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The main object of these lectures will be to focus attention on some of the many uses of
heavy atomic nuclei in high energy particle physics. As we shall see the physics of production
and scattering of high energy particles on nuclei and on nucleons can be profitably investigated
together and we shall do so.

A partial list of the information one can get from studying high energy reactions in nuclei
includes

1. The determination of unstable particle cross-sections and scattering amplitudes.

2. Information on coupling constants e. g. the vector dominance coupling constants ¥y
and possibly couplings between unstable particle €. 8. &u,gs Pomeron-

3. Information on how asymptotia is approached in elastic scattering of K-mesons from
nucleons (using coherent regeneration).

4. Information on hadron-hadron diffraction mechanisms e. g. does double pomeron
exchange have meaning?

5. An answer to the question: Is vector dominance a good approximation over large ranges
of “‘photon mass”.

6. K? electric form factor through the interference of regeneration of K% on atomic elec-
trons with coherent regeneration from nuclei.

7. The lifetimes of 7%, 9, #’, ... through Coulomb photoproduction in the field of a heavy
nucleus.

8. Off diagonal couplings of hadrons with photons, e. g. NN*y, KK*y through Coulomb
production of the unstable hadrons.

9. Information on the dynamics of weak interactions, e.. g. the deduction of neutrino-
-nucleon cross-sections from meutrino interaction with a block of iron.

10. A big nucleus may be useful for copious production of particles through cascade pro-
cesses.

We will concentrate in these lectures on the calculation of some of these processes in nuclei
and also to some extent on the phenomenology of diffraction on hadrons. The treatment will
involve a rather physical approach with minimal emphasis on derivations.

Coherent and incoherent

We begin with a discussion of elastic and inelastic scattering of high energy hadrons
by heavy nuclei treated in first Born approximation. We assume some effective spin and iso-
spin independent interaction potential »(—7,) between the incident particle and target
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particle i, whose position vectors are r and r; respectively. Then the matrix element for
) - . o .

scattering of the hadron at momentum transfer g, the initial and final nuclear states being

11, 1F) respectively, is given by

i K | v

Fef@) = (Fi [ 3 oF—r)dnily = v(@) (F| Y] #1741 ()

where o(g) = f e";'?v(;)d‘*r is the corresponding two body scattering amplitude,

We assume that we are at high enough energies {2 1 GeV) so that the nuclear states of
interest, [F'), are effectively degenerate with the target ground state |I').

We now wish to sum over all the final nuclear states (assumed degenerate) including
two body correlations in the nuclear wave function. We for the moment ignore the spin
and iso-spin dependence of the correlations. We define the nucleon density g(r) and two body
correlation function g(ry, ry) through

o(r) = [drdry..digluy(Fy, Ty o 12 @)
o(Re(h) [L+¢(7y, 7)) = [ drydry ... digfuy(7y, Ty oo )2 3)

We have than

Z | FFIP = 11)(_(})12 <II Z (,iq~(r.;—rj)11>
F 5

= (@A +AA-Y) [ o(7) 0(F) (148G, T)le® Frdrdor,)
= [(q) T A% F(9) |2+ A(L— [F(g) )+ C(9)] (4)
where F(@) = [ o(7)¢'€"7d% is the single particle nuclear form factor and the two body
correlation form factor
C@) = AA—1) [ o(7o(Fg(y, 7a) €% O dorddr, . 5)

The differential cross-section given by (4) corresponds to elastic scattering and inelastic
scattering to all excited target states including those that are particle unstable. The elastic
scattering cross-section

dotE)
dQ

= ANo(g)]* IF(@)? ()

is the square of the coherent sum of scattering amplitudes off of each nucleon. It has an
angular distribution characteristic of the size of the target nucleus falling off in a range ¢ ~
~ 1/R i cens- The quantity

doh - - (7
"&U@’“ = Al(@)2[1—|F(g)i% @

corresponds to inelasiic scattering to all nuclear states. Once |F(g)|? falls off to near zero
this expression corresponds to an incoherent sum of elastic scatterings from each target
nucleon. The remaining term in (4) is a correction due to nuclear correlations and has a range
in g ~ 1/R,,,,, where the correlation length R, is of the order of 1 fermi. At zero momen-
tum transfer we note that the inelastic scattering contributions to (4) vanish in first Born
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approximation due to orthogonality of the nucleon states. Sketched roughly the coherent
and incoherent contributions to (4} look as follow:

oo 98
9 aq? A%lvioi?
coherent
Alvio))?
~L incoherent
/

q2

The coherent and incoherent features of high energy scattering (or production) of
particles by nuclei are seen clearly already in first Born approximation. We now turn to the
all important corrections due to the damping of the incident and outgoing particles by the
target nucleons other than that on which the specific process of interest, whether scattering
or production, occurs.

