Vol. B2 (1971) ACTA PHYSICA POLONICA Fasc. 1

LEPTON-HADRON PROCESSES AT HIGH ENERGY
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1. Introduction

High eneigy physics at the present time finds itself at a threshold of great expectations.
Not in a decade — perhaps never — has there appeared such a great leap forward as will
soon appear in that most basic commodity of the field energy. At present, relatively little
has been explored beyond 30 GeV. The Serpukhov machine at 70 GeV, NAL at 200, 400
and eventually 500 GeV, the CERN ISR at lower intensity but a still higher equivalent
laboratory energy of over 1500 GeV herald an increase in available energy of between one
and two orders of magnitude. Electron-positron colliding beam facilities under construction
will reach into a new high-energy regime. From the present region of s = Egy ~ 1 GeV2
dominated by the vector-meson production, the new rings will attain an s ~ 15-30 GeV?
with CEA capable of reaching s ~ 100 GeV2. In this high energy region very little theoretical
insight exists (other than for the pure electrodynamic processes) on what even the qualitative
features will look like.

While the greatest of expectations lies in the anticipation of production of new kinds
of particles (W’s, quarks, monopoles, heavy leptons, hadronic leptons) or observation of
new classes of interactions, or maybe even something present concepts are insufficient to
deal with, there are other new classes of phenomena which are still not so unfamiliar as to
be impossible for the theoretician to try to discuss. A major area of this nature and the
subject of these lectures is that of lepton-induced hadron reactions at high energies. Typical
examples are
(&) e+N — e+hadrons
(b) u+N - p+hadrons
(¢) v+N — p~—+hadrons
(d) »+N — pt+hadrons
(¢} p+p — pru~+hadrons
(f) et+e — hadrons.
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Also in the same qualitative category are
(g) y+N — y+hadrons
(b) y+N — putu~+hadrons.

At present, we know that reactions (a), (b) and (c) lead to relatively copious number
of secondary leptons produced at high transverse momenta p,; p, > 1GeV/c. To the
extent that high p correspond to small Ax, by the uncertainty principle, these processes
should tell us a great deal about the substructure of hadrons at distances £ 10~ em, an
order of magnitude smaller than the size of the nucleon. They will become of increasing
importance as the available energy increases. These lectures will be mainly confined to reac-
tions (a) to (d), where there exist data and a considerable amount of theoretical work. The
lectures will be organized as follows:

1. Phenomenology: The kinematical description and state of data will be briefly
reviewed.

2. Current commutators and light cone behaviour: The cross-sections for
these lepton-induced processes are proportional to the Fourier-transform of commutators
of the weak and electromegnetic current operators evaluated between nucleon states. There-
fore much can be learned about the nature of these commutators.

3. Dynamical models: Very roughly, two classes of models for these highly inelastic
processes can be discerned. One class attributes the large observed cross-sections to the
incoherent scattering of the lepton from pointlike constituents within the nucleon: this
is the parton model. The other class of models views the lepton as possessing a dilute hadronic
cloud, which is then absorbed by the target nucleon.

4. Quantum electrodynamics at infinite momentum: Some insight into
the nature of the models for ‘‘semileptonic” processes can be found by studying the high
energy limit of quantum electrodynamics, a program especially vigorously pursued by
Cheng and Wu. Their results can be obtained by a formalism which sheds some light on the
parton ideas.

2. Phenomenology

The formalism for reactions (a) to (d) has been discussed countless numbers of
times [1-6], and we here review it in a hopefully brief way.

Let E — energy of incident lepton in laboratory, E’ — energy of final lepton in labora-
tory, 6 — scattering angle of lepton, p, — four-momentum of incident lepton, p;, — four
-momentum of final lepton, P, — four-momentum of target nucleon. The four-vector-
q.= p#—p:‘ plays a special role, as it is the momentum absorbed by the hadron target,
i.e. the momentum of the ‘‘virtual photon” (electrodynamic interaction) or ‘‘virtual W
(weak interaction) as in Fig. 1. The invariants formed from ¢ and P play a central role in
the description of the hadron dynamics. They are

v=M1Yq-P)=E—E,

Q2 = —q? = 4EE' sin? %
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If we are interested in high-energy, high transverse-momentum processes for which
Q? > m? it is justifiable to approximate the lepton mass m; by zero. The lepton-hadron
interaction, taken in lowest-order perturbation theory, is

!

2
Hipm = 52— w(p'Yy,ulp)J¥,

H e — % (0" Yyull—y9ulp) F* @.1)

with J* and _#* the hadronic electromagnetic and weak current operators, respectively.
The helicity of the leptons is conserved (for m; ~ 0) and the lepton-current can be computed
explicitly [3, 4]. Choosing the z-axis along the direction of q, the result is especially simple

In¢ident
lepton

Nucleon

Fig. 1

[5, 6] when the energy transfer is much greater than 1 GeV. In this case the approximation
¥? > (2 is justifiable, and one finds, for an incident left-handed (negative helicity) lepton

.I
uy,,u ~ {-l/zEl 6,‘ ]/2E €u +8# _];Pt (2'2)

where we normalize spinors such that u*(p)u(p) = 1, and
&L = — 0,1, —i,0
L Vé ( y Ly ™1, )

tR= V—_ ©, 1, i,0)
S = (0%~ (1521020, 0, %) 2.3)

are normalized polarization vectors of definite helicity. The lepton electromagnetic current
for an incident right-handed particle is obtained by letting L «» R in (2.2). This is also the
prescription for antineutrino-induced weak processes. The weak current is twice that given
by (2.2) owing to the factor 1 - y;. The cross-section into a group of final hadron states
drl' is then found to be:

) '
4«75: E. Z {n | jleet - JIP) (27)364 Py—P—q)
do 7 do

nindl
dQ%dvdl’ ~ EE dQdE4l | ¢ E ,
o B (n]jlrt - £|P)(2m)364 Pp—P—q).

nin

(2.4)
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In general there will be six terms in (2.4), three diagonal contributions and three interference-
-terms. To isolate the various terms, consider [7] the effect of a rigid rotation of the hadron
system n about the direction of g by azimuthal angle ¢. This is equivalent to rotation of

the lepton system, for which the current ji®* in (2.2) is modified by the replacements
L L —ip R R iy S S
g e gy > ege® g, e (2.5)

Upon squaring to obtain the cross-sections, we see that the interference terms between L
and S are proportional to cos @ or sin @, while an L—R interference is proportional to
cos 2¢ or sin 2p. Thus weighted averges with respect to @ will extract the various inter-
ference terms; we shall not deal with them further and will not write the expression down.

