 shows do_/dQ and do,/df2 in the case of p —12C scattering. One 2lso measures
g SC el P g
sometimes the inelastic cross-sections defined as follows

dGinel . dasc dO'e]
o~ dQ  de - @
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Fig. 5. Poor energy resolution (dog /d£2) p-d cross-section measured and computed by the CERN group (Ref. [21})-
The double scattering (do(®/df2) contribution to the cross-section was experimentally separated from the
single scattering contribution (dotD/df) and the interference terms (do(L2)/dQ)
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Fig. 6. n.deuteron elastic scattering at 3.65 and 3.75 GeV. Comparison of theoretical calculations and experi-
mental data [22]. The spin dependence of m-nucleon amplitudes was taken into account
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Fig. 7. n-deuteron elastic scattering at 0.77 GeV. Comparison of theoretical caiculations and experimental data
was taken from Ref. [23]. The spin dependence of z-nucleon amplitude was taken into account

From what has been said so far, one may feel encouraged to look for further applications
of the formulae (4), (5) and (6). Before doing so, let us observe that these formulae are in
complete harmony with the long ago established description of high energy scattering from
composite targets in terms of the optical potential. Without going into any details of this
relation let us just point out that Eq: (4) in the limit 4 — oo, gives approximately

M = é;‘z_ d%beit b (1—e™4/ d'seDsyr(b—s)) (8)

One obtains (8) from (4) assuming
4
0(51.--54) = I-]l: eﬁ-l)(sj) 9
j=

and accepting that al] single particle densities QJ@) and all profiles are the same. Figs 10, 11
illustrate how (8) works in the case of nuclear collisions. From Eq. (3) and the relation
between the potential and phase shift discussed below we get (in the approximation of y
much narrower than o) the well-known relation

1

2
i Vowlt) = 4= fo0(0) (10)
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Fig. 8. Poor encrgy resolution (do,./df2) p-12C cross-section at 21.5 GeV/c [24] compared with calculations {1]
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Fig. 9. Poor energy resolution (do,c/d€2) p—Pb cross-section at 19.3 GeV/c [24] compared with calculations [1].
The calculations are for pure 298Pb, the measurement are with 207.3Ph target
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Fig. 10. p-180 elastic scattering cross-section (doy/d(2). Experimental points taken from Ref. [20]. (A) — Mul-

tiple scattering cross-section calculated from the single particle densities of the harmonic oscillator potential.

(B) The optical limit of (A). (C) — The cross-section calculated from the proton and the 0 charge form fac-
tors. The curves are taken from Ref. [6]
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Fig. 11. p —4He elastic scattering cross-section (daslldg).Gaussian (hence not very realistic) single particle
densities werc used. (A), (B), (C) — the same as in Fig. 10. The curve (D) is the optical potential cross-section
curve obtained from Abacus II program (see Ref. [6] for more details)
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where f is the elementary forward scattering amplitude. The important conclusion is that,
in the high energy limit, the optical potential is uniquely defined in our model and has no
free paramneters, in principle.

The limiting expressions (called the optical limit henceforth) one obtains when one lets
the number of subunits go to infinity (A4, B — o) is also very interesting in the case of
formula (5) [4, 5, 6]. From (5), again assuming factorization of o4 and gg as in (9), one
obtains (more detailed discussion of this limiting procedure is given in Ref. {6]):

H = i d2be;‘A‘a(1__C—ABfd’sd’s‘gfql"(s);'(b—~s+s')gg)(s’))_ (11)
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Fig. 12. 'The p-p elastic scattering cross-section in the optical limit against some experimental data (Ref. [5]).
Notice the convergence of experimental curves towards the theoretical

‘One can apply (11) in a variety of ways and one can also generalize it considerably. The
first applications to high energy nucleon-nucleon and meson-nucleon scattering were given
in Refs [4] and [5]. Since the profile y must contain as a factor the subunit A — subunit B
total cross-section, one can go over to the limit 4, B - o in such a way as to keep AB¢
= const. Then, one gets a formula which (in the case of y much narrower than ¢ and
0)) has only one (complex) free parameter and depends crucially on the density distribu-
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tions (or the form factors of colliding objects). Fig. 12 shows the elastic nucleon-nucleon:
cross-section obtained from the nucleon charge form factors: Fig. 13 on the other hand,
shows the form factors computed from the elastic nucleon-nucleon cross-section fit to the
experimental data. Fig. 14 illustrates the convergence of (5) to (11).