A classical treatment

One can get a good physical picture as well as results which stand up under more rigor-
ous treatment with a completely classical picture, tracing rays through a medium. As an
cxample [1] consider the incoherent production of particle 2 by a particle I in a one-step
process. Let the density of the nucleus be _«49(5, z) where (g, z) = (b, ¢, z) are cylindrical
coordinates, let ¢; and ¢, be the total cross-section of the incident and outgoing particle
and let f{¢?) be the two body amplitude for the specific production process, assumed inde-
pendent of spin and iso-spin for simplicity. Than the produced intensity of particle 2, is
given by

oo +oo —~ A f oth, 2')dz’ o . 0; 9<g, 2y dz"
Nl (g1 = [d? [ dze - | Fg)2A0(b, e ®)
Therefore
Neg = 17\7(0'1, 0'2) = ._1._, j (Z2b[e—alT(—5)_C—a,T(l;3] (9)
Op—0y

T(b)=A TZ(E, 2)dz (9a)
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in the limit when 6,—>0, = ¢ we get
N(o, 0) = f T(b)e™T®qzp, (10)
The quantity T(b) as a function of b has roughly the same shape as o(7) as a function
of r, assunming spherically symmetric distributions in which case for appreciable values of o
(> 30 mb) the integrand of (10) is surface peaked. Incoherent scattering or production is
sensitive to the form of the nuclear surface density [2]. There are corrections to (9) due to
elastic scattering before and after production [2, 3]. We will return to this question later.

Similarly by considering amplitudes rather than intensities one can produce expressions
for coherent processes [3] which are equally valid.

Glauber theory: Eikonal methods

The Glauber theory [2] consists essentially of a generalization of (4), allowing for distor-
tion of the ingoing and outgoing particle waves, this distortion or damping being expressed
in terms of two body scattering amplitudes. Since you will have heard from others in this
summer school concerning this treatment of high energy scattering by nuclei, we will content
ourselves here with a description of the results we need. In elastic scattering from a heavy
nucleus, neglecting correlations and spin and iso-spin dependence one gets

Fiuli) = & f o B{1— ¢mori=ie) T g2y (1)

where « is the ratio of the real to the imaginary part of the forward scattering amplitude
of the incident particle on a nucleon. Here T(b) should be considered as the effective nuclear
density thickness function obtained from convoluting the nuclear density with the range of
the two body force.

The connection with the 1°* Born approximation can be seen by expanding in powers
of . One finds then

Fi(q) = j];% (x+1) [Pi;'FT(g)dzb 1+ 0(0?) (12)

= fa(0)4F(g) +O(a?). (12a)
This result can be obtained from an optical model {2] employing a Klein-Gordon type

wave equation, solved in eikonal approximation. The optical model is
(V2+k2—mPp = Uy (13)
where
U = —4xAf(0) o(7).

For reactions this can be generalized to include any number of channels coupled to-
gether, [4] as follows. We write the coupled wave equations

(V2 +k2—md)y, = }{; Uz (14)

U = —4aAfO)0(7), K = k—m?. (14a)
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Here y, describes the scattering or produced wave corresponding to particle @, f,,(0)
is the amplitude for producing particle # on a nucleon with incident particle « at zero mo-
mentum transfer. We at this point assume spin and iso-spin independence again. These
coupled equations automatically include longitudinal momentum transfer effects due to
mass differences of the coupled channel particles, as well as multi-step processes to all
orders.

The scattered or produced waves are strongly forward peaked. We therefore first solve
the equations (14) as one dimensional wave equations in the incident direction. Neglecting
the weak backward reflected wave in the integral representation of the one dimensional
approximation to (14),

— xkaz

"/’m(g, z) =

zkaz ~ . ,
wppds + e T f eta® Z Upppdz”  (15)
p

eads to a first order diﬁ'eremial equation for gac(b, z) = e ety
d > 1 N T
7.2 = 5= Y Uua(b, 03, ) (16)
8

and an elastic scattering or coherent production matrix element (the angular deflection is
“provided” by the matrix element), the incident channel being I,

1 N giing
F(ﬂ—,m [6 *a'r Z Uapyp

8
The coherent differential cross-sections are then given by

it d?b[po(b, 00)—8gr].  (17)

(¢}
do, = |FYp,
dn
Longitudinal momentum transfer effects are contained implicitly in %(Z, o¢). One has in-
cluded here any number of back and forth transitions among particles which can be con-
nected coherently.