To eliminate interference-terms, it is only necessary to average over ¢. When this

do do
2n dQ%vdT

a E ( Q2 ) [da,g E doy E dog

is done one obtains

0% &\~ o) | ar + 5T I + 3F W] (electromagnetic)
G* E' Q2 Q?\ |dos A, E dop E' dog .
5 E v (1 - 2_—Mv) [‘d—r * o7 ar + 3F qr | ¢induced)
where for electroproduction
do; _  Ama? asa
S D, (nle J1Ps) G 4P~P =) 2
2M
and for neutrino-production
20— T Y (nles- £ | Ps)(En 5P~ P—g)
Ty s - Teeem——— 8‘-. n_ g
ar Yy — .ﬁ nindl’ <n g ! (28)

P

As Q2 - 0, dog/dI" and do,[dI" approach finite quantities; for electroproduction just the
appropriate cross-section for incident circularly polarized photons. For electroproduction,
dog/dI" —» 0 as Q% — 0, while for neutrino-production, Adler’s theorem [8] gives

dos F2 ( m2 )zda,, 2.9)

dl' = Q% \m2+ Q2 dT

with F, = 0.9 m, the pion decay constant and do,/dI" the appropriate pion absorption
cross-section. Adler’s theorem follows from observing that for small Q2, &5 ~ q,/)/ Q5
and PCAC ¢,#" may be replaced by the pion field.

Of special importance, both experimental and theoretical, are the cross-sections,
differential only in the outgoing lepton momentum. These are obtainable from (2.6) by
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summing over the dI'. A different notation is conventional; this notation may be introduced
by considering for fixed » and Q2 the limit of (2.6) as E (and E’) tend to oo:

2 4ot
w o (1= ai5) s =G Pt
PnATh T | e 2\ (. . 1 1 G2 210
s (1) (% ¢ gon ) = gmen

or = 0g = 0, is, for electroproduction, the cross-section for transverse virtual-photon
absorption. $(Q2 v) (Adler’s notation) is now often denoted by W,(Q? #); the other con-
ventional form-factors W7, a, ¢ (or Wy, Wy, W) I find more conveniently expressed as ratios
of the o; because the positivity restrictions g; > 0 are more readily comprehended, as well
as troublesome minus-signs associated with W

From the definitions (2.10) and from (2.6) we may write

4 a® v op
do 2 (% v){ T 2m GT+Gs}
'd—Qz—d; = c: E ) 2.11)
R X (R)}
where
(L) = oL <1, (R=—2R 2.12)

oL+0or+20s oL+0or+20s

The factors in curly brackets tend to be of order unity. Thus the gross features of the data
are shaped by W, and §; the finer details by the cross-section ratios.
The relations between the o; and W; are as follows:

~ ,,,2 or
V= (75 £ (0T+Gs) ’

~ Or+0L
W = (_72 ﬂ (0R+GL+20'S) (2-13)

W,

R

2My ( O1—O0R

2 2 1
0 B GL+0'R+2GS) (»2 > Q% only!).

Turning to the data, one finds it exhibits great simplicity. For electroproduction [9-13]
most of the experiments only detect the scattered lepton; one then wishes to explore W,
and or(op+0og) as functions of » and Q2

The range of » and Q? which has been explored is shown in Fig. 2. The behaviour in
““‘deep-inelastic” region Q2 > 1 GeV?, »>1 GeV is extremely simple; it is shown [13]
in Fig. 3.

The dimensionless quantity »#, thus appears to be a function only of My/Q? = ¢ - P[Q?,
the only dimensionless quantity which can be formed from the kinematical invariants. The
major consequence of this result is that the cross-sections at high Q2 are big; comparable
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to the scattering from structureless objects. In the cross-hatched region, one can finds
resonance-excitation: N*(1238), N*(1520), N*(1690), N*(1920) have been seen; at large Q2
the production cross-section is comparable to elastic scattering at the same Q% In the other
shaded region (Q? < 1GeV?), v, decreases toward zero as Q2 — 0; vW, - Q% [4n’x

}Q2(Gev?)
30

ELASTIC SCATTERING

20

Vs ‘,,.Z_;.‘,i = 2(VW,=0.15)

REGION FOR WHICH
gg 1S REPORTED TO BE

SMALL (~Q2:02)
101

REGION FOR
WHICH v wyz 0.33

20 v(GeV)
REGION IN WHICH LOW-Q?DIFFRACTIVE
RESONANCES ARE DOMINANT  REGION

Fig. 2

as % — 0. The ratio R = og/oy has been measured and reported [9], [12], [13] along the
line s = 8 (Fig. 3) and for Q% = 2and 4; 2 < » < 6. In all cases studied R is small, < 0.5
and the SLAC-MIT group quotes R = 0.240.2 with the error mainly systematic.
Data on neutrino-induced reactions come from the CERN heavy-liquid bubble chamber
{14]. The total cross-section appears to rise linearly up to E,~ 10 GeV; they find
G*ME

T

Oror & (0.6£0.15) = (0.8 +0.2) Ex 10-%8 cm?. (2.14)

Rough features of the muon energy distribution also support the scaling property. Especially

significant is the observation of events for which % is small. From (2.11) and the data it
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follows that oy # 0; all other terms give vanishing cross-section as E’ - 0. The CERN
group quotes {og/or) < 1, assuming ¢, ~ op.

Most of the features of the neutrine data can (in retrospect) be understood semiquanti-
tatively from the electroproduction data and some ‘‘reasonable’ assumptions, notably the
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Fig. 3. W, for preliminary MIT-SLAC data at 18°, 26°, 34°, for various values of R == oo

conserved vector current hypothesis. The vector 4S5 = 0 part of the heavy-liquid (v, Q%
is related to the isovector part of W, as follows:

1
By,as=0(v, Q%) = El (Bo +Bu)s,as=0 = (Wpp + Wan)isovector. (2.15)

Because v, is scale-invariant, it is necessary that 8 is bounded below by a scale-invariant
function, unless only isoscalar photons contribute to W, (very unlikely on grounds of
SU(3)-symmetry). It is therefore natural to suppose »f is scale invariant

vf = F(Q?*2Mv). (2.16)
Given that assumption alone, one finds from (2.11)
1
G*ME 1 1 1
Otor = '—n—fdxF(x) {5 + 5 (L) - 3 (R)} 2.17)

0
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The factor in curly brackets must lie between 1/3 and 1, and thus g,,,, on the average, increases
linearly with neutrino energy. To estimate numerical magnitudes, assume:
1) All electroproduction goes via the isovector current.
2) W, ~ Wa,.
3) All » absorption goes via A4S = 0 processes.
4) For the neutrino process, axial absorption = vector absorption; i.e. 4 = f,.
5) o> o5
6) op = o;.
These hypotheses imply f = 4W#,, and from measurements one finds using (2.17)

1

AL 2
oy = 2. OME f dxF(x) = 0.48 (G fE) (2.18)

3 =
0
This comparison is meant only to illustrate the magnitudes involved, in particular a realistic
modification of hypothesis 1) will widen the discrepancy between (2.14) and (2.18). But
the above argument does show that almost any theory of electroproduction will give about
the right magnitude for the neutrino process.