As we have already mentioned, one may generalize (11), e.g., by considering the
densities 03, 0%’ as density operators o ~ yty, where v is some second quantization.
field (fermion field if the subunits are to be fermions) [4]. In such a way one may, with
help of our formulae (4) and (5), discuss collisions of composite systems which do not have
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¥ig. 13. The proton charge form factor Fy, computed from the elastic proton-proton cross-section by means of
Eq. (11) (Ref. [4]). Some experimental points are also shown

a fixed number of pre-existing subunits (in contrast to nuclei or atoms) and whose number
of subunits may fluctuate. Let us go over to the problem of collisions of fluctuating composite
objects. We shall not follow, however, the generalization just mentioned.

Let us consider an object which is as far remote from nuclei (where our simple model
has been successfully tested so far) as it is possible: the photon. It fluctuates, and many
different fluctuation are possible, as Fig. 15 shows.

In the limit of very high energy the time dilatation makes the lifetimes of the fluctuations
very long (their ratios will stay the same). Hence if a fluctuation hits a target the collision



45

/AN 3
= E

3 2x4 E

0’ 3
102 :
2 Optical limit (8} -

)

Pacle: % for 2smatix 4 large

sunii

Multiple scatt. (A') ]

LS ]
g
b
LY
*
BN
S
3
Q
=
llllﬂi

do/d(8?), mbjiGevic)?

sl goesnnd oy sl

Multiple scatt. (A)

=3
Q’
-«
LALILALLL S RS L S L M 1L B a0 B R OLL B m AL S AL R AL L)

2small x 4large E

0° 7 .

07 1

7078 -

70‘9 S N TS T S N N N N I ]
0 020 040 060 080 100 120

a2, (Gev/e)?

Fig. 14. Example of elastic scattering cross-section for an object with two subunits scattering from an object

with four subunits, with two different radii interchanged (A), (A"): R = 2.28 fm, R = 1.00 {fm, and the corres-

ponding optical limit (B). This figure illustrates the point that in the case of two composite objects collision

{many subunits against many subunits) the convergence to the optical limit is much slower than in the case one
subunits against many. For more details see Ref. [6]
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will be between the subunits of the fluctuation and the target (the probability that the
fluctuation will disappear during the collision process is virtually zero, in the limit of very
high photon energies). One can also see this effect as follows: If the invariant mass of a fluctua-
tion is m, the energy is not conserved at the fluctuation vertex by an amount

me

AE ~ (m2+k)%—f ~ 5%

(12)
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hence we get the time uncertainty

2k
At~ — 13y

which contains the time dilatation factor (k/m) which, as discussed above, makes the fluctua-
tion interact with the whole target.

Different targets will ‘“‘see” different fluctuations. £.g.,a nuclear target will “‘see” “‘strong
fluctuations” of the photon (this indeed seems to bhe confirmed by the experiments Fig.
16 [7]), a strong Coulomb field instead will have a preference to see the electron-positron
fluctuation. Let us consider this last process (Delbriick scattering). In order to apply the
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Fig. 16. The ratio of the total photoabsoi ption cross-section of nucleus A to that of hydrogen as observed (black
points) (Ref. [25]), compared with results expected from a purely electromagnetic photon (line) or from a
g-dominant photon using cornell and SLAC-LRL data (open points)

formula (5) we have to know the high energy electron (positron) scattering amplitude on
the Coulomb field and the density distribution of the electron-positron fluctuation (let
us call it p7(Sy, S,). Before going into any details of the calculations, let us stress the point
that by accepting that the high energy Delbriick scattering is, to a very good approximation,
a scattering of an electron-positron pair by the Coulomb field, we commit ourselves
to a prediction of the amplitudes (again in the limit of high energy) of
such processes as Compton scattering and photon-photon scattering.
This is so, because again the same elements (o” and e*—e®* or e*—Ze~ amplitudes) enter
in the expressions for amplitudes of these processes if one uses Eq. (5). Fig. 17 shows all

these processes.
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Let us suppose that we know the two-dimensional density of the electron-positron
fluctuation of the photon