(18)

Incoherent production, corresponding in multiple scattering theory to closure, that is to
summing over all final nuclear states, can be treated by dealing with intensities of waves
rather than amplitudes. The answer for the intensity T (5 z) in any channel a is

I,(6,2) = Ao(b, 7) | ) YP B, 2) fr A PY B, —2) 2 19)

o x”’

where w;")(g, z) is the wave amplitude in channel « for an incident beam in channel y.
This allows for any number of coherent steps (no nuclear excitation)but only one incoher-
ent step and hence is not valid for ¢7%¢" & 1 where @ is the typical range of the
two body amplitudes f,... Again we shall see that this expression must be corrected for
correlations at small momentum transfers. The incoherent cross-section, bearing in mind
the above restrictions, is then

(D -
%’D— - f 1.5, 2)d?bdz. (20)
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The effect of nuclear correlations

In order to calculate the effect of nuclear correlations we go back to Glauber theory for
elastic or inelastic scattering. The scattering amplitude is given by [2]

A

- 'k e o s o > -
Frilg) = _;—;Kf(;lq-bu}“:(rl...rA)lll(fl-“rA) {IH I I [1"»F(b——sj)]}dzbdrl...du 21y
2: ey
where the profile {unction
r®) = [ fig® e 52 (22)

F(q®) being the amplitude for scattering of the incident hadron by a target nucleon. For
F =1, 1. e. elastic scattering, we get, assuming no correlations in the nuclear wave function,
(Fri(g) =f(0)N(g; 0, Lo") (23)

o I i ,
N{g; 0, 40") = — | ¢ 4d2h][l—e3T®)] (24)
G
where ¢’ = o(1—ia). Using closure and assuming that only one inelastic step is important

we get [5]

do . o Jyar* INI2 . AT 1 AT /T nie
- zf(O)lz{:A’(q; 0.1 0)2 Ny(05 0) — o= INy@s 3012 +
2 Nias Lo \N*(o 1 95
+ i Re [No(g; 16 ¥N*(q5 0, $ 0)] (25)
where
Nl o) = iy | T HoT () meordiaz, (26)

Letting 6 — 0 this reduces to (4) when C(g) = 0. All three terms on the right side of (25)
fall off in a range of ¢ ~ /R, qeys €xcept the familiar incoherent term | f{0){2 Ny{(0; o).

Introducing a wave function with two body correlations leads, in a straightforward
but tedious fashion to an elastic scattering cross-section [5]

dat®

= [ FOOVEIAT(G: 0.1 5')12 7
where M(7; 0.1 ¢') is obtuined from N(g; 0, 1 ¢') by the replacement of
T() — Tr(b) = T(h)—EQ(b)o (28)
where
-y 717® -+
Q(b) = A [ o¥(b, 2)dz (29)
-~
and the correlation length
1T

Uryp

167a f e¥Hag(b, z)d%bdz. (30)
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To get (28) we have assumed a gaussian for the two body amplitude, f(¢?) = f(0) e*¢ and
have taken g(-r.l, 7o) =~ g(?lv——;z) which cannot be exact but should be all right for the short
range correlations. The 1[4 corrections to the coherent cross-section have corrections sim-
ilar in character but we do not discuss them further here as these are relatively small
terms where they contribute at all.

In good approximation the tesult {27) is equivalent to using an uncorrelated wave
function in which we write

Fu(g) = f(0)M(g; 0, o) =/ B(0)N(q; 0, } o®) (31
where
. otB) i
JEO) = — f(0), o) = o[l —En(z o)o], (32)
0 = [ e T®Q@BN] [ o TOTE)dz0. (33)

We can therefore use an effective optical model for diffractive processes with potentials
Uy = —=17§/’;‘§)(0) AQ(E, z). This is useful in production channels as well as for elastic
scattering, ¢. g. pholoproduction of vector mesons at finite energies. A reasonable value for
£is —0.3 to —0.4 fermi. The biggest differences between ¢/ and ¢ are for the heaviest
nuclei. In Pb we find the following values

o(mb) 250 300 40.0
oB(mb) 273 33.0 424

Correlation effects then are not large and at the 109, level perhaps we have done well enough
here.
The effect on incoherent cross-sections is as follows, We find (5]

dolD . -
O = f@)*Nea(o, &) 1+ () C(G)] (34)
where
Nglo. §) = [ d[T(F) —4£oQ(B)] ¢=oTn (35)
and

6@ = [a(F) o 7. (36)

Since G(g) ix generally negative at small 2 because of nucleon-nucleon repulsion and the
Pauli principle the incoherent cross-section generally decreases as we approach the forward
direction. We note that unlike in 1% Born approximation the incoherent cross-section need
not vanish in the forward direction, because of multiple scattering effects.