However, it would appear that a somewhat smaller slope for the linear rise in the neutrino
total cross-section than claimed experimentally would be more comfortable from the theoretical
point of view. It also would make it easier to reconcile the observed flux of neutrino-induced
muons deep underground {15, 16], which is claimed to be lower than that obtained by
assumption of an indefinitely rising cross-section with the slope given by (2.14).

While phenomenologically it is best to deal with 7, and B, in the theoretical discussions
to follow it is most convenient to deal with B and W,, which are connected to the transverse
cross-sections, which have a minimum of kinematical complications. Hereafter we will
confine ourselves to this, and recall from (2.13) that

v 1 [2My

Thus W] is scale-invariant and tends to 0.3 /2M as @ = 2Mv[Q* — co.

3. Current commutators

The structure-function W) is directly related to a Furier transform of a product of
currents. From (2.7), (2.10), {2.13) and some routine spin considerations

4x ig-x
iﬁ}‘ T (PI#AI S O)PY

Py [ dixeiex

=731 | —57— P17 2 ONP). (3.1)

W, =

We choose ¢ and P in the z-direction. We shall also routinely change from W to W, when
the difference is of no consequence. In the customary way, for ¢ spacelike, the operator-
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-product may be replaced by commutator. Just as the total photoabsorption cross-section
for real photons is related to the forward Compten amplitude, so also is ] related to
the virtual Compton amplitude T7(», Q%) by the optical theorem

Im T30, Q%) = IFy(v, 0%, (3.2)

T¥ is in principle an observable, being obtainable from the forward scattering amplitude for a
lepton pair from a nucleon according to Fig. 4. T} satisfies for fixed spacelike g2, a dispersion
relation in » with one subtraction, because empirically B oc » as » — oo for fixed Q2

Thus

o, Q%) = T30, Q) + % [ 0, 0% (3.3)

vi(y'—y)
For electroproduction, the crossing-properties ensure the convergence of (3.3): T(—», Q%)
= T}(», Q). For the neutrino process, Wy(—», Q?) = — 1(v, 0?) where W, is the struc-

ture-function for the corresponding antineutrino-induced process. One must assume the
Pomeranchuk theorem holds in this case in order to write down (3.3).

Fig. 4

The asymptotic behaviour of 77 as ¢ — oo is of particular interest. If it is sufficiently
well-behaved, then T§ is a retarded commutator [17]

21P

Ti = f— e Y (x)(PI[F (%), £2(0)]1P). (3-4)
Suppose for a moment this is the case. Then let [18] ¢, = ¢ oo (so that g2 > — oo, real
spacelike). The exponential contains a factor e~ 1%/, so that provided the operator-product

in the commutator is smooth enough, we may expand the commutator in terms of equal-
-lime commutators:

[t @), £70)] = [£,00, @), £70)]+1[£,0, @), 77 (0)]+

and

s, 2Py fgi e {mo @), 10 | 0.2, 701, 1 5y
M 20] Pk J:

Conversely, given the data for | we may empirically examine the degree of singularity
of the operator-product and determine the existence of such equal-time commutators.
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We go back to (3.3) and let g4 & 1 co. For 4| < Q?/2M, W, vanishes. Theorefore in the
limit |g,|Pyl = |¥] <€ 1qel%2M < |+'| and the denominator may be developed:

T}, 0% = T}, Y +§:1 (0% (3.6)
with
1 [ av , _
Q) = = j Gyt W07, 09+ (- )0, Q). (3.7)
QM

From the data W, appears to be scale-invariant for Q% — oo:
W= Wi{d), A = Q¥2M ».

Given this, the asymptotic behaviour of the coefficient I, can be deduced

1
R R
I 4.71; (%lf) f dA F1[W, () 4+ (— I, (). (3.8)

0

Through order g% we need only keep I, and I,:

1
T 0, 09 + 200 [ asgw, )W) -
ol ¥
1
2 .
_ B f AAW,(3) + 7 (3)]. (39)
7tiqe) 5

The crossing-odd part of T'; and crossing-even part may be considered separately; thus the
[£., FI] exists and is given as follows

[ KPILF 0, 2), 57 O1IP

=M fldA{Wl(A)—WI(A)]. (3.10)
g

For the crossing-even part of the amplitude, we find, in a similar way {19, 20]

—i [ d3xe~ia-=(PI[J (0, 2), J.(0)].P)
1
2M * , ; .
=5 lim #g?TT(0, Q%) ~4MP, | dAA[W (A} +W ()] (3.11)
0 2*~—o 5

provided that the limit exists.
The Lorentz-transformation properties of the two terms in (3.11) differ. The coefficient
of the last term is finite and (formally) survives as Py = oc. To be a little more careful let
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go = 1 o, P, = 00} qo/P, fixed [21]. Then, provided only that T;‘(O QY »0as Q% — oo

z

lim

Panso 4MP

f d*xe~ =(PI[£ (0, ®), F1(0)]|P) = f AW+ W],

(3.12)

This provision also suffices to show that Ty is a retarded commutator. Using the above
method, a large number of sum-rules can be derived. In terms of the phenomenological
notation, we catalogue them as well as a few others

fdv[ﬁ(v, 09—, 0] = oo

(3.13)
hm f dv[B(r, Q%) (R+I)—p(, 0% (R+L)] = J,, (3.14)
»000
Q1:m fdv[ﬂ(v, Q%) (L—R)+B(, 0% (L—R)] = iJ,, (3.15)
where
T =I}im [ &% (PO, ), £,011P,> (3.16)

Equation (3.13) in the classical Adler sum-rule [22] and depends upon a reliable current-
-commutator Jo, but has not a reliable derivation. (3.14) is the “backward®‘ asymptotic
sum rule [23]. (3.15) was derived by Gross and Llewellyn-Smith [20].

The right hand sides of the last two sum rules are model-dependent. If one postulates
the U(6)® U(6) current algebra of Feynman, Gell-Mann and Zweig [24], one finds the
following table [25]

TABLE I
Proton target Neutron target
AS =0 AS =1 AS=0 AS=1
2 cos® 0, 4sin® 0, —2 cos? 6, 2sin? 6,
2 cos® @, 4sin® 0, —2 cos? 6, 2 sin® 6,
6 cos® @, 4sin? 6, 6 cos? 6, 2sin? 8,

For electroproduction, a byproduct of the Adler sum-rule (3.13) is an inequality [26]
obtainable by isospin rotation:

Q")
Q’/'Z/‘M dv Wyp(v, Q¥+ Wy,(v, Q9] >4 (3.17)

5(02) is that value of v for which the Adler sum rule has converged. From the data,
[ dvW,, 2 $provided ¥ > 3Q?, and [ dvW,, > % for ¥ > 7Q2. However, there is not much
0 0

in the inequality to spare, and the derivation is rather inefficient.