1 . ) .
Q?(sl, 32) = W fd251d262gy(61, 52)6‘“18;@1—:8,‘3: (14.)

and the electron (positron) — Coulomb field high-energy scattering amplitude. Then, from
Eqs (4) and (5) we immediately get the amplitudes:
For Delbriick scattering

ik o
vl{Dcl — zz—l;z‘)—g fd261d2626(2)(A"“81_82)9/):7(819 82)><

% {(27)* 6®)(8,)0D(8,) — 25(8,) 2%5(8,} (15)

where the indices g, v indicate polarizations of ingoing and outgoing photons, and
Zo(8) = [ d2e® (15 y(¥) (16)
= fdzte"s"eixf,z(t). 17y

For Compton scaltering
ik ~

A Compr = BPE [ d26,d?0,0(A—8,—8,)0.(8;, 8,) X {(2)* 5(8,) 6N (8,) — 2,(8,) Z(5,)}

(18)
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where
2, 4(8) = Z53(9).

For photon-photon amplitude

MY = (2‘k)7 [ d28,d28,d28,d20,0)(A—8,—8,—8,-8,) x
guv(sl l 82’ 3+84)gy v (81 -+ 837 82+84) X
X [(27)80®(8,) 6®(8,) 0)(8,) 6™(8,) — 2 (8,) 25(85) Z5(85) 24(8,)]- (19)

Note that £ is the CM momentum everywhere. This is so because our fundamental
ik
formula A4 =
7T
in the c.m. system.

f d%bedB(1—e*®) was obtained from the partial wave expansion valid

2. Some details of computations of Delbriick scattering

Now let us discuss some details of computing 2’s and g. First let us consider the scatter-
ing of a Dirac particle from a Coulomb potential in the limit of very high energy. The
equation to be solved is (h = ¢ = 1):

) d @ )
( % +1 <0¢18 —{—0529 )—}—10639 +ﬂm> = e¢l{b, 2)¥, (20)

where we explicitely split the transverse and longitudinal degrees of freedom: the incident
eleciron moves along z-axis with a very large momentum, the components of the electron

coordinate 7 are b (transverse) and z (longitudinal). One can convice oneself! that in the
limit £ — oo [11]

(I—o)?7 -0, hence (1+a)¥ —»2¥. (21)
Multiplying (20) from the left by (14-a3) we get
.d .9 1 @ @9 1 b N
i, Tid 5 (Qto) P+ i e +mza—y +pm | (1—ag) ¥ = eV(b, 2)(1+ay)¥.
(22)
Hence, in the limit £ — oo, we have the equation
2 d
i (5} +§—Z~)§P-—6V(b,z)‘1’, (23)
whose solution is
. —ie 7 Vi(b,2)dz’
¥ = u(p)e EPe T (24)

11t follows directly from (20) or from any standard spinor algebra see e. g. Ref. [8].
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where u(p) is the incident wave spinor. The scattering amplitude is therefore

M= — f driyyeeV (b, )P, (25)

where ¥ is the solution (24), and y;is the plane wave final state (in the high energy limit
E~p'):

wf — u(pl)e—iE(t-—z)-k-iA b (26)
4=p—p. 27
After few manipulations we get
+food "
- . ) —1fe 2V (b, z)
= G [ gL, @

Notice that if the transverse momentum transfer is much smaller than p (4 < p) we have
virtually only the non-spin flip scattering, because (v, = f):

Wpyou(p) ~ L= (no spin flip)

and

— P A4 soin fli
u(p)you(p) ~ 5 0( - ) (spin flip).

So, for non-spin flip transitions we can write

M= %’;— f d2bei - B[1 —eix4)] (29)

where
+00
x(b) = —e [ dzV(b, 2).
—00

Notice that, following our terminology introduced before, 1—e*® is the profile of the
electron (positron)-Coulomb field elastic scattering.

Let us compute g"(8;, 8,). In the formulae (4) and (5) we have some ground state
densities introduced without specifying in detail the methods to obtain them. In computing
¢”(8,, 8,) we shall follow very closely the analogy with the hadron (e.g. pion) — deuteron
scattering,

First of all let us notice that the amplitude (4) or (5) should be considered to be a matrix
clement of the amplitude where all the subunits are frozen in certain positions in space:

- % f d2beidd (P T(b, s,...0) ). (30)

For instance, in the case of hadron-deuteron scattering we should take

P11y =Nt B ) (31)
PPy 1) =N Hrtm Krge ) (32)



50

where A" is a normalization constant, and
I'=1—(1—yy(b—s)) (1—y5(b—sy)). (33)

K; and K; are the deuteron momenta before and after collision, (;475)/2 and »—wr,
are the CM coordinate and the relative coordinate, respectively.