We return now to equation (32). The correlation length is generally negative because of
short range repulsion between nucleons. It follows that ¢‘® > ¢. Physically this can be
understood as follows. The repulsion decreases the shadow cast by each nucleon, as it keeps
the nucleons further apart than if they were uncorrelated, Hence the effective cross-section
of each nucleon is larger.
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Applications
Production in the infinite energy limit

In the infinite energy limit the longitudinal momentum transfer q; ~ (m3—m3)/2p;,.
vanishes. Here m; and m, are the masses of the incident and produced particles respectively.
For simplicity we consider several processes in this limit. We will then come back to the
corresponding processes at finite energy.

We consider first photoproduction of vector mesons (e.g. the p®-meson) as a coherent
one-step process. Tracing the eikonal ray for any impact vector b leads to a photoproduced
amplitude

[ £0)A0(5 2)dze T4E €& =% 37)

Here o is the vector meson nucleon total cross-section. To get the angular distribution we
integrate the Fourier distribution over all impact parameters, obtaining a production
amplitude

. - P - —ap2a] by 2 )z’
FAG) = fo(0) [ d2eiT3 [ dzAo(B, 7) e J e d (38)
—00

= Ful0) = f o i1 —eonT®)dz. (39)

We have assumed a g%nucleon scattering amplitude which is purely imaginary here. One
notes that the amplitude for coherent photoproduction of a particle is proportional to the
amplitude for elastic scattering of this particle [3]. This is an example of the optical effect
known as Babinet’s principle [6]. Babinet’s principle says that diffraction by an aperture 4
in an opaque screen S is the same as diffraction when A is opaque and S transparent. In
photoproduction the mesons emanate from the nucleus which plays the role of the aperture A4.
In elastic g-scattering the nucleus acts as the opaque obstacle. Using similar arguments one
finds, again neglecting longitudinal momentum transfer effects, the coherent production
amplitude for producing particle 2, with a hadron I incident in a one step process

F2@) = fm(O) f [e~ 10T ®) — o~ 10:TE)) i - bg2p (40)

where oy, and o, are the total cross-sections for particle 1 and 2 respectively on a nucleon,
scattering amplitudes assumed to be purely imaginary. It is of course true that (39) and (40)
follow from the coupled channel equations (14) with the assumptions above.

In the case when oy = 0, = 0 equation (40) reduces to

F@) = £s(0) [ TB)e™ 1T®ci 5g2p, (41)

Again as in incoherent production the integral is surface peaked (take g = 0) as a func-
tion of b, but less so, because of the factor 1/2 multiplying ¢ in the exponent. Combined
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studies of coherent and incoherent production are capable of producing information on the
details of radial nuclear distributions.

We next consider two step processes at infinite energy, or to be more precise, particles
which are produced as a result of strong contributions from both one and two step.processes.
Examples are (i) elastic scattering of photons [6, 7], (i1) elastic scattering of neutrinos [8]
and (iif) possibly many totally hadronic processes [4]. We consider in detail here elastic
scattering of photons. Through the optical theorem one may obtain total photon cross-
-sections from the imaginary part of the forward scattering amplitude.

The one step process in forward photon scattering is simply A times the forward
amplitude on a nucleon

FO0) = Af,(0). 42)

The two step process, assuming dominance by one intermediate vector meson ¥, consists
of photoproducing the vector meson, ¥V, on one nucleon followed by radiative capture of V
on a second nucleon as below

¥ v ¥
A VN N e . YA VARV
Z' Z"
We have than

0.

27t T ’ —$od f' (—I;,z)dz Iz I7;
FRO) = 5~ f dzb f Ao(b, ) fy(0)dz f e T Ao, ) frO)dz” (43)

2’

— 270 130)fif0) {4 —NO, 3 ) (84

where
N©, }0) = [ d2b[l—e— ¥T®), (44a)
In the above ¢ is the F-nucleon total cross-section and we have assumed that the V-nucleon

forward scattering amplitude is purely imaginary.
If we now assume vector dominance (by a single meson ¥) on a nucleon then

f yV(O)f Vy(o) = f 'yy(o)f VV(O) (4‘5)
and since f,/(0) = %‘t i we have
F(0) = —fOI4—N(©, } o] (46)

s0 that
F,(0) = FO(0) +F2(0) = £,,(0) [ d2b[1—e™ 7] &7)
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which is proportional to the amplitude for elastic scattering of the vector meson V from
a nucleus. Vector dominance on a nucleon implies vector dominance on a nucleus.

On the other hand, at low energies (~1 GeV), longitudinal momentum transfer effects
supress the two step coherence and the photon ‘“‘behaves” as a photon might be expected to.
The scattering amplitude is given by (42).