16

For electroproduction, J,, = 0 and there is no analogue to (3.14) except for an ine-
quality similar to (3.17). But iJ,,, given the U(6)® U(6) algebra, is nonzero and expressible
in terms of the axial current. The isotopic-vector part of this axial current is related to the
B-decay coupling g4/gy by conserved vector current hypothesis. One gets the sum rule [18],
for target nucleons polarized along the direction of q:

0 1 24
" -6— = proton target
lim dvW,(v, 0% (___"é:zfﬁ__ = (3.18)
Qf-scn Ga+op+2os 1iga
Z— — | = neutron target.
0 6 4%

Here 4 and P stand for antiparallel and parallel configurations of nucleon-photon spins,
Eq. (3.18) implies [27] a mean polarization asymmetry for electroproduction, for either
proton or neutron, greater than 209, for large » and Q2 (unless (3.18) converges extremely
slowly). Sum rules for [J, J] as in (3.12) are of importance in electroproduction, because
the sum is measured. However, the commutator is extremely model-dependent. Cailan and
Gross [19] and Cornwall and Norton {28] derived the sum rules

éif:o,/ d?sz( +0's) —I}:_{x;?o A3 P,|[J:(0, @), TAO)]I1P;), (3.19)
T ( MS) = lim f B (PO, @, LONPY.  (3.20)

Qo0 ,/
0

To evaluate the right-hand side, Callan and Gross used Lagrangian models and canonical
commutators, concluding that for the ‘‘gluon model” (quarks + neutral vector meson coupled
to baryon number) ag/or — 0 as Q% - oo, while for field algebra or the Sugawara model
op|as = 0. However, Adler and Tung [29], Vainstein and loffe [30], and Jackiw and Pre-
parata [31] argue that equal-time commutators computed from Feynman diagrams, e. g.
via gy — i 0o method, do not agree with those expected by ‘‘naive” canonical manipula-
tions of the field-operators. This occurs because of the singular nature of the products of
local operators at the same specetime point. Thus considerable doubt is shed on the validity
of the formal manipulation of canonical fields, and one is put again in the position of trying
to postulate, in a sensible way, commutators such as appear in (3.19) and (3.20). The
recent approaches along this line relate the commutator [ #2 ,jj] to a local operator 6

which is a piece of a second rank Lorenz tensor. & and f§ are internal SU(3) ® SU(3) mdlces
Brandt and Preparata [32, 33] and also Cornwall [34] relate 6 to an assumed nonet of tensor
fields, which act as interpolating fields for the 2t nonet of tensor mesons | f, f', K*(1405), 42].
They are able, with some assumptions of exchange degeneracy with the vector nonet, to
estimate the matrix-element between proton states. Differences between ep and en scattering,
and between »p and »n total cross-sections are therefore anticipated in this approach. An-
other approach is taken by Wilson [35], Ciccariello et al. [36], and Mack [37] who assert, by
a quite different and deep line of argument, that O“ﬁ = 6% 0,;» where 0,; is a piece of the
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conserved energy-momentum tensor. The Callan-Gross integral becomes universal, because

(P104P) ~ %_I_)’_ can be evaluated. What is predicted is therefore
)
0%, = o = 0% = oo (321)
f divW, f divWv,,. (3.22)

The relation between the Callan-Cross integral (3.22) and the neutrino total cross-section
cannot be completed without an additional assumption about og/or. Assuming ogfor to
be zero or small, one satisfies all assumptions 1) to 6) in Section 2 except the {4S] =1
correction, of order sin? 0, and the first, which should be

1
f dﬂ'v( Wf2p+ W2n)isovector = f d}'v + WZn) (3°23)
]
With this, the prediction for ¢(%, is
oot 2 -G—M (0.36) (3.24)

somewhat smaller than the observed value but at present not seriously smaller.
This latter line of argument stems from the work of Wilson [35], who proposed that
given the set O,(x) of all meaningful local operators in a theory, then

1. Asx—>0 0{x)040) =, ; F#®)04(0). (3.25)

That is, the operator product can be expanded in a series of local operators for sufficiently
small x.

2. The operators O,(x) have well-defined dimension; under a scale-transformation
x = 5%, Oj(x) = s%O,(sx) with d; the dimension of the operator. The energy-momentum
tensor has dimension +4, and the currents # (x) have dimension 3 in each case because of
the nonlinear commutation relations of current algebra; e. g.

E£5(52),76(s2)] = f 57 Fi(s2) 63(s3—s). (3.26)

This means
THFHR),£5x)] = sTIY Y g (x) ¥a—a) (3.27)

which implies d = 3. However other local operators are not expected to have integral
dimension; they might well be functions of the coupling constant. This is supported by an
explicit investigation [38] of the (soluble) twodimensional Thirring model. It is also supported
by the aforementioned perturbation calculations {29, 30, 31]. Matrix elements are typically
of the form (g2 log x)"x™ 2#; the logarithms are the same ones that give trouble to the gy — i o0
limit. These logarithms upon summation may well build up to a fractional power of x
which is dependent upon coupling constants.
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3. Wilson [35] assumes scale-invariance at small distances; 7. e. as x —0 the operator-
-product expansion is invariant under scale-transformation. This implies that

Sinlsx) = Sdk_d‘—djﬁ'jk(x)- (3.28)

Together with the requirements of Lorentz-covariance, this places a severe restriction on the
structure of the functions f;(x); they essentially are just powers of .

4, Ciccariello ez al. [36} and Mack [37] assume that the only local operators with d < 4
are the currents #, and the energy momentum tensor 6,,. Then to see how the procedure
works, take the product £ ,(x)#,(0) of dimension 6. It can be expanded in terms of £ (x),
of 0,,(x) and of tensors of higher dimension. Leaving out SU(3) indices,

_ Ewr S ZuFy Tof u X F
f”(x)fp(()) =a 24 +b KA +e A + d %8 +
o yf G, 2B
R e R e e (3.29)
4 T %

with dimensional analysis determining the power of x in the denominator. The neglected
terms will have a coefficient function less singular than x~2 as x » 0 as a consequence of
assumption 4. Upon Fourier transformation the retarded product

T,, = [ de *3(t) [£,(2).2,(0)]

will again have an operator-product expansion, valid for ¢, = .&,,, A — oo; al‘ a fixed vector.

Then

T,uv:a',g;w (1(;{ + br ‘I;{v _%__ cl q” 2!‘ + d' qﬂqi’qqt .f +

. 9o
+ €' gu Ous+ete. + ... (3.30)

qa
The neglected terms go to zero faster than ¢~2 Then taking qA” = (i, 0, 0, 0) we see that
the coefficients of A~ and A-2 can only involve #, and 0,,. It then follows that the Callan-
Gross integrals (3.12), {3.19), and (3.20) for neutrino-processes and electroproduction (in
dimensionless form) are universal, i. e. depend only cn matrix-elements of ;. There is, of
course, a strong assumption (number 4) necessary to get this result. Whether or not these
specific assumptions are correct or not, it is certainly the case that method of operator-product
expansions can do everything the use of equal-time commutators and asymptotic sum rules
can. They can do much more because operators of fractional dimension can be dealt with
and related to the data.

