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ON THE LOWER BOUND FOR THE o,/s,, RATIO AT HIGH
ENERGIES
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A new method for the derivation of the lower bound for the elastic-to-total cross-section
ratio at high energies is presented. It is shown that the constant factor can be improved down
to the latest value of the constant in the Froissart bound: e.g. for processes like elastic scattering
of N, mz etc. one has:

2
Mz Otor 1

Oel/Orot =
et/ n (In s/c o)

1. Introduction

It was shown by Martin [1] that, in the high energy region, the following inequality
holds:

el 1
The assumptions leading to this inequality are:
L. unitarity, 1 > Im f; > if|2
2. Analyticity of the absorption part in the neighbourhood of 0 <t < ¢4 in the ¢ plane
and the polynomial bound:

Afs; ) < CesN for O0<t<ty, s>

where s; is sufficiently large.

The assumption 2 is known to result from the Axiomatic Field Theory (AFT) for
some processes (e.g. nz, wlN elastic scattering) [2].
The minimal value of constant C; was estimated [1], within the Mandelstam relations, as:

16 M 2
0

P is connected with the polynomial bound on the spectral functions; asymptotically
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st > lo(s, t)|¥F, M is such that

Opor = sM for S—

can be reduced to the bound on the total cross-section alone:

2
i< 78 (1 s )
0

The inequality for o4/02,

However, this result does not saturate the Froissart bound [3]
4 (N —1)2

Oeor <<
12

(In s/sq\2

with N taken from 2.
An improvement has been done in this direction recently [5], [6] and, given the AFT

Re F(s, 0) |

assumptions plus the value of the ratio |—.—— | the relation between ¢, and o,
{Im F(s, 0)
can be written as [6]
ok 4w s Re F(s, 0) 2)‘1
2 L —1n2 — .
Ca lp n (Clael) (1+ l Im F(s, Q) |

Another method [7] was also used to derive the lower bound for ¢, and we shall present

here the extended version of Ref. [7]. The input information consists of the value of 25, o,

and the maximul number of subtractions N == 2. Therefore the result

2
o % 1 ,
=0 < 22 (In (sfsy In sfsy))?
Cel Ly

2
should be compared with the case of {6] when [1—%— i Re I | } is replaced by 1 — we do

mF

not use the information about Taking our expression with the same degree of

m
accuracy as in [6], one gets

o2 4o
ot =2 (In s/owor)2.
[+ 8] to

. . . Jel

> 0, one obtuins an improvement and if, moreover — — 0,
tot
the scaling factors are considerably changed. We can now write the bound for o,

% 2 s s
Trot < In In
fot = V ty Coror Caoror

dm .
Oror < . In%ssg,  with sp =¢ylns.
0

Due to the fact that o,

which leads to

This is similiar to the bound obtained by Common [8] for the averaged cross-section 6,4,

The scaling factor can be given in [8] in amore detailed form due to the fact that for the
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averaged quantity g,,, one can express constant ¢y in terms of d-wave scattering length
in the third channel.

In this paper we make advantage of the usual notation: s is (energy tot. in c.m.s.)?,
¢t is (Momentum transfer)2, ¢y corresponds to the lowest value of (mass)? in the ¢ channel.

2

We shall use the assumptions 1 and 2 in our derivation. One has to answer the following
question:

Given o,,, and A (s, t) satisfying 1, 2, what is the minimal o, for fixed, sufficiently large s?

The absorptive part can be written as

Afs, 1) = V—,j: Y @+ Pia )
=0

x =1+ W >1, k is c.m.s. momentum (1a)

1>a,=Imf, >0. (1b)

Because
1 —
Pifx) = — f (x+ /2% —1 cos PYdD
0

and (x+l/x2—1 cos @) is a positive decreasing function of @ for 0 <P <7, (x > 1),
the following inequality is fulfilled:

Px) > > e(x+ V2% —1 cos me)! (1c)
for arbitraty small, fixed e.
Let us introduce

A= 1§1 21+ 1)ay (2

with
y = xJ—VE COSs T (2a)

then
osN > ~1—- Ads, 8) (2b)

V*

It is convenient to replace o, 64 by B, D defined below:

Oroth? -
By 2 :Z(ﬁZl—i—l)a; 3)
1=0

>0z Z @1 +1)a}. (4)
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The equations (2), (3), (4) together with the condition (1b) allow us to find the distribution
{a,} minimizing D at high energies.
3

Let us notice that the minimal D will be obtained for the largest possible 4 i.e.
A = ¢sN (see Appendix A).