Tt is more customary to describe the electron-positron fluctuation in the momentum
space, not in the coordinate space, hence we shall write (30) in momentum space. Let us

denote

M= 2‘{2 d2beiABT(b, sy, 5,). (34)
Then the scattering amplitude is (Tﬂﬂiﬂ?ﬂ). In the case of Delbriick scattering |¥;) and
{¥,) are the initial and final states, respectively, of a fluctuation photon. If we denote them
by ly,> and |y;), respectively, we can write the amplitude as follows:

CEHMY:) = (o Miy,)
= f d3kld3k2d3q1d3q2(yf;’klk2) (ki Miqaq,) {919517;:)» (35)
provided we restrict ourselves to the electron-positron fluctuation (which is, presumably,
by far the leading process). In order to compute |y;) and ly;) we employ the standard
perturbation theory and take the lowest order expression containing the fluctuation in

question. This is in accordance with the “infinite momentum” frame technique (see e.g.

Refs [9] and {10] and the lectures by J. D. Bjorken given at this school).

) = Zipe) + Y SO e (36)

where |y,) is the bare photon state and Z% is the renormalization constant (which assures

the right normalization of the dressed photon state |¢)), @ is the incident photon energy,
E, and E, are the energies of the eleciron and thé positron and £, and %, their momenta.
From (36) we get the initial and final photon ‘“‘wave functions”:

Y (4192 H'|yoi)
(@l i) o—E(q) — E5(g2)

1 [a(g)yuv(g2)] SON K — . —
(27) /“VF (q1) VE2(92) 20 o— Ei(g1)— Ey(q2) OB~ — ),

\ <V0;|Hlik1 2)
vheikeyd, =
</f 1! 2> ( 1) F( 2)

[ik)yu(ky)] o
(2n)“"l/ 1<k1>]/52(k2)1/2w o By (k) Byl O B Ra—hy). - (38)

In these formulae K; and K are the initial and final photon momenta,

H' = ¢ [ d*(x, 0)y,(x, 0)4,(x, 0) (39)

(37
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is the interaction Hamiltonian (§ — spinor field, 4, — photon field, the normalizations
of the electron and positron and photon plane waves are the same as in Ref. [8]). We used
only the electron-positron component of (36) because the first term of r.h.s. of (36) does
not, according to our model, contribute to the Delbriick scattering amplitude. The “‘wave

(q) nitial srote

K, ulky)
—
Ky
WO Va
k2 v(iky)

(6) final state
Fig. 18

functions” (37) and (38) can be graphically presented as shown in Fig. 18. Incidentally,
notice that the deuteron initial and final states (31), (32), have, in the momentum space,
analogous structure to (37), (38):

<k1k2!5u?> =N} ("71_’32))5(3)(Kz‘°"kxﬂkz)v (40)
<T})IQ1(12> =Nk (@:—q9) DK, —q,—q,). (41)

Now back to Delbriick scattering. Since we limit ourselves to the electron-positron
fluctuations, we have

. <k1k2|iﬂl‘.I1‘12>
. | ;
=;‘;’;(M j d2bet o1 —[1—yy(b—s3))|[1—ya(b—8)1} 1,4, > (42)

Introducing the X(9) functions (compare Eq. (16)) and changing the variables, we get (we
drop 1 in the curly bracket of (42) because it contributes to the forward, 4 = 0, scattering
amplitude, and it can be easily included afterwards):

e Jeo) M(A # 0)|qq5)

iw N2

= 5 s e F1) s SO ey Koy ) Y (=) Y (o).
43)
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In the r.h.s. of (43) all the vectors are two dimensional (in the plane perpendicular to the
direction of the incident photon). Notice also that functions 2| ,, as defined in (16), do not
have any spin dependence. On the other hand, the electron (positron)-Coulomb field
scattering amplitude (28) does have the spin dependent coefficient u(p’)yu(p) (or v(p’)yqv(p)
in the case of positrons). So, to have all spin effects correctly taken care of in our amplitude,
we replace in the final expression for the amplitude

m? -
Zl (ky—qy) *l/m@;)— ulky)youlqy) Zl (ki—9qy),

¥, tki=as) =7/ Gt el Y, (g, (@)