Toffe [39], and others as well [40, 41}, have provided further insight into the nature of
the commutator in x-space. Given the data, which is the Fourier-transform of the commu-
tator of currents according to (3.1), one may attempt to invert to obtain the commutator.
With some apologies to rigor, this can be done. In the high energy limit (v > 1 GeV)

i
& x — ei”’_iv”—grﬁiz ~ e"(r 2T . (3.31)
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Toffe observes that the important distances are those for which

(t—2) s —;l’—(very small) (3.32)
2My\ 1 ) .
and z ( 0 ) S (quite large for large ). (3.33)
From causality
x? = (t—2) (t+z)—x7 >0 (3.34)
implying
1 4v 4

Thus as % — oo, only the commutator of currents on the light-cone contributes, and further-
more large separations z ~ ¢t ~ Wi are important. Then we can try to determine the light-

-cone singularity by inverting (3.1)

o

P10 ~ 37 ) = g B = [ B im0,y (3,30
where
Ct,z) = nofdxi(PI[]x(x), JOLP) (3.37)
and

A=t = Q¥2My.

Inverting we find
1
C(t, 2) = 8(t—2) [ dae™™=F,(2). (3.38)
~1

With such a singularity, the commutator must have a singularity on the light cone propor-
tional to &’(x%); we find that

1
(PlJx(x), JHO)|P) = %"{fdl[sin ZMt]Fl(l)} 2] 6’ (). (3.39)
h
Because according to (2.19), as 4 — 0, Fy(4) ~ (22)~'F,(0) we see that the singularity is just
1
21 di .
(P, ONPY = 2 { f Z [sin AleFzm} ) (3.40)
°

As ¢t — oo, the integral in brackets is g F,(0), and asymptotically the light-cone singular-

ity is iF,(0)]t] 6'(x?) (again consistent with dimensional analysis!).
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4. Dynamical models

Two broad classes of models exist for interpreting the deep-inelastic data. The first,
the parton model, considers the photon to be absorbed on the ‘“‘real” current density asso-
ciated with pointlike constituents within the nucleon. The calculations done with this model
thus far are lamentably crude. The support for the idea comes not from details of the cal-
culation but from two other sources: the first is the scale-invariance property of data, easily
interpreted in general by the model, while the second is the existence of all the sum-rules
such as written down in Section 3. These sum-rules can be interpreted in a simple-minded
way [42] using the parton ideas and are also quite compatible with scale-invariance.

The second class of models may be called ““diffractive” models, Pomeranchuk-exchange
models, or vector-dominant models. The experimental case for this model lies in the shape
of the v, = Q¥op+o0g)/4n®x curve. As expected ¥, is roughly constant with photon

energy v until v is <

2
, a value at which the longitudinal coherence-length [ ~ -M— ~ 0.6

fermi. The theoretical case is nicely made by Ioffe’s argument in Section 3 (above Eq.
(3.36)). loffe furthermore argues that the hypothesis that small longitudinal distances (in the
laboratory-frame) are important is inconsistent with experiment. This follows from (3.36).
If the commutator tends to zero rapidly for z > R, (as might be anticipated if the picture
is that the photon is absorbed on “‘real” charge in the nucleon), then the second exponential
factor in (3.36) may be ignored for large »/Q?, with the result that # is a function only of
» rather than of »/Q® However, experimentally W, ~ »/(Q?% in that limit.

It is important that the diffraction-like models generally renounce the validity of the
sum-rules written down in Section 3, or reduce them to triviality: 0 = 0. All the sum rules
discussed can be criticized, and no sacred principles (causality, locality, validity of the Gell-
Mann algebra of charge-densities) need be abandoned if the sum rules fail. However, pro-
vided scale invariance holds, the Callan-Gross sum rules (3.12) and (3.20) will certainly have
content; they imply that the [J, J] commutators are non-vanishing in the scale limit. The
important question then becomes the SU(3) structure (e. g. octet or singlet) of those commu-
tators. The universal [J;, J;) commutator of Mack [37}], Wilson [35], and Ciccariello et al.
[36], would be compatible with the diffraction-like models.

Because detailed calculations or arguments regarding either class of model are far from
convincing, and because for the present the primary importance of distinguishing between
the two classes is to evaluate the role of the (reasonably respectable) sum rules, we shall
not discuss any of the models in much detail, but summarize the results. We start with the
parton-models:

1. Feynman [43] implements the parton idea as follows: When the proton at high mo-
mentum collides with the electron (as in the overall center-of-mass system) it may be consid-
ered during the interaction as a beam of temporarily non-interacting pointlike constituents
(as in the lectures of Czyz) because the lifetime of fluctuations of the virtual states tends
to co. The electron scatters incoherently from these pointlike constituents (partons). It follows,
provided a calculation can be made successfully, that ¥y, = F (#/(?) in this model because
no scale of length other than given by the kinematical invariants has been introduced.
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That is just a consequence of dimensional analysis. To make the calculation, notice that for
a point particle, as Egpy — o0

do 4dal Q?
s o [ ) D

Suppose the parton of charge @, has a fraction 2 of the nucleon four-momentum P, (taken
at high energy to be approximately null): Then

do  Ama? o5 (Ag- P Q? )
i~ F 19 (‘“M ~ o) *2)
The factor Ain front ensures that do/dQ? is given by the Rutherford formula. Then multiply
this by fx(4), the mean distribution of 4 in a configuration N of partons, then sum over the

partons in the configuration, multiply by the probability 2y of the configuration and
sum over V. One gets [44]

yW, = Z APy fN(l)<Z Q?)N, A= 2_()]‘-;; (4.3)

2. Paschos and I [44] try out the above formula assuming that the only partons are
quarks, We find the calculated ¥, somewhat larger (S 509,) than the data. We further-
more find gg/or = 0 (were the partons spin zero we would get opfog = 0). It is difficult
to make v, smaller without introducing some neutral partons (perhaps the neutral vector
boson of the “‘gluon” model). Using the same calculation as leading to (4.3), the process
y+N — y+hadrons can be estimated. (To see what the proton is made of, a good way is to
look !) Under kinematical conditions identical to those for electron-scattering (just replace e
by. y) we find

e ), - 5 5
dQdE’},| \dQdE"|.  EE (S0 @4

The ratio of signal to background (from n° decay y’s) is marginal at present SLAC energies;
however even at E, = 25 GeV the experiment appears feasible.

The implications of this model for neutrino-processes has also been studied [5]; [20],
[45]. The situation is similar to that for electroproduction. However, o, tends to be greater
than oy, leading to o, > o5y as well as 0,, > o,,.