As an example of hadronic induced single and two step processes we consider, for
reasons which will become clearer below, coherent production of particles 4, (1.06 GeV)
and A; (1.65 GeV) assuming a coupled 7, A4;, A5 system and neglecting all other couplings
[4]. Assuming that these three particles have the same cross-section on a nucleon, g, (which
follows from a simple quark model) we find by methods similar to the above that the produc-
tion amplitude for 4, mesons is

P50 =fu® | N (05 ) — GRG0 5) ]

wfos)- ) [rf e

We have ignored higher order back and forth transitions between mesons here.

Experiments of Morrison et al. [9]yield f,,(0)/f,4,(0) = 0.35, f, 4.(0)/f,(0) =0.27
at 8GeV/c. Since these processes are diffractive, we can expect little energy dependence
of these ratios. In order to calculate A; production in this model we also need

S4,4,0)[f4,4,0)-

The coefficient of N, in (48) which we call R; is then a parameter in the calculation. One
can expect that R, is not bigger than 0.1. Therefore 4, production is expected to go predomi-
nantly as a one step process in this model. It is to be noted with respect to our conclusions

for A; production that at finite energies the two step prbeess for A4, production through

N (A,512,5/2)

or 6«26 md
so—f

il

5 11
00 20 650 100 200 A

Fig. 1. N, (A40) m= 1, 2 as a function of 4 for 6= 26 mb. The nuclear density is taken to be o{r)
=0o/(1+exp [(r—c)/a]) with a = 0.545 fm and ¢= 1.14 A" fm

the A; is further inhibited by longitudinal momentum transfer effects due to the higher
mass of the 4;. The same could be true for possible couplings to other higher mass

bosons. It is unlikely that there is any important coherent coupling to mass states lower
than the A4,.
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In A, production we are in a more complicated situation. The labels 4, and 4; must
be interchanged in (48) and this makes the coefficient of N, which we call Ry~unity. The
fact that one and two step processes are comparable (note in Fig. 1 that N, and N, are not
too different in value) means that in detailed calculations we must know or be able to de-
termine Ry as well as o}, and o, In principle we should be able to determine all of
these since we have the whole periodic table to work with as targets. There is however the
real possibility that other bosons contribute as intermediate states. Clearly the sign of R,
drastically affects the production rate. This sign could be negative according to some models
of diffractive production on nucleons [10]. There is then, interesting dynamical information
possibly available from diffractive production in nuclei.

Coherent and incoherent production at finite energy

We will discuss results of measurements and calculations of the following processes
in nuclei.

Coherent photoproduction of vector mesons.

Incoherent photoproduction of vector mesons.

Total photon cross-sections.

Photoproduction of charged pions.

Coherent photoproduction of the g, meson

Because of the weak strength of the electromagnetic coupling constant and since the
vector mesons ¢ and w cannot be connected to the p? by pomeron exchange, coherent photo-
production of g, mesons may reasonably be expected to be describable as a one step process.

The amplitude at finite energies is

Fyof0) = f£,40)A [ 6" Fiuz (5, 2o~ 07120 gapg, (50)

neglecting nuclear correlations for the moment.

Careful measurement of diffractive production of g®-mesons is a crucial experiment
for vector dominance. Using the results of measurements across the periodic table one
can determine

1. The nuclear radius from the diffractive slope.

2. The cross-section g} from the relative 4 dependence in medium to heavy nuclei.

3. The coupling constant y, from the absolute photoproduction cross-section using
doy(0) _ 1 & ( é

S =

-1
dq ~ 16 in Z;;) o1 +a?) QY

which is the result of vector dominance.

The most comprehensive series of measurements are those of Ting et al. [11] ot DESY.
They lead to nuclear radius R = 1.12 A1 (see Fig. 2) assuming a Woods Szxon form
with surface thickness € = 0.545 fm; y?/ém = 0.5740.10 wnd oy, = 26.7L2 mb. The

ratio of forward real to imaginary scattering amplitude is t:ken to be « = —0.2 and correla-
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tion effects are included using & = —0.3 fm. The eflective photon energy was 6.2 GeV.
It is to be noted that the broad width of the rho meson presents some problems which you
will have heard about in other lectures here.