The coefficients (m2/E(k)E(q))* give the correct normalization because for forward scatter-
ing there is no difference between the Lh.s. and the r.h.s. of (44). Now we are in a position
1o write the complete expression for the Delbriick scattering amplitude. Summing over all
spin directions we get

N N2
<Vf|lw(A #* 0)]7:) (2 )3 (27[)" 4 [dak d3k2d3q1d3q2
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(u(‘h)yu”(%) (0(q2) y (k) (V{eg) yyulhy)) (k) y ou(qr) 45)
fo—Ei(q)) — Ex(g)} [0 Ey(ky) — Eg(ks)] )

This expression is, to within a constant factor, identical with the e.g. Cheng and Wu ex-

pression [11] for the high energy Delbriick scattering amplitude. In order to reduce it to (15)
one should introduce the variables

0, = Ry —qy, 0, = ky—q,, (46)

and perform all integrations except over the transverse §;, and 8,.
The electron-positron fluctuation density 0%(8,8,) of Eqs (15), (18), (19) extracted
from such a formula takes the form [10] (we shall skip the computations):

1

880 ~ £ [ dpapans1-pp)x

0

o AKWKB (1 —2) —} 6, K31 ~8FF'(x—})*)] ()
[m? (1 —x)K?)

where

K = p'8,—p5,. (48)
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The function 6(1—f8—f’) in the integrand of (47) expresses conservation of the longitudinal
momenta and comes from integrations over some longitudinal momenta in (45). Hence
k k . N . .

= .].3.‘_ and f' = 72‘- are proportional to the longitudinal momenta of the pair (hence, in the
£ z
high energy limit, to their energies). The fuct that ¢” is a function of K only means physically
that the coordinates 8, and 8, of the pair are not completely independent. Taking the Fourier
transform of 5}'",(8182)

dzs,  d2s,
J @n)? (2n)?

01n(Sy, 8p) = ™8 838, 857 (8,5,) (49)

one gets (under the integral sign of {47}) a factor

0®(Bs, - §'S,) 60

which expresses the constraint of the type of the ¢. m. motion conservation. This constraint is
different from the one one gets in the case of ‘‘nonrelativistic” wave functions (40), (41).
There, the density is a function of 1/2 (8,—8,) (see (40) and (41)) and the CM constraint

comes out to be
6(2)(51 +8,). 51)

So, it is not involved in the internal structure of the wave function as in the case of the
photon *‘wave function” which fact is clearly demonstrated by the existence of the factor (50).

One can apply this method of calculating the high energy limits to the other electrodyna-
mical cross-sections: y—e~(e*), y—v. The results were already given (Egs (18), (19)). Once
one computes the density of a particular fluctuation one may then compute all processes
which contain the same fluctuation, without going into all the details of the detailed computa-
tions, by employing this density and the formula (4) or (5), as was done in computing (18)

and (19).

3. Tests of the model developed in 1 and 2

Let us talk about “‘theoretical” tests of the model. Quantum electrodynamics is the
only relativistic theory in existence {te the best of this author’s knowledge) which can test
the model. This test, which one can perform by comparing the results discussed here, and in
the lectures by J. D. Bjorken given at this school (see also the results published e. g. in Refs
[10, 11]) strongly confirms the soundness of our model. The results of e. g. Ref, [10] where
one obtains the high energy cross-sections for et-—e*, y—e and y—y scatlering by summing
certain classes of diagrams agree with the results produced by our model. One may question,
in principle, the completeness of the results quoted in the sense that the proof that they differ
little from the exact electrodynamical expressions seems to be lacking, but as things stand
now, the complete agreement between our model and the summation of some sets of Feyn-
man graphs is striking. It is very amusing that all off-chell effects, which are so important
at lower energles, disappear in the high energy limit, and only the on-shell effects are present.
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Notice that our model can be extended to all field theoretic models once we know that
a certain set of fluctuations (it may be just one fluctuation — as in the examples quoted
above) dominates a scattering. The fundamental trouble in applying the model to strong
interactions (large coupling constant) scems to be the lack of a clear criteriumn of limiting
the complexity of fluctuations relevant in the processes in question.