3. Drell, Levy, and Yan [46], [47], [48] start with a relativistic y; theory of pions
and nucleons, mutilated with a transverse-momentum cutoff. In this model, partons
are “bare nucleons” and ‘‘bare pions”. They are able to derive the scaling property of
»W, and estimate W, as ¥/Q)2 — oco. In this limit ¥, behaves as a power of »/Q% The
exponent depends upon the pion-nucleon coupling constant and the transverse-momentum
cutoff. With a resonable cutoff the power can be taken to be near zero. Among the interesting
consequences of the model are the following:
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a) The distribution of secondary nucleons is expected to be peaked along the direction
of q; in the laboratory frame
aN 1 v E,
dE f (Qz ’ _) 4.5)

where E, is the energy of the rec01l nucleon. This leads to a relatively large number of

energetic nucleons with (E,» = vfdsef(Qz, £
0

of the virtual photon is often absorbed by the “‘bare nucleon”, and a finite fraction ends up
in the emergent physical nucleon. The nucleon and secondary pions have low p, <500 MeV
relative to the direction of q.

b) The threshold behaviour of ¥, near w=11is related to the asymptotic behaviour of
the elastic form factor. If Gu(q?) simor g% then vW, 3 (0—1)%

¢) The crossed reaction et+e~ — p+hadrons is expected to exhibit scaling; in

particular
do a? 1 E,
= =2 ¢ |2 4.6

dE, Q*)Q* (V Qz) o

leading to a large total cross-section

) Tihs result occurs because the momentum

1
2
<"’5)0'tot & Orot = % fd€¢(5) 4.7
[}

which is consistent with dimensional analysis. Again many p should be produced, and
(E5) ~ V@E The accompanying pions should have low pr < 500 MeV relative to the
direction of the pp pair. These results for the annihilation channel are specific to this model
and are nota general consequence of crossing + scaling for electroproduction.

4. Chang and Fishbane [49] take the Drell, Lewy, Yan model and remove the transve-

rse-momentum cutoff. This removes the scaling property of »W,as well, and v Wy ~ f ( Qz)

X (Q%?, with p dependent on the pion coupling. The diagrams they sum are multiperipheral
in character, and they find the pion secondaries lie in two jets, along the directions of initial
and final nucleons, somewhat as would occur in a bremsstrahlung model, or in the Drell,
Levy, Yan model. They also find the pion multiplicity {(ng) ~ log Q% We now turn to the
diffractive or Pomeranchuk-exchange models:

1. The most detailed hypothesis is that of Sakurai [50], which proposes g-dominance
is dynamical mechanism, even at high Q2 This means, for large »

ar(Q% %) = 0,(mp/(Q* +m}))? (4.8)

1
‘(")"é « The discrepancy at high Q%

is a factor 2 to 3 and the model in this unadorned from fails. However, it has been suggested

whereas the data implies (at least for » < 10 GeV) o~
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that it should only have validity in the pure diffractive region (Sakurai [51] proposes
¥/Q% > 5 GeV~1) where og/oy is not yet measured. In this region the prediction is

oslor ~ Q2fmy. 4.9)

It is og~ which provides the scaling property.

1
Q2

The role of g dominance in electroproduction can be further tested by studying g-elec-
troproduction (the analogous process for neutrino reactions is ¢* and 41* production for
¥/(Q? large; all the coherent phenomena encounted with photons should be encountered
in that region also).

Fraas and Schildknecht [52], and also Dieterle [53], have given a thorough kinematical
analysis of this process. One of the interesting questions, for example is the ratio

Oj(Q27 v)ep-epe/ G,(sz v)ep»e hadrons
g-dominance predicts it to be similar to that for real photons (~ 159,) independent of Q2
and ».

2. A generalization of this idea has been given by Gribov [54] and by Brodsky and
Pumplin {55] in their discussion of electroproduction on nuclei. They generalize g-dominance
to dominance of all vector states coupled to the y. Gribov concludes that ogf/o, on nuclei
should increase with Q2 (for large Q%) independently of the value of o5/, on the nucleon,
provided »/(Q? is so large that the coherence length exceeds the hadron mean-free path in
nuclear matter. This will be an interesting point for future very high-energy muon experi-
ments.

3. Abarbanel, Goldberger and Treiman [56] argued that Pomeranchuk-exchange should
dominate the virtual Compton amplitude when (% gets large because cos 6, > 1 throug-
hout the deep inelastic region. Harari [57] gives a nice argument based on finite-energy
sum rules. He argues that the coupling of virtual photon to non-vacuum trajectories (such
as A2) should have the same Q2%-dependence as the form-factors of the resonances, because
the finite-energy sum rules connect them. Because the resonance-form-factors vanish rap-
idly with Q% so also will all trajectories except the Pomeranchuk frajectory, which is not
connected to the resonances.

The experimental distinction between parton and diffraction models is very simple;
in diffraction models everything is approximately the same:

Wap(v, Q) m W, (v, Q°) o~ op
(0s/07), = R,(Q% %) = R, (Q% 7). (4.10)
For neutrinos
W Q) =W, Q) (=12
a1(0% 9) = 0p(Q% 4); of~oig, ~ o, ~agg,. (4.11)
In parton-models one expects everything different, sufficiently different that sum-rules
such as (3.13) can be satisfied. The differences are typically 209, or larger. The next round

of experiments with e, u, and » beams should be able to distinguish between the two classes
of models.
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5. Quantum electrodynamics of infinite momentum

High-energy quantum electrodynamic scattering processes have been recently shown
[58], [59] to possess many simple features, as discussed by Professor Czyz. We shall here
reproduce them by an infinite-momentum formalism developed by John Kogut and Davison
Soper at Stanford [60], [61]. Much of this — and probably much more — we believe also
exists in Feynman’s notebooks.

The basic idea is to construct a limiting formalism for high energy systems (P, — o<)
which is analogous to the formalism for the nonrelativistic electron coupled to the radiation
field. A key element in doing this is to recognize that just as there is a preferred axis in space-
-time, the t-axis, along which non-relativistic systems propagate, so also in there a preferred
direction in space-time, that line ¢ = z, 2 = y = 0, along which these extreme-relativistic
systems propagate. So the first step lies in a change of variables [62], [63] from
2 = (t, %, ¥,2) to

= (1, %50 (5.1
with

t+z _t—z

T =-—F=, C""‘—‘VE" (52)

We introduce the contravariant four-vector

2, = ({ =% =y, 7) = g% (6.3)
so that
0 0 01
wah = w A = 12—zttt g, = g “'(1) __(1) g (5.4)
1 0 00

Noteworthy is the effect of Lorentz transformations in the z-direction; they are merely
scale-transformations:

T e %, L -e”. (5.5)

Given this change of variables, Kogut and Soper develop a Hamiltonian formalism
in the new variable 7. Because of the simple scaling property (5.5), this leads to a formalism
which is especially convenient in the high-energy limit. The procedure of Kogut and Soper
is twofold. First they take the ordinary Feynman diagrams for quantum electrodynamics,
change variables as above, t-order the amplitudes and obtain rules for ‘“‘old-fashioned”
perturbation-diagrams @ la Heitler. Then they take the equations of motion in the new
variables and construct a canonical field theory which formally reproduces the old-fashioned
rules. Finally an external field is introduced, and the high-energy limit of the S-matrix
is considered. It turns out to be very simple:

S = exp [i [ d2x  o(@ ) )x(,) (5.6)
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where o(x ) is a transverse-charge-density operator and x(&,) is the eikonal phase: the
integral of the potential over 7.

