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AN INVARIANCE PROPERTY OF FIELD THEORIES
By G. S. Hawo
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A new invariance property of tensorial functions of the field variables 4 and their deriva-
tives is presented. This invariance arises from the possibility of replacing the partial derivatives
of Y4 by covariant derivatives with respect to a symmetric second order tensor y,, posessing
properties similar to that of a flat space-time metric tensor. The resulting identities and conser-
vation laws are then discussed. As an example the theory is applied to the Ricci scalar curvature
invariant in General Relativity and the resnlting conservation law turns out to be the Rosen-
Papapetrou identity. In the final section the new method is compared with the more usual Noether
method and the differences are given interpretation.

1. Introduction

A great deal of work has been done on the invariance properties of physical theories,
most of which stemmed from Noether’s theorem [1]. In particular, Bergmann’s work [2]
gave much insight into the nature of the conservation laws and identities found in such
theories. Several years ago, new methods of obtaining conservation laws were developed {3]
inspired mainly by Lipkin’s discovery of the Zilch conservation law [4] in Maxwell’s theory.
We shall here discuss another method of producing conservation laws which does not rely
on Noether’s theorem but on another very natural invariance property of field theories.
Before we can proceed we need a few definitions and consequences thereof. Section two will
be devoted to this end. The general conservation laws will be derived in Section three and
an application of the method to General Relativity will be given in Section four. Section five
will be set aside for discussion.

2. Preliminaries

Consider a general Riemanaian space-time R and let K be a co-ordinate system of R.
Now let A}, be a two-index symmeuric quantity defined at all points of R in the frame K.
Suppose x* are the co-ordinates of a point P € R in the frame K, and let ™ be the co-ordin-
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1 A partial derivative is denoted by a comma, or the usual i Greek indices take the values 0,1,2 3.
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ates of P in another (arbitrary) frame K'. Then we define an analogous quantity y;,,(x")
in K’ by:

., dx= IxP .
Y uwl(x'?) = 507 D Vep («%). 2.1)

Thus we have extended the definition of 7y, by allowing it to transform as a symmetric co-
variant second order tensor. We will then call y,, (" a flat metric2in K, if there exists
a frame K in which yy,,(x"), on transformation from K to K assumes the form 7, == diag
(=1—1—1+1). We will then denote by Ay the set of all ““flat metrics” in the frame K.
The following results are easily derived, being consequences of the above definitions:

A. Let y,,(x"), 7,,(5%) € Ag. Then there exists a frame K such that:

dx= IxF e
% 0w Yap(?) = Yulx?)

where a%, ¥ denote the co-ordinates of K and K respectively. In words, ¥,»(x") can be trans-
formed to a frame K where it assumes the same functional form of &* as V(@) is of «*

B. Let 'ym(xl) €Ay and suppose that under a co-ordinate transformation to a new frame K
it becomes y,,(x"). Then Vila) € Ag.

Let us now consider a field theory with variables ¢, defined on R (here the index A4
denotes any number of tensor indices of any type). Let P5(y, Ya,u Yaum ) be a set of
functions of the y, and their derivatives3. Suppose now that in a definite co-ordinate system
K we select a member y,, of A and denoting the covariant derivative with respect to y,,
by a stroke, we can construct the quantity PB(y, Yaju Yaju ---) Which is formed by directly
replacing ¥, Y, -+ DY Yau Yaju -

Now if under a co-ordinate transformation we allow y,,(x") to transform as a second
order symmetric covariant tensor then we will assume that PP(y, v,4,, ¥4, ---) transforms
as a tensor or weighted tensor. In general, in a given frame K, PB(y, v ., ¥4 ---) Will
depend on the y,,(x") (edg) chosen to construct the “‘stroke” derivative. If howeve. it is
independent of such a choice, we will call P5(y,4 9,4, W4/ ---) “y-invariant”. The follow-
ing results are easily proved:

C.If PP(y, 9,4, ) is a tensor or weighted teasor then in any frame K, PB(yy 4, )
is y-invariant. In particular for any given frame K:

PB(WA'PA,@ ) = PB(TPA'/’A/u -

independently of the y,,(e/) used to construct the “stroke” derivative. Conversely if for
any given frame K the tensor (weighted tensor) PE(y 4 {u ++-) 18 y-invariant then PB(p 4, ")
is a tensor (weighted tensor).