The second “‘theoretical” test is the potential theory scattering. An example of the
high energy limit of a potential scattering amplitude was worked out above explicitly for
the case of the Dirac equation. If we start from the Schrodinger equation we get [12, 13]
essentinlly the same formula as (29) (we use h = ¢ = 1 units)

ik _— _ 7oosz(b, 2) )
S == 5 d?beid b(l—¢ =~ —oo ) (52)
where Vis the interaction potential (equal to ¢J in the case of Coulomb scattering). We have
explicitly exhibited the velocity v in the exponent, because in the case of the Schrédinger
equation, velocity may become infinite. Notice that if we accept that v <1, Eq. (52) is
identical with (29). Let us accept the “‘proper” high energy limit of (52) which tells us to
put. v == 1. Let us also suppose that

) = 3 Vir—r) (53)

where ¥ are the interaction potentials between the incoming particle and the target particles
(which sit at the points ). From (52) and (53) we get formula (4) because, due to (53), we
have additivity of phase shifts. So, in the case when the positions of subunits of the target
are fixed in space, the total scattering amplitude can be constructed from the individual
“on-shell” amplitudes. Hence a similar situation occurs as in the case of quantum electro-
dynamics. One may argue that in the case of potential scattering from a collection of fixed
in space scattering centres this is understandable, but if the scattering centres are some
bound subunits of the target (with some definite binding energy) it is hard to believe that
only ‘“‘on-shell” elements enter into calculations: the subunits are “‘off-shell” from the
start, after all. This and related problems have been discussed many times. Some more
recent contributions to this subject are contained in Refs [14} and [15] which represent
opposite tendencies (Ref. [14] gives arguments supporting the view that in the high poten-
tial scattering the off-shell contributions cancel each other, instead Ref. [15] argues that it
is probably not so). In any case it would scem that one should expect some considerable
cancellations to occur if one uses a multiple =cattering series, which for e. g. hadron-deuteron
scattering looks as follows [14]

T=TO+TOLTH L TO 4 (54)
where
T = t,+1,
T® = 1 Gyt +1,Gt,,
T® = 1,Got,Gotp+1,Got,Got, (55)
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1, , aTe scattering matrices on neutron and proton and G, are Green’s functions. One gets
the scattering amplitude from T by evaluating it between states of a deuteron plus a plane
wave representing the incident (or outgoing) hadron. One may construct such operators ¢, ,
and the Green function G, that, on the one hand TO 4+ T® taken on-shell are identical
to the Glauber model hadron-deuteron scattering amplitude, but, on the other, be sure that
the complete T'is also completely equivalent to Glauber model (for explicit construction
see Ref. [14]). In this case the off-shell contribution to T® must be cancelled exactly by the
remaining (infinitely many) terms. One can see it explicitly by computing various contribu-
tions of the series (55) {compare {14]). This example is a warning to anybody who wants to
compute corrections to the Glauber model starting from any commonly used multiple
scallering series: a warning that one should, in any case, watch out for substantial concella-
tions between various terms of the expansion.

One should stress, however, that in the case of nuclear collisions there are presumably
some “‘off-shell” effects present. For instance, in the case of hadron-deuteron scattering,
the contribution given by production of e, g. some excited states of hadrons on one nucleon
and reabsorption of them on the other so the net results is elastic scattering, is such an
“off-shell” effect which should, in principle, exist [17, 18] although it has not been observed
so far. One may propose the following understanding of the ““off-shell” effects. As long as
a theory is “‘complete” in the sense that all degrees of freedom are explicitly introduced
in the mmultiple scattering calculations (as is done in the case of quantum electrodynamics
and potential scattering) the off-shell effects tend to disappear. But if we introduce explicitly
into calculations only part of all degrees of freedom which are active in a high energy scatter-
ing process, and the rest is taken into account hy adopting some “‘effective” elastic scatter-
ing amplitudes on subunits of the colliding objects, then the off-shell effects may become
important under some circumstances. Such a situation exists in nuclear collisions (in the
version described in the first section): the coordinates of nucleons are introduced explicitly
into caleulations. The mesonic degrees of freedom are included indirectly in the effective
hadron-nucleon elastic amplitudes.
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