It is hard to believe the formalism which emerges from all this is really equivalent to
ordinary quantum electrodynamics. It looks very different. It may in fact be different. Several
logarithmic pitfalls have been noticed and thas far ignored. We shall here only sketch the
formalism, leaving out many of the details and proofs of equivalence with conventional
quantum electrodynamics.

We start with a very brief description of the free-field theory.

Let
E—p, E+p,
H= £, = = 5.7
% n 2 (5.7)
and
.9
P, = (H,px,pys ) =1 e (5.8)
Then for a free particle
2 2
_ pitm
H = ——21] (5.9)

and already the theory attains a non-relativistic flavor. Dirac theory turns out to be equivalent
to the wave equation

2 2
ia‘s(:‘) — (Pl;;’” )w(x) (5.10)
where
% (v, &y, §) = — % f dt'e(C—C (v, 2y, C') (5.11)
with

+1 >0

. 5.12
-1 <0 6.12)

&) = l
The field p(x) is two-component: only two of the 4 original components are independent
variables. A ““spin up” plane-wave solution corresponds to that spin state which, if boosted
to P, = + oo, has helicity +1/2. Solutions with negative # (and therefore negative H)
are identified with antiparticles as in the usual theory. The particle interpretation of the
field theory follows from postulated anticommutators:

Be—v) @), v (&)} = O,08(x—a). (5.13)

It is interesting to see how the 4-component theory reduces to 2 components. After
rotation of coordinates we still have the equation

.9 .
iyp# a—;’i = my (5.14)
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but the y-matrices are new and have crazy properties:

POp0 = g00 — () = 33 (5.15)
YOSy =2g%0 =2 (5.16)
va =74 (5.17)

It is not hard to see that
Pr— _flz_ y3p0, P = % P0p3 (5.18)

are projection operators, and that
p* = PEy* (5.19)
have two independent degrees of freedom apiece. But g~ does not satisfy an equation of

motion because Y%~ = 0:

Iy~ _ .39y Oy
— a0 3 Y _ 5
0 iy By iy i3 +iyt o T (5.20)
Thus at any 7, ¥~ can be expressed in terms of y*, which in turn is easily shown to satisfy
(5.10), with an appropriate representation for the y*.

The free electromagnetic field satisfies

. dAi(x) Py .
12 -—ET!,'- = é‘;?'— A;(x)- (5-2].)
The Hamiltonian turns out to be
2
1
. E 3, 4. 2 1.
H = 5 [d x A(x) V2 A (x) (5.22)

=1 "

while the commutation-relations are exotic:

=), 4] = 5 )

- — é S(r—") 0% —x' Ve(E— ). (5.23)
The commutator leads to the correct equation of motion
2%
[H, Ai(x)] = % Ay(%). (5.24)

Normalized plane wave solutions are, for positive helicity,

p(x) = ((1)) e x ((1)) c—iHi—int+ip) .z

A, (x) = V— V—

(1, d)e—? = (5.25)
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The reader may understandably be unconvinced thy all this, but these results were actually
constructed from Lagrangian formalism, in the new coordinates, by standard techuniques.
Continuing on to the interacting case we return to the Dirac-equation, writing it as

(/. Eq. (5.20))
[, 9] = (m—io - p.1) 5 (m-+ia P L)yl (5.26)
and then introducing the gauge-invariant substitution
P, > P—ed,(x),
[, 9] = edo(@)p(o) + [n—io(p1 —eA )] 3= [m+io(pL—eA DIy, (520
In writting (5.27) we have chosen the gauge

A=A, =0 (5.28)

which clearly leads to an advantage in keeping A5 out of the denominator (27)~t. A, also
turns out, as in conventional electrodynamics, to be a dependent variable. We eliminate
it using Maxwell’s equations

.
2 (?ﬁ’_“_ _ °A') — . (5.29)

dx# |\ In” dxy

Choosing v = 3, we get (recalling 4% = 4, = 0)

2
9 943 9 04 .
97.354';;19—96;55—]3-—1 = epty (5.30)
Therefore
i 9A¢
3 __ - .
4= Ay = — o (e + oz (5.31)
This yields the full Hamiltonian density H
H = - (w“w) (w*w)w-e(w w) — (m A+
2
+ym—ic-py +ties- Ay] 5 [m+zc p—ie- Aly Z A4 (5.32)
i=1
where
1 1 , v ey -
?f(C) =75 dg'iE—¢' A(L)- (5.33)

From this Hamiltonian, the veteran field-theorist will be able to construct rules for old-
-fashioned perturbation diagrams by whatever method pleases him. The vertices are especially
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simple if the helicities of the particles are specified. Denoting positive helicity by R (right-
-handed) and negative helicity by L, we get the table below, corresponding to the diagrams

in Fig. 5
o)
(n, Pl} kﬂi,?¥ IV P Vo
(D:k‘l) ET) ’V
P e e
Photon emission “Coulomb force” "Nontocal seaguti”
Fig. 5
. p* gt
photon-emission R->R+R: H == (kl A ) (5.34)
(e = e+y) V2v v i
e (kj-€ pj-e*
R-oR+L: H=_— |-+ = _FL
V2 ( » P (5.35)
RolLtl:fg—=Sim(1 1
R—>L+L: H =0 (5.37)
2
“Coulomb force” H = F (5.38)
(e+e — e+e) (no helicity flip at either vertex)
““Nonlocal seagull”
1 et
H = -—
S Vsw 27 (5.39)

(no helicity flip for either electron or photon).
With these rules go quite conventional rules for d-functions and phase-space factors:

dzpld’)? dzk_l_d‘)’

a) (2m)3 'm(zn)a for final-particle phase space

1
by ———— for each intermediate state
) Hi—H,+ie
c)  (27)363%(Zp;) for momentum conservation at vertices

d) Minus signs from exchange, etc., as in conventional theory.