The calculation of the total cross-section of photons is shown in Fig. 3 along with
measured values. One sees here the increasing importance of two step process as energy

0 |+
g: JrA—=— 9+A
7..
~ °F 2
E ST R=1124"
Qe o4 \
S J
2
o]
[+3 2:
cd Au
Be Ag |In w|Pb
e a e e
70 20 30 40 5060 80 100 200 300 A

Fig. 2. Nuclear radii determined from photoproduction of rho mesons

2
Alyg
70
0.8
g= 4
06} Experiment oo 178 Adem
;EI=76.4GEV TTTg= g
¢ E, = 13.6 GeV 6 Gey 1.12A%fm
® £, = 84 6ev
241 ¢ Cu .0
] ’ T T T T f T .’
10 50 00 200 A

Fig. 3. Total photon cress-section as a function of A divided by 4 times the total photon cross-section on hydrogen.
a is the nuclear radius

increases. It is not clear that there is complete agreement between theory and experiment.
We have taken [12] the vector mesons g% w and ¢ into account with coupling constants
from storage ring experiments in which the vector mesons are on the mass shell. In photon
scattering, of course, it is the photon that is on the mass shell. Further experiments especially
at energies in the range 2-5 GeV would be of interest. The value of other parameters of the
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TABLE I
The parameters for the calculation as functions of the incident photon energy
E [do(yp — e°p)/dt}, o St oy’ from VMDa
(GJV) (fit of exp. data) B = Reflm f (r’:ﬁ) with 924w = 0.5
(b/GeV?) (mb)
3 152 —0.26 27.6
5 124.2 —0.22 25.2
8 113.1 —0.185 25 24.2
16 106.2 -0.135 24 23.65

a Vector-meson dominance.

calculation are given in Table I. They have been calculated using two body photoproduction
data and formula (51).

We have also calculated [12] incoherent production of ¢° and s+ mesons from nuclei
assuming vector dominance. The appropriate diagrams are shown in Fig. 4. The results
are shown in Figs 5 and 6. While the agreement between experiment and theory is not bad
at all it is not clear that the relatively modest energy dependence (due to longitudinal momen-
tum transfer effects, but modified by the energy variation of ¢ and «) of the calculations
is reproduced by the measurements. Again further experiments could be of value.

We will not go into the many possible modifications of vector dominance that could
be invoked to modify the calculated results at this time.

~~st~ coherent process
~~o—= {ncoherent process

Fig. 4. Diagrams for one-step and multi-step photoreaction processes. (a) Incoherent g0 production. () Photon
forward elastic scattering. (¢} Incoherent st photoproduction
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Netf
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Fig. 5. o° photoproduction: Experimental and theoretical values of N,g for several energies as a function of A.
The effect of a change in the nuclear radius from a = 1.12 A's fm to a = 1.18 A" fm is shown for 4 — 208 at
E, = 5GeV

Diffractive processes on protons

Elastic scattering

We will now study models of elastic scattering of hadrons (and photons using vector
dominance) from protons. At high energies we may profitably use the eikonal approximation
[10], [13], [2] to a partial wave expansion of an elastic scattering amplitude. Ignoring spin
considerations we can write

— 2 o
Als, t) = ik /s [ ‘;_7:’ [1— 2o 7 )
do 7T . vy

Here k is the C.M. momentum and g the three momentum transfer.

The physics of the situation determines the eikonal phases &(8). It is of interest of
compare (52) with the Glauber expression for elastic scattering by a heavy nucleus. Here
ik

Fis, ) = 5 f d2b[1—e— Ho0—RTE)] ¢ibd, (54
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-~-~3 8Gey {3
— | 16Gevy

Be C Al Cu Ag Pb
I R

LogZ

do(yA - mtA’)/dt

Fig. 6. The 4 dependence of Zeff = m‘—%—

for four different momentum transfers

There is an intimate connection between the eikonal phase §(b) and the density of nuclear
matter

-

2i6(5) = — 3 o(1—i)T() « (D). (55)

The question arises, if we are to make an analogy between nuclear and nucleon scattering,
what shall we use for the density of hadronic matter.
We will describe three classes of models which have been proposed.

(i) Yang [4]
2ia(5)a7°g(z§, 2)dz (56)

where Q(g, z) is the convoluted density of the two interacting hadrons. These densities
are taken to be the Fourier transforms of electromagnetic form factors.
(i) Chiu and Finkelstein [15]

In this model one adds to the eikonal phase of Yang, eikonal phases corresponding
to the exchange of the Regge pole trajectories on which lie the g% 4,, w, and f. Specifically
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the Regge phase for a given trajectory is taken as

. 7 d? ARe ole\Sy— 2 -
sioall) = [ G [Fremmel ] o 67
(tii) Frautschi and Margolis [10], Barger and Phillips {16], Ter Martirosyan (Gribov [17],
Jacob and Pokorski [10])
Here one assumes that we are at high enough energies that the dominant trajectory, i.e.
the pomeron trajectory, gives the main features of the scattering. The eikonal phase then is
given by an expression of the form of (57) with

'ARegge polc(sv '_qz) = APometon(sﬂ ‘92)'

The model of Yang corresponds to a fixed pole pomeron. It has no energy dependence
and no shrinkage. The angular distribution features diffractive dips which should be seen
if one has an accelerator of high enough energy. The model is meant to represent the infinite
energy limit.

Model (i7) produces energy dependence, shrinkage or anti-shrinkage at finite energies,
depending on the nature of the projectile and again one has a flat pomeron. Total cross-
-sections in the fits of these authors are monotonic decreasing. At high enough energies the
shrinkage or anti-shrinkage will cease.

The recent measurements of total cross-sections and elastic scattering of protons at
small ¢, at Serpukhov [18], [19] as well as photoproduction of ¢ mesons at SLAC and earlier
K+p elastic scattering measurements tend to favour models of type (iit) and we now explore
these in more detail. Specifically we will study the simple model of Frautschi et al. {10], {20].

Qur assumptions in this model in its simplest form are

() We consider only non-spin flip scattering, i.e: we mneglect all spin dependence.

(z7) We assume a straight line trajectory

ap(t) = 1+a't. (58)
(iit) We take a constant residue and have no signature zeros so that
s . «p(t)
Apote(s, 1) = ¢ [—-— e~in/2 ] . (59)
So
Note that signature zeros at ap = —1, —3, —5, ... occur for |t] > 2 (GeV)2 These are

not important, as we shall see, since multiple scattering takes over for |t| <1 (GeV)2.
Then it follows from (57) that

2i6(b) = — —i— e~ badu (60)
ﬂ=1nfg—i—§-,§=—i27ﬂ‘/£a'so. (61)

Using (52) one finds then

kot n-1
A:2ikV§a'§Z%f(— _f;) o (62)
n=1 : d
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The terms with n < 1 correspond to multiple scattering (multiple pomeron exchange) and
exhibit an inverse power of In (s/s¢) behaviour, characteristic of Regge cuts. This can be seen
by writing the contour integral around the cut as

% max
s o\ n—2! (s . %max
[ da(a'—amax)n~2 (;‘; e—m/%) == —"—( ‘u,"‘l) (—s”;' g2 ) e (63)

where
Cpax = L4ta'[n.
This should be compared with the n™ term of (62) which is proportional to
’ 1+ta’in
_i. _li exp (M) = 3'_1 <_s_) (3—-:'::]2):&’]:;. (64)
So W7 n u So

The main features of the multiple scattering amplitude are the following:

1. From the optical theorem

gtot —

A Als, O
EYs (0)

had 1 § ﬂ—l
=87m§ZmRe (_ 7)

Elni
3o

= 8na't}1 — +0(8% ].

(65)

42> 4 g2
So

It follows from this total cross-sections will invariably approach their infinite energy
limit from below. As an example in the case of p—p scattering we estimate, using values
of & and a’ determined from elastic differential cross-sections (§~ 7, a’ ~ 0.8 (GeV)~2,
s = 1 (GeV)?), that ¢**'(c0) o 50 mb. It is to be noted that the effect of lower trajectories
will have to fall away (as inverse powers of s/sy) before the features presented by this model
show themselves clearly. One should then see the slow logarithmic rise to the assymptotic
value 6. (o0).

2. dofdt will continue shrinking until ¢, = O at infinite energy, (see Fig. 7).

3. The ratio @ = Re 4(0)/Im A(0) for the forward amplitude, which is generally
negative at present energies, will cross over and become positive at higher energies. It is
to be expected however that by the time this happens a will be quite small (< 0.1).

4. Elastic scattering amplitudes exhibit a cross-over effect. Given a universal pomeron
slope the total cross-section determines the residue strength £ The larger ¢*°* the larger §
and hence the greater the strength of the double scattering which interferes destructively
with single scattering according to (62). This destructive interference sharpens the slope.
The larger is ¢'*°*(and hence do/dt|,_,) the sharper the slope. Hence we have a cross-
-over effect in angular distributions of processes with different total cross-sections.
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Fig. 7. Proton-proton scattering

5. The square of the multiple scattering series can be summed approximately converting
a sum to an integral and using the method of steepest descent [20]. Roughly speaking, the
net result is the following at all but the smallest ¢ values (> 2 (GeV)?)

|4} < = exp [“ 2]/!0:' In>1n _—é——iJ (66)
So S '

nu
where n is the dominant exchange at any ¢ value given by

_ —ter' In sfsg
n = ]/ Tn FrgefEl ©7)

In detail great care must be taken in evaluating (62) approximately because of the alternate

signs in the series.