2 No geometrical interpretation is to be given here to the name “flat metric”.

3 Again B denotes any number of any type of index, but no assumption is yet made on the transformation
properties of PB(y 4, va,, V4 uv--)-

4 One can also display connections between quantities PB(y 4y 4,, ...) which are only partially y-invariant
and quantities PB4, 94 ,.-.) which transform covariantly only under certain transformations.
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It should be noted that the results A, B and C rest heavily on the fact that the quantity
¥,» can be transformed to a frame where it takes the form 7,,. Also C depends on the fact
that PB(y,y, , ...) satisfies a homogeneous transformation law and does not depend on the
particular form of such alaw (that is it does not depend on the nature of the block index B).

3. The conservation laws

Let PB(y,y,,...) be a tensor of arbitrary weight. In any given frame K, with co-
-ordinates x* let ym(x’l) and )_}m,(xz) be in Ag. Then by A there exists a frame K with co-
-ordinates x* such that

dxt Jx* —
522 52F V) = Yep(@)- 3.1y
Suppose also that
Vi) =Vl = b () (3-2)

where 4, are first order small quantities. Then we may consider the transformation from
x* to %" to be of the form

x = x*+ &%) (3-3)
where &* are a set of first order small quantities.

Then, (3.1) (3.2) and (3.3) lead, to first order small quantities, to:

= def” —
6)),1,“1 e: V,uv(xl)_y;w(xl) = —yﬂaé‘}i_‘}}vuéa?y-yﬂu,z &~ (3'4)
Further, by C we have in K,
PB(WAwA/M ) = PB("/)AwA//M"') (3.5)

where in (3.5), the single and double strokes refer to covariant derivatives with respect to
ylw(x’l) and y,,(x;) respectively. Then we can write (3.5) in the form:

PB(tpA(xl)WA,u(xl) . ‘ylw(xl)y,uv,w(xl) . ') = PB(V)A(xl)Q/)A,u(xA) i "}_},uv(xz))—}yv,w(xl) . ) (3'6)

and hence we have:

dPB _ oPB
Yy + i O (Y, a)Fee =0 3.7
a,ym Y u aym’l ('}/H ;1) ( )
B _
OFF Oy mw+AZ =0 (3.8)
OV u» ’

where v denotes the Hamiltonian derivative with respect to y,, and where AB¥ denotes
Y v ’

an ordinary divergence term. On substituting (3.4) in (3.8) we obtain an expression of the

form:

E6°+E 8%+ E; 6%, +... = 0. (3.9)
The arbitrariness of €% and its derivatives then gives:

E =0,E,=0,E"+E"=0 ... (3.10)
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The particular conservation law we seek can be derived from (3.10) with much labour.
However, a quicker way to obtain it is to integrate (3.8) over an arbitrary four dimensional
region 2 of R, upon the “‘surface” S of which, &% is supposed to vanish. Then the use of
(3.4), and two simple applications of Gauss’ law yields:

FBy i =2 (FPy,5), =0 (3.11)
where we have use the abbreviation
oPB
BB = — 3.12
Sy (3.12)
In patticular, if P is an invariant density, then (3.11) yields
FPr =0 (3.13)

where the stroke denotes a y,, convariant derivative.
We can now eliminate y,, in (3.11) by setting y,, = 7, thus obtaining®

Fg’" =0, FBw — [FBm) (3.14)

Yuv=1Tuv®

A further class of conservation laws can be constructed by writing (3.6) in the form:

PB4 (M), ... T5,006Y) T8, (5)...) = PP(p g (o). To () TG, ,()...)
where

xw

@ T )_/zzw hy 5 "y
Tse = y? (Yoo Vanp—Vsow) Tho = TG (opio T Vors—Vrow)-

Now it is not difficult to show

OI%, = I'E () — g = A% 84,4+ Bg &4+ CEo, 6"

where
A% = — L[0%0304+ 058505 C5,, = — TG,
o = [— 05080707 — 0%,05,02,05+ 050,0,,071 [ ;.
Then (3.15) can be written in the form:
_ - s PB
FBP8Te 4 45 — 0, FP% = gli-
fia

5 There is an important difference between the conservation laws (3.13) and (3.14) namely that in {3.13)
¥y transforms as a tensor whereas in (3.14) it takes the fixed value v, = 7, in all reference frames. Conserva"
tion laws such as (3.13) are therefore analogous to those found in bimetric relativity [5], [6], [8] whereas those
such as (3.14) take the non-covariant form typical of orthodox General Relativity. We note that we could obtain
other (non-covariant) conservation laws from (3.13), besides (3.14), by selecting a y,, other than y,, = 7,,,
which has the same functional form in all frames and satisfies the flatness condition mentioned earlier. These in
general however would lead to a covariant divergence differential law rather than an ordinary partial differential
law as in (3.14).
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If the divergence term Eﬁj‘ is written out in full, and use made of (3.17), one can obtain
identities similar to those in (3.10), again with much labour. However, we may obtain our
conservation law by integrating (3.20) through an arbitrary four volume £2 upon the “‘sur-
face” S of which &% vanishes. The usual applications of Gauss’ law yield:

FgPo G, —(Fg"B,,) ,+ (Fg " Af) 4, = 0. (3.15)
Then putting y,, = 7,, and defining F,2° = [Fgﬁ"]y#vmnw we find
02, =0, 02 =(FP°AT),=—F5" (3.16)

4. Application to General Relativity

For an example of the above ideas, we will consider the application of (3.13) to General
Relativity theory. In this case, the field variables y, become the metric tensor of the Rie-
mannian space-time g,,. If we now put P? =%, where # is the Ricci invariant curvature
density, we can as b.efore construct the y-invariant quaatity PB(yJA'(pA/“ e )= R85 Baplu Bapius)
and then (3.13) yields:

OR

F’:’ =0 Fw= .
5;/‘,,,

4.1)

In fact we have:

Fo = V¥

e e T S @2
/=2
The conservation law (4.1) has been discussed by Rosen [5] in his bimetric theory of Rela-

tivity. Clearly the analogous conservation law to (3.13) can be obtained from (4.2) by setting
y,uv == 77,4.;-

Also from (4.2) we can construct the conservation law:

Py =0, P*=[/—g(g™n“+8"n"—g" 5" —g" 1), (4-3)

which is the conservation law given by Papapetrou [6].

where y = det (y), g = det (gw), é’” =

g™

5. Discussion

We have seen that from a very natural invariance property of tensorial quantities we
can construct conservaiion laws of arbitrary order. Those arising from (3.13) have the

’
property that the quantities FZ#*, FP are symmetric in u and ». Indeed Papapetrou used
the expression (4.3) to construct a conservation law for angular momentum. The identities

7
in (3.16) have the feature that the quantity 62” is derivable from a “‘superpotential* —~FB4,
which possesses symmetry in the indices », 4, (instead of the usual antisymmetry).
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It is worthwhile to compare our invariance laws with the more usual ones based on
Noether’s theorem. The latter arise in a form dependent on the specific nature of the transfor-
mation law satisfied by PZ and v, under (3.3). If P? is a form invaciant function of 4, and
its derivatives and if P?and ¢, satisfy homogeneous transformation laws for co-ordinate
changes then under (3.3) we have:

PE(p (o), 94, (&) ...) —PP(y(c) 9y ,(a7)...) = M5, PA6% = bPE+PEg*  (5.1)
OPP = PB(y,y ()9 ,4,(x")..) —PB(y ((+Vp 0 (")) (5.2)
V;A(;‘Z) —sz(x”) = Yg;'l’aéa ”» = 5"/’4 = ’;’A(xl)"’%;(xl) = Yg;’/’ af:_"pA,,ug “ (5.3)

where the Y5!, M% are constants dependent on the transformation laws satisfied by v,
and P (that is dependent on the nature of the block indices 4 nad B). Then (5.1), (5.2) and
(5.3) give:

OPB _ 9PB _ 4
So. O%a + O(pa,)+...+P5 er— M5, P & = 0. (5.4)
Ya Y,

If we substitute for dy 4 in (5.4) using (5.3) we obtain an expression analogous to (3.9) from

which the identities are obtained as in (3.10). In practice one normally takes PB to be the

Lagrangian invariant density of the theory®. Now it is clearly seen that the identities (5.4)
B

contain, amongst others, terms dependent on , Y5 and M%,. However our identities

in section three were derived purely on the basis that PP(y,y,4 ,...) satisfied a homogeneous
transformation law and did not depend on the explicit nature of that law (that is on the nature
of the block index B). Also since g, itself satisfied a homogeneous transformation law
(whereas ¢4 94 ,, ... do not) one would suspect that only the functional form of PE ith
respect 10 ¥, W4 , ... would be important in assuring that P? satisfied such a law. Thus we
will investigate the possibility that our identities (3.14) and (3.16) are expressible in terms

oPB oPEB dPEB
of only Yy, ... —— ... and not —, YB and M%’. Before doing so we will
M OPau Maw g M “

need to distinguish between the different forms we have used for P? more precisely. We
will call the original tensor PB(yqy,,, ---) and denote the corresponding tensor function of the
YaPaju - DY PRy w4, .-.). For the tensor function obtained from P2 by expanding
the stroke derivative we will use the symbol P2(y ,y 4+ YuVuwa ---)» We note that since

opE

Yaju- Yaju - 3ll contain terms involving vy, then in general — Be Returning to
Ya Ya -
. . . oPB opB
the identities (3.11) and (3.15) we see that they are expressible in terms of y,, 5 o
Yur Vur,d

8 The Noether formulation can be applied in some cases when PB is not tensorial. In particular it has been
applied to Lagrangians which are not invariant densities [7].
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and their derivatives with respect to the x* However since

op8 _ OP® I(yap) N OP? d(pajw) .
MVur  Maj  Vw My OV

- _ - (5.5)
9P°  P" d(yay) n IP®  yamw) n
a'}’w’,l Man. IVura OV ajur IV
and similar expressions for the other derivatives of PP and since the quantities .?_.gpﬁﬁ
Yur
W) | 9War) OWay) ... etc. can easily be calculated when y, is given, the identities

9)/,,,, o Qym,z ayuu,l — —
oPB 9pB

VA OVAajur
respeci to the x%. Thus on putting VYur = T We see that the identities (3.14) are identities

(3.11) are identities berween y,, ¥, 1 - ¥g ¥4, - ... and their derivatives with

oPB 9pB opB
between ...and ...only and do not involve the quantities — Y&" and
wA wA,ll awA’” awA,;w awA An
MY,. Thus the identities (3.14) are to a large extent independent of how PZ depends on .
oPB ops

For example if the quantities . are given then one can construct the identi-

Yau SPau
ties (3.14) yet PP is determined only to within an arbitrary additive function of the g, .

Similar arguments can be given concerning the identities (3.16).

We can now reconsider the situation. Noether’s theorem is derived by considering an
actual infinitesimal transformation (3.3) and values of P are considered in two different
coordinate systems. In the present method, the transformation (3.3) is a mental operation
introduced in order to give a convenient expression for 3)’,,v- That Noether’s identities

contain the extra quantities ‘::;Z , Y& and MZ, is hardly surprising.
A
We finally point out that the identities (3.11) and (3.15) have a special significance in
Rosen’s bimetric Relativity theory [8] and it is hoped that this will be dicussed funher in
a future paper.
The author wishes to offer his gratitude to Dr C. Gilbert for his encouragement and
criticism throughout the course of this work. He also acknowledges a Science Research

Council studentship.
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