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LEE MODEL WITH ADDITIONAL FERMI INTERACTION AND THE
COMPOSITE NATURE OF V-PARTICLE

By J. Luxierski anxp L. Turko
Institute of Theoretical Physics, University of Wroclaw*
{ Received November 19, 1970)

The generalized Lee model with additional nonlocal four-leg N&®— NO vertex is studied.
The lowest sector is solved for arbitrary choice of the cut-off functions in both vertices. A complete
discussion of the Z; = Zy = 0 limit, defining the composite V-particle, is presented.

1. Introduction

One of the basic problems in quantum field theory is the understanding of notion of
composite objects. In Lagrangian field theory we consider a particle as composite if its
field? operator is not included in the original®> Lagrangian. This procedure can be realized
if we set the wave renormalization constant Z; for composite field operator equal to zero [1].
If we use the mixed interaction of composite-composite and composite-elementary type,
it was conjectured by Salam [2] that the condition Z; = 0 removes the interaction of com-
posite-clementary type, and we are left with a Lagrangian formulation® of a completely
bootstraped world of particles. A complete classification of particles from the point of view
of their compositeness properties has been proposed firsily by Ida [3]. Following Ida, in
QFT one can introduce four categories of particles: superelementary (£, =0, Z; # 0),
elementary (7, # 0, Z; # 0), intermediate (Z; % 0, Z; = 0) and the composite one (Z; =0,
Zy=0).

The compositeness conditions have been investigated intensively on the example of
the Lee model [4]. Models were considered either with the conventional VN@ vertex or

*Address: Instytut Fizyki Teoretycznej, Uniwersytet Wroctawski, Wroclaw, Cybulskiego 36, Poland.

1 We call a field operator ¢ a field of the particle 4 with mass m (for simplicity we consider the spinless
case), if the Kallen-Lehmann representation for the two-point function has in its spectral function the Dirac
delta &(%%— m?), separated from other points of the mass spectrum.

2 This sentence applies as well to the Hamiltonian formulation of QFT — it remains valid of-we replace the
word “‘Lagrangian”™ by ‘‘ Hamiltonian”.

3 The condition Z; = Z; = 0 was also interpreted as the Reggeization condition for the elementary
particle. See P. E. Kaus, Zachariasen, Phys. Reuv., 138, B1304 (1965); M. Ida, Progr. Theor. Phys., 34,
990 (1965).
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with the Fermi coupling NONGO, and their equivalence in the limit g3 — oo, u2 — oo, 3.:.9

Z;

finite has been discussed [5]. It is easy to see, however, that in order to study the composite
case one should consider the case of mixed Yukawa and Fermi coupling, because if only
Yukawa coupling is present, we have Z; = 1, and in the Fermi case Z, = 1. However the
case of mixed coupling has been discussed by some authors [6]; the solution of the model
with arbitrary cut-off functions is not known in the literature.

This paper has the following two aims:

a) To solve the lowest sector for the case when the nonlocality in both vertices are deseribed
by different cut-off functions f(k) and A(k),
b) to discuss the compositeness criterion Z; = Z; = 0.

In all our caleulations the cut-off function is as:umed such that all the integrals which
occur in the NO —NO scaltering amplitude and in the formulae for the renormalization
constants are finite.

The plan of our paper is the following. In Section 2 we define the model. In Section 3 we
discuss the phvsical F-particle state. We calculate the formula for the mass renormalization
and discuss the local limit f{k) = 1, h{k) — 1 for both cut-off functions. Besides we give
the formula for the wave renormalization constant Zy. In Section 4 we calculate the scattering
amplitude for the case f{k) = h(k). The case f{k} # h(k) is considered in the Appendix.
In Section 5 we discuss the charge renormalizations, and we express the N@ —NO scattering
amplitude completely in terms of the renormalized parameters. In Section 6 we discuss the
condition Z; = Z, = 0. It appears that in the case of mixed interaction the vanishing of Z,
implies necessarity vanishing charge renormalization constant Z;. One gets the result that
the composite F particle is coupled in a definite way to the NO pair, but the self-interaction
of elementary N and @ particles remains undetermined, i.e. one parameter is left free.
In particular one can choose as a free parameter the mass renormalization constant for the
V-particle.

2. The model
We consider the following Hamiltonian
H=H,+H,_, 2.1)

where

Hy = my, [d3pVHp) V() +m, [dpNHE)IN(p) + [ d3heo (k)0 (R)O(E) (2.2)

. — 8 dEf(R)
T @2a) ) Qok):

) LA N (N _
(2n)3ff (Qw(k)o(k)) fd3PN+(P — k) OF (k) N(p —ky)0(k,) (2.3)
n [N@), N = [¥(p), ¥ (p)] = &(p —p)

[O(F), O+(F)] = 8(Fk—F). 2.4

[ P V+(PIN( ~F)OF) +H.C.} -
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We denote k = |E|, o(k) = (k*+u?)* and assume that the form factors f(k) and h(k)

are real. The local limit corresponds to the choices
flky—>1
hi{k) - 1.

(2.5a)

(2.5b)

It is easy to see that in the presence of additional N& —N@ interaction the following

basic properties of the conventional Lee model are preserved:
a) The physical vacuum is defined by means of the relation

N(p)I0y = O(p)|0> = ¥V (p)I0y = 0.

b) The physical one-particle states are given by the following vectors:

N-particle: | N(p)> = N+(p)|0>
O-particle:  |0(p)> = O+(7)[0)
V-particle:  |V(p)>

= ZHVH(P)0y + [dRDR)N+(p—H)O+(B)}.

¢c) The N—0 scattering is elastic.

3. The mass and wave function renormalization for V-particle

The physical mass my, of V-particle is determined by the equation

HV(p)y = my|V(p)>.
Using (2.7¢) and (2.3)—(2.4) one gets the following two equations

g d%f () _
™ F (o) f GayE 2B =

[mVHmNo_w(k)]CD(k) = (*2:%)’/: _(?f“-’((i]‘?)ﬁ -

Y h(k) 435,
B (27!0)3 (2w(k)) % f (260(,1511))1/2 h{ke)D(ky)-

Substituting in the equation (3.2b) the following Ansatz:

1
oy @)y g =) [f ) = (2 P h(’“)K]

we get after a straightforward caleulation

Sk)h(k)
[ o Y Csm——a

Y - h3(k)
1 o | P 5y —aB)

D(k) =

K=

2.6)

(2.7a)
(2.7b)

(2.7¢)

3.1)

(3.2a)

(3.2b)

(3.3)

(3.4)
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and finally

g > S2(E)
oy = e, = B [ S Ty -

[ SR)h(k) ]
& U PE ol oy~ ()
@nF @ 1, o f e #2(k)

(3.5)

(2n)® 2w(k) (my —mpn —o(k))

It is easy to see that if 4, = 0, we get the conventional formula for the mass renormalization
in the usual Lee model

_ & [ S3E)
Smy = ’(275% BTy rrm—

(3.6)

which is linearly divergent in the limit (2.5a). If we assume that gy = 0, one gets of course
that dm, = 0 because the V-particle is decoupled from NO pairs. We shall consider now
the local limit (2.5) for the case when Ay # 0 and gy # 0. Let us assume that

f#) = O(4* 1)

h(k) = O(A'2—F?) (3.7)
where
Az
m —y = @
Jm e 9
A >00

If h(k) tends to the local limit faster than f(k) e.g. a2 << 1 we get the following expression
for the mass renormalization:

2
lim  dmp = — 204 (1—a?) A2 (3.9)

A% A0 (23'6}2
In the opposite case a® >1 it is easy to check that

2
lim  dmy = — S0 (a®—1) 42 3.10
Aa>Alrz,,°° 4 (233)2 ( ) ( )
We sce, therefore, that if a? s 1, dmy, is always linearly divergent. Only in the particular
case a® =1 dm,, achieves a finite value
2
dmy = E2 (3.11)
Ao
and its sign depends on the sign of A,
Thus we have shown that the mass renormalization constant depends on the way
we perform the local limits (2.5).
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It is interesting to compare the result (3.11) with the dispersion — theoretic calculations.
It has been already recognized [7] that the local Lee model in the VO sector can be treated
as a particular nonrelativistic limit of the Zachariasen model [8] with one coupling constant.
This analogy remains valid if we introduce also the local Fermi vertex. In the Zachariasen
model with two coupling constants gg and Ay, the mass renormalization term is given by
the formula (3.11). One can conclude, therefore, that the local limit, which is implicitly
assumed if we write the dispersion relation, corresponds to the choice a* = 1 of the para-
meter (3.8).

The wave renormalization constant of the physical F-particle is obtained from the
requirement:

T PWVE)y = o(p—p)
From the formula (2.7) one gets
Z;t = 1+ [ kD). (3.12)

Using the Eq. (3.3) and (3.7)in the case f = h we obtain after a straightforward calculation,
the following simple expression

L (L424)2
Zr = T2, + B (3.13)
where
- P f2)
4= (2m)® fd”k 2w(k) (my —my—o(k)) (3.14a)
B * fHE)
B= Gy f L Py E—) (3.14b)

4. N—O scattering

We shall now calculate the S-matrix element which describes the elastic scattering
of the N —0 pair. This element has the form

(N, OF)ISING), Oy = LN(G),O(F)IN@), OF)>+ (4.1)
where |N(@3), O()> . are the eigenstates of the total Hamiltonian
HING), OF)> . = (w(k) +my)iN@), OF)> . 4.2)

k24

means the incident one.
Performing standard simple caleulations (see e.g. [9]) we have

The index ‘“+”" indicates the outgoing wave, and *‘ —

1

T N T ) .
NG, OB = NG, O+ % o~ PG+

2 h(k) 1 T 175 N S
= BT Cwli)® my o) —HL iej Ty Gy VT EFE k) ORI (43)
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and one obtains
LN@), OF)INE), OF) >, = 8(q—q)0(k—F) +
+27i8(w(k) —o(k)N@), OF)IRING), OF) (4.4)

where

. - > Ao REME) (3 - 3
NG, OWNRING, 60> = g5 "0 o+ 1~ -

22 h(EYh(E) 7 oy M)Ak
" @ 20 ff PELE: Gl o) <

X COIN(E 4§ —Fy) O(F) N+(k+q—Fy) 6+(k;) 10> +

my+w(k) —H+ ie

L 28 A RBSE) [ A
@)’k 27)® 2w(k) 1 2o(k,))%

1
M+ o(ly) —H + i

X OIN(F +g' —ky) Oky) V+(E+9)0> —

& LB o 1 .
~ o 2oy OVEHD) o VDI @5)

If we take into consideration Eq. (2.7¢) and use the fact that |F(£) >is an eigenstate of the
Hamiltonian (Eq. (3.1)) it is easy to see that we have:

1 00> = — 1 37 (1 7. 7 -
o) —Hiae | T = e T H s f A, @) N+ —Fy), OTky)> +

1
my+w(k) —my +ie

f Ay D) IN(E + 4 —Fy), Oky)> +

1

+ jng -
ey p—— VH(k+q)10). (4.6)
Now, from the identity (see [13])
1 - - 1 1 1
+Hf) = O+
x—H+ie O(k) = O*(k) x—H—o(k)+ic + x—H+ie [H, @+(k)] x—H—o(k)+~ie
we obtain:
1 O g = ].

NG+ —Fy), Ok = NG+ —ky), OF)>+

(k) —o(k,) -+ ie

L 1 g0 SO -
* w(k) —ow(k,) my+o(k) —H+ie {(27-;0)’/1 (zw(kll))x/2 Vk+q)10> —

_ }'0 k(kl) d;;:ér h(k')
@n)® QRo(ky)* (2o (r))*

my+ow(k) —H+ ie

INGe + g —E), @(?c'»}. (4.6b)
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This is a pair of integral equations, which one can solve ¢ fter simple but tedious manipulations
(see Appendix). Here we shall discuss only the case f(k) = h(k). Then we obt2in for the
scattering matrix a relatively simple expression, namely

(N@), O RING), OF)> = —8(F +F —g—F) <N@), OF) | MING), Ok)>

_ MG HE G ){ G ! 2
T 20(k)GR) 2n)3 my+ok)—my  (27)

3a+1Aﬁ 4.7)

where

l 3 fz(kl)
k) = (120 {” @n)? f PRy sl @) w(k1)+zs)}+

2 [ 20
e [ Phy 5 T == ) ol o) i) (4.8)

5. The renormalization procedure

In this Section we shall replace the non-renormalized quantities gy, 44 by finite renor-
malized values g, .. We introduce the renormclized three-leg coupling g2 by means of
the following requirement:

Res WM@@@%@@WWMAQ@H=J%W~mdé%; ©.1)

w(kR)=my—mpy

. . . N ..
The renormalized coupling constant 4 can be introduced by means of the o decomposition

of the scattering amplitude. Normalizing the denominator function at the point w(k) =
= my, —m,y, to unity, one defines 4 as the constant determining the asymptotic beh=viour
ke — oo of N(k) in the local limit f(k) — 1.

Let us consider firstly g2 One gets, using (4.7)-(4.8) and (5.1), after simple calculations

2
JRNU  F— 5.2
& U242+ 828 62
or equivalently
2 g2(1 —hZOA)z‘. (5.3)

8o = 1—g%B

Because in the V' —N® vertex only the F-line is renormalized by interaction, one
defines the charge renormslization constant Z; as follows:

go="721"Zy"g. (5-4)
Using (3.13) and (4.4) one gets
Z, = 1+2,4. (5.5)
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The renormalized coupling constant can be defined by means of the formula:

Y EY )

= Tt i)+ 3B G0
or
A
Gl ey e 67
The charge renormalization of the four-leg vertex can be expressed in terms of Z, and Z;
as follows:
Zy
A4 = A Ao (5.8)

The physical scattering amplitude can be expressed in the %T form as follows:

8K +7 —k—9) Nk

N@), OF)IRING), O))> = L o (5.9)
where
_ AR g
NE) = @ [mN+w(k)~mV —l] (5.10)
and
= 1-g?B— 7 N(ky) -
D) =1—-g?B—-24+ A/‘d":"c1 ool (@R iw(kl)—%is)' (5.11)
We can easily check up that
D) gy mmy—my = 1 (5.12)

in consistency with (5.1).
Finally, one can express the mass renormalization term dmy, and wave renormalization
constant Zy, in terms of the physical parameters. One gets (see (3.5))

__ &4 -
5m;1 =7 —ggB Y (013)
Z,=1—g°B. (5.14)
Besides, one can write
1—-¢°B

and also

g2
omy = 5= (1-2). (5.16)
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6. The compositeness criteria for the V-particle

Let us consider firstly the case when | 4] < oo, |B| <¢ oo, particularly if
[rR)dk < oo. 6.1)
In this case all the formulae in Section 4 are well defined. We shall assume that f(k) is fixed
and satisfies the condition (6.1).

We see from the formulae (3.13) and (5.6) that if Z,, - 0, then necessarily Z; — 0.
Let us consider such a case. We obtain from (5.5)

Ao =— i 6.2)
and from (5.14) it follows that
1
2 . .
8=7F (6.3)
2
The parameter g2 remains undetermined. The limiting properties of the ratio A e
v
known. We have
Zt 2

and the relation (5.4) becomes an identity for any choice of g2 We have, therefore, one
free parameter in the theory. One may also chose A or 8m, as such a free parameter. Assuming
in particular that A is non-vanishing, we obtain from (5.8) that

Jaint S 5
Z, = A F¥. (©5)
and
2 Z
go —Z’;—:E) - m "?O. (6.6)
The case 4 = 0 corresponds to the choice g2 — oo.
The mass renormalization dmy, in the limit Z, — 0 is given by the formula
2
Sy = £ 6.7

We see that in the composite particle limit the mass renormalization is expressed in the
same way by the renormalized coupling constants as by the bare parameters in the local
limit f(k) - 1 (see (3.11)), and that it cannot be fixed by the compositeness conditions.

Let us now consider the particular cases 4, = 0 and g = 0. If 4, = 0 one gets necessarily
Z, = 1. From the formula for Z, one obtains

Zvli=0 = (6.8)

1+g5B"
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One gets Zy|;, _o—> 0 if g2 — co. In such a case again

o 5 69)

and dmy, — co. According to the classification proposed in the Introduction, the V-particle
is an intermediate one.

If gy = 0 one obtains always Z, = 1. One gets Z; = 0 if 4, is given by the formula
(6.2). We obtain in such a case A — oo, which corresponds to the unrealistic case of an infinite
physical coupling constant. We should assume, therefore, that