With these rules, Feynman diagrams can be reconstructed. Subtle things happen in
closed loops, e.g. self-energies or wave-function renormalization. The renormalization program
in this formalism — as in the non-relativistic case — is a mess and this kind of fundamental
problem appears no better, and perhaps worse, in this way of looking at electrodynamics.
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We now turn to the scattering problem. Returaing to (5.27) we include also an external
field o, (x) and find the Hamiltonian

H+V = e (pty) + — (w w) (w*w)+e(w+w) — [m (A +s )] +

; 1 )
+ yHm—io(p,—e A —est]] ety [mtio: (pr—ed)—est))] +

2
L1
1y Z A A.. (5.40)

i=1

To continue, we examine the scattering-operator
S=géldwre (5.41)

where J refers to 7-ordering and the operators ia ¥” are interaction-picture (of, = 0)
operators. We now consider, S between given states (fyf and |iy) and study the effect of
boosting those states to infinite momentum in the z-direction; this is accomplished by the

Loretz-boost operator ¢™%:. Kogut and Soper construct K from the Noether theorem; the

result is simple:

K, = f deltp e ¢+Z(9A')} (5.42)

The (interaction-picture) fields and Hamiltonian transform simply under boosts:
eimK‘He-in’ = e~ "H

ein,A (T, w-L’ C)e—m)Ka . A-L(e_a"[', wL, e‘”C)

e“Soy(z, @ |, Oe K = Py(e™ 1, &, €*0). (5.43)
Thus letting
=T
[0 = e~ Ks) iy (5.44)

we study the limit of S as @ — oo It is
S=F expi [ dxc' Koy () e 19K, (5.45)

Changing variables to {' = ¢“{, implying # = ¢”%’, we find that the term that dominates all
others in (5.40), by a power of e, is the & (y+yp) term; therefore

ISl = {fo | T expie™™ f dvd{'d®s j{esl o, @, €™ L") X
xe“0(e” "7, @, {')+ O(1)}iy). (5.46)
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In the limit w -» oo, all field operators g are evaluated at ¥ = 0, so that the 7-ordering is
irrelevant, This can be checked by expanding out the exponential in a power series and

examining each term. Thus

(FISIEY =2 (Sfol exp i [ g0, (@), )lip) (5.47)
where
04(@y) = [ o021, 0) (e=v"y) (5.48)
and
xwy) = f drt o7, %, 0) (5.49)

is the eikonal phase.

The formn (5.47) has a direct interpretation in terms of partons. Suppose |iy) is expanded
in a series of terms composed of a normal product of operators y, y+, A’, evaluated at 7 = 0,
acting on the vacuum state. Those operators are the parton creation and destruction operators:
the partons are the bare quanta; the eigenstates of H. The coefficient functions for the
various terms are the wave functions for that particular configuration of partons. The action
of S on a configuration is simply to

1) Leave the number and kind of constituent partons unchanged.

2) Leave the longitudinal momentum of each parton unchanged.

3) Multiply the wave function by a factor ¢'Z(®X&L) | yhere &;, is the coordinate
of the i** charged electron, the (4) is for particle and (—) for antiparticle.

This is just the model discussed by Czyz [65]. Here the profile-function can be compu-
ted, order by order in perturbation-theory, using the rules (5.34)—(5.39) we have constructed.
Only the initial and final parton wave-functions are needed; the rest of the dynamics is
simple and given by (5.47).

We believe the method can be generalized to 2-body scattering, with the answer

S — exp ie? [ d?x,d% o,(x,)D(x J_——aal)gz(wl) (5.50)
where 0,(® ) is the charge-density operator for the ‘‘right movers”
oo
o)) = [ dto(0, ) (5.51)
and
00
oy®,) = [ dro(z, 2, 0) (5.52)

is the charge-density operator for “‘left-movers™, with g, and g, acting only on the hopefully
separate Hilbert spaces of partons within the right and left-movers respectively. D is then
the “‘transverse” Coulomb-field

dz equ__ =N
D(x,)) = (zg)t = (5.53)
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complete with its infrared divergence. However, although the functional method of Abarbanel
and Itzykson [66] applies well to this case, we have not yet convinced ourselves that (5.50)
properly reproduces the Feynman diagrams.

As an example of how the formalism works, we consider forward Delbruck scattering [67]
of a virtual photon as shown in Fig. 6. The structure of the amplitude is

Z) (yr|H' E%ﬂ {exp ifdsz_Q(x_L)X(xJ.)_l} W““—giﬂ H'ly:). (5.54)
ey

The matrix element H’ for this configuration of helicities is obtained from (5.34). The
energy denominators are of the form

2 | o2 2 1 m2 —Q? 3 +m? 2
itm? | g@tm® (0 _ (@i+md O (5.55)

AH = 2y 2(v—1) 2v  2q(v—m) 20’

Unity is subtracted from the eikonal factor in order to eliminate a disconnected contribu-
tion. After all d-functions are removed one finds for T the expression

po i [ dgudn et -qy [@rmd Q7T
“ 2 ) @2 n L20—m T 2

._d2p_l 2. 79 . .
Xf @2 f dPy d*xyy exp gL —P1) - @1y —®ay) {exp ilx(ny) — 2@l - 13X

(pAL+m?) _o_zre-m
[277(v~17) 2v n (5.56)

It is most tran‘?‘parem to go into coordinate-space by performing the g | and p ) integrations
first. Introducing the longitudinal fraction ¥ of the positron by the equation

7 =»1l-y) (5.57)

one easily finds

1
T = %fdﬁ'}'zfd2x1d2x21€' VlKo(}/mz+Q2}’(1—}’)lml—5ﬂzl)lzx
0

X {exp i[x{x;) — x(x5)]—1}. (5.58)
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The wave function of the pair in the photon is given by the factor € PK,. Notice that
because Ky(z) falls off exponentially for large z, the important transverse separations of the
pair are, for large Q% given by

1

ey —aey| < W——ﬁ (5.59)

Only for y near zero or unity is the transverse separation of order m~1. If we presume that
these values of y are not too important, we can make an additional simplification by writiag

1 1
Re {exp i[x(@:) —1(@x)] —~ L~ — o (@0 @) - Pr(@)P>— - [@ 2PV (5.60)

an approximation sufficient for computing Im 7" at high Q% Then we get

1
—Im T'= 5 f dyy? f d2x e P Ko (VmP+ Q5 (1) [ )12 f 27y (b)|2.
5 (5.61)

With our normalization, Im T'is proportional to lim g, (v) for real photons, and to lim 07.(Q?, ¥)

00 Y00

for virtual photons. If for large (0% one can neglect m relative to VQZ ¥(1—y), then one obtains
(by dimensional analysis) o4~ »62—, consistent with the scaling found in hadron electro-

production. This however does not apply, because for small z, Ky(z) ~ log z. Thus pKy~
~[y(1—»)]7Y2 and the integral in (5.61) diverges logarithmically at y = 1. Consequently
as [68] Q% -

1 Q?
? IOg

However, when one computes ¢g (which comes from the ““Coulomb” photons) the wave

function is K, not € PK, and the endpoints of the y-integration are protected. In that
case

or~ (5.62)

m2’

s~ -é.é (5.63)

consistent with the scaling property. The result (5.59) suggests that virtual photons are
“small”, of order (Q%)~Y2 wide. This is compatible with Toffe’s arguments [39], and may
have important implications for the properties of secondary hadrons produced by virtual-
-photon or virtual- % collisions (for which the same considerations hold). It may also mean
that the diffraction-pattern for ¢° electroproduction may broaden [68] as (% increases as
a consequence of the smaller net impact parameter necessary to initiate the process.
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