The minimal solution — obtained with the usual Lagrange multiplier technique —
a; = M(s) —Ag(s)y’ (Further on we shall write 4, 4, instead of ,(s), 25(s)) leads, for large [
to negative a,.

Putting there a; = 0 one arrives at:

= ls—izy’ for I<L (5)
a,=0 for I>1L
with
L+1 }‘1 L
yERE > >y (5a)
Ay

and

o <1. (5b)

In the Appendix B we show that — among {a}} satisfying condition a, >0 — the
distribution (5) gives, for fixed B, A the minimal value of D. We shall also show below
(see Eqs (15), (16) that a; <1 is satisfied in our case).

Now, using Eqs (2), (3), (4) one gets:

L L
A =12 U1y — 2y 3 @+ 1)y (6)
=0 =0
L L
B = 3@+~ 3 @1+ 1)y (7
=0 =0
L L
— 2 @) 20y S I Dy 22 S @141y ®
=0 1=0 1==0

It is convenient to write Eqs (5a) as

M=y 0<dé<l )

Tt t

Let us notice that

For k2 >

L
_ _ LDl 2t )
£0) 3 I};(zm)y'— e p s R

}L] @1+1) = (L+1)2 (10b)
i=0

(10a)



735

Now Egs (6), (7), (8) can be written as (we are replacing (1+7)° by 1):

A ~ Ly a(y) ~03] ()
B ~ AyHL+ 12 —g()] (12)
D ~ M[yH(L+1)2 2y () +2(3)] (13)

Because we are considering the maximal A consistent with AFT, therefore, because of the
Froissart bound, the ratio

A

B > sN(In s)~2 const.

Hence, from (11), (12) and (10a) one has
Lyp—+o for s— o0

In this limit, Eqs (10a) gives:

=150 1 1)

Now, the Eqs (11) and (12) read:

Ln exp 2nL) exp (2nL) 1
R e (11a)
o ( (*1—))
B=2, e exp (nL) )] (12a)
Hence
A exp (L) (i
B = —_7714 (1+0 Ty (14)
and
4 Inln %
yL = (ln —E) l+o ~_1n£_ (14a)
B
where
. In ln—%—
In %
lim — = 1. (14b)
B Inln B
In i
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The unitarity condition @, <1 is satisfied for our distribution

Bn? Grott
ay < Ay —2y = Ay exp (nl) ~ P g 5"
(1 _A_) tr | 1 10 (15)
B $0tot

The r.h.s. of (15) does not exceed unity (see Eqs (16) below) which means that
a, < 1.

From Egs (13), (14a) one gets:

o= ()

Therefore the minimal value of D is equal to:

o () ()

Hence, taking advantage of Eqs (3), (4), (14a):

Inln Als, 9\\*
gy ol = o
Ud > Gel.im, e = 1 -0 _ SOtor_ 16
# 4zt | In 0_4‘(8’—':0) 2 In f{M (16)
SOtot SOtot

where ¢ is a constant proportional to /g, very large for small ¢ but independent of energy.
We shall therefore replace (1 —¢?) by 1, in Eqgs (16).
Now, for the maximal A4:

A = cos¥ for £ <t

one gets therefore

N1 \\2
ot 1 Inln S:
totlg _ tot
G > i i\ 1—o || (16a)
In in
ot ot

For the o, = 0, this inequality saturates the Froissart limit 3], {8]:
4 s\ .
Tror < —— (V-1)%2 | In - with sg==cglns (16b)
) 0

In the case of aN, nm, 7K, KK, Az elastic scattering, it follows from the AFT [2] that
tg=4m? and [4] N <2.
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We get for this case:

2
Inln
Cel > Gtotmrzz 1 1-—0 ot
Otot 4 S 2 s
(ln ) In
COtot Otot
~ Crot 1 _ Grot 1
2 * rd
60 mb (ln s +1nln- s ) 601nb1n2|: s (ln s )] (17)
COtot COtot CO'tot COtot

We should emphasize that our extremal distribution {a;} satisfies conditions 0 < a, < 1;

>
therefore one cannot improve the inequality (17) without introducing new subsidiary

conditions.

APPENDIX A

We shall prove the following lemma:
Let D™® be the minimal value of D for fixed B and A4 (compare Egs (1b), (2)-(4)). Let D™in
be such a value for the same B but 4 > A.
Then
I_)min < Dmin.
Proof:
Let us assume that the distribution {a;} minimizes D for given 4, B:

8
8

A=Y @+1ay’, B=73 @+,
=0 1=0

I
I

pmin — 37 (21 +1)a? (A1)
=0

At first, let us notice that for any a, # 0 one can find such L > p that for [ > L
a,—a,>d >0 (A.2)

where d is some constant. This is so because of the convergence of series for 4, B, D
together with the condition a, > 0.

Next let us notice that:

Any 4 > A can be obtained from {a;} (without changing B) by change of two
a;s : a; # a, for 1 =p, L only and 0 < g, < 1. Because both distributions give the same B,
one has:

h h
60;] = Z_LTI’ (SCLP = 2—p+1 (A's)
where
a,=a, —da, a,= a;+da,.



738
In order to have
0<g<1

it is enough that a, >a, >a; > a. These inequalities will be fulfilled if (compare
Eqs (A.2), (A.3)):

1 1
0 < (m + m) < dfh. (A.4)
Next, A—A = h(y*—y?) i.e.
A-4
h= ;L__?' (A.5)

Choosing L large enough (y > 1) one can, for any (4 —A), make A sufficiently small to
fulfill condition (A.4).
In the end let us notice that

D —Dmin — p, [2(aL—a,,)+h (z“L“lﬁ + 2])—}-}‘-1—”
and using (A4):
D—D™ < h(ay —a,) < 0. (A.6)
Hence
D™in < D < D™in (A7)

which proves our lemma.

APPENDIX B
We shall show that the distribution (5):
(5) a,= XAy’ for I<L
a,=0 for [I>L

A
(5a) ybt > 7:— >yt (y>1)

with 0 < a; minimizes D for given 4, B (cp. Egs (2), (3), (4)).
Of course, among all distributions with @, =0 for I > L the distribution (5) is the
extremal one and it is not difficult to see that one obtains the minimum.
Let us consider another distribution {a;} leading to some value D instead of D.
This new distribution,

a,=a,+6a, (forl>L a,=da;>0 (B.1
;= Gt 0g, 1 i
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must give unchanged values of A4, B. Therefore:

o L
—LZ“(Zr—i—l)éary' = -—120(214—1)6@19/’ (B.2)
oo L
; (@r1)8a, = -lzo(zlﬂ)aa, (B.3)
r=L+ =

Now,
oo oo L
D—D = 3 (2l+1)(a] —a)) > 23] (2l+1)a,ba, = 2 (2l + a0,
i=o =0 =0
Next, due to the Egs (5) and (B.1)-(B.3):

— L oo
D—D >23 2L+ 1)dafh —Ay) > 22, 3] (21+1)da,(y" =Y
=0

r=L-+1
Therefore, the conditions: ¥ > 1, da, >0 for r > L lead to:
D>D

which proves our assertion.

REFERENCES

(11 A. Martin, Nuovo Cimento, 29, 993 (1963).

[2] A. Martin, Nuovo Cimento, 42, 30 (1966). For further references, see e.g. Epstein, Proceedings of Con-
Jerence on High Energy Collisions of Hadrons, CERN,, Vol. I, p. 290 (1968).

[3] M. Froissart, Phys. Rev., 123, 1053 (1961); the value of constant factor is taken from L. Lukaszuk,
A. Martin, Nuovo Cimento, 52A, 122 (1967).

[4]1 Y. Jin, A. Martin, Phys. Rev., 135 B, 1375 (1964).

[5] A. A. Logunov, N. van Hieu, Proc. of Topical Conf. on High Energy Collisions, vol. II, CERN 1968.

[6]1 V. Singh, S. M. Roy, 4nn. Phys., 57, 461 (1970).

[7] L. Lukaszuk, Report ““P” No. 1118/VII/PH, 1969.

[8] A. K. Common, Nuovo Cimento, 69A, 115 (1970).