We see that the multiple scatiering corrections convert the Gaussian momentum transfer
of the pole term at small ¢ into an exponential dependence 4 oce~¢ V=%, What we have is an
amplitude which is of the character of Orear’s Law {21] but which also shrinks. One can
write an effective form for the multiple scattering trajectory

ey = 1—2[ta’ In~t (s/s) In |&fmpel] . (68)
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Diffractive production

Going back to Glauber theory we can write amplitudes for one step and two step diffrac-
tive production, neglecting longitudinal momentum transfers which are much less important
than on nuclei because of the small size hadrons, in the form

A = s | L8 5 )criamed G (69)
one-step J S if
Py 2 = -
s =5 [ S (8 3(B)eB05 (10)
where, as before, 2:6(b) = —&/u exp [—b%/4a’u] and
o &y B2A
8;(b) = 5 P [—b%/4a’ ).

The fact that 8,(b) has the same b dependence as d(b) follows from the fact that we are
considering diffractive processes having a single non-spin flip amplitude coming from
pomeron exchange. The &; are the residue strengths for each pomeron exchange. i and
j represent the initial and final particles e.g. p and N*(1470), K and K* /5, 7w and 4,. In the
two step process we can go through a number of intermediate states which we label by m.

If a diffractive process occurs dominantly as a one step process the diffractive slope
at small ¢ is, in the pole approximation, the same as that elastic scattering, being determined
in this model by the slope of the pomeron. Actually the slope is slightly larger than in elastic
scattering as the double scattering absorptive correction is twice as strong.

In the two step process the slope at small ¢ is half as big at small ¢ in the pole approxi-
mation.

Thus in this model A; production, which has a slope a ~ 10 (GeV)~2 at 16 GeV would
be taken to be predominantly one step. On the other hand A, production has aslope a ~ 6
(GeV)~2 and would therefore be predominantly two step. Further, equations (69) and (70)
imply a phase difference of near 180° at ¢t = 0 for one and two step processes.

At large t values the multiple scattering series look similar and one again expects
expressions like that given by equation (66). A universal slope for large ¢ diffractive
production is found in N}, production experiments.

K-regeneration and elastic K-scattering

Consider a beam of K} incident on a nuclear target for the purpose of regenerating K3.
The amplitude for this process is given by

3(KO+ Ko 4|KO—K®) = } (K AK%— } (K| A|K®) = } [F(9)—F(9)] (71)

by conservation of strangeness. Hence using an extension of results obtained in a preceding
section, the regeneration amplitude is given by

F@Q)—F@ = % f [PO—eiP@]eid b2, (72)
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Pl == (;’-‘;— fok ;;ff) 7). (12a)
PH == (—ﬁ—fﬁ x ﬁ) T(F). (12b)

We have assumed equal neutron and proton densities. Here
fo =frl0) = fresn s fp =Fzep0) = fre-u(0)s
o =Froal0) = 1 K+p(0)§ .? » =/zn0) =1 K'p(o)' (73)

All quantities are forward scattering amplitudes. We have assumed charge independence
of two body amplitudes to relate charged to neutral K-meson scattering amplitudes in (73).
Coherent regeneration of K? mesons using a beam of K} mesons incident on a nuclear
target and measuring the time dependence of the sz~ decay mode yields the phase [22]

¢ = arg [FO)—F(0)] + $ 7— s (74)

where

A(KY - ntm)
Py =2arg Ny, Ny = m~

At £k~ 5GeV/c an experiment done with a lead target [22] yields ¢ = —79.4°+8°.

We have calculated arg [F(0) — F(0)] assuming the following for the two body amplitudes
S fo» for fyt the imaginary parts of the amplitudes are calculated from the optical theorem
using measured total cross-sections for K* mesons or protons and neutrons. The real parts
of fxs, have been taken from a dispersion relation calculation of Horn and Yahil [23] which
assumes Regge amplitudes satisfying the Pomeranchuk theorem fitted to existing data.
The trajectories P, g, w, A, and f; (all but P being exchange degenerate) are included.
For fys:,(0), we have taken arg fxs, (0) = arg fx+,(0) since o}, = o}},. The real part
of fx—,(0) is obtained from the relation

Re [ /x-(0)—/k+2(0)] = Im [ fx-,(0) =/ x+4(0)] (75)

which follows from the that only the € = —1 trajectories w and g contribute, if a,(0)
= a,(0) = 1/2. We obtain, using [24] ¢+ = 40° £6°, ¢ = —77° + 6°in good agreement
with experiment.

On the other hand, Horn and Yahil produce another set of amplitudes which satisfy
existing K*—p total cross-section data but violate the Pomeranchuk theorem by about
209,. I will not go into detail on the nature of the assumptions but refer you to reference [23].
The corresponding phase @ in this case we find to be ¢ =~ —100°+6°,

Similar information can be obtained using regeneration on Hydrogen. However, the
experiments have yet to be done. They are more difficult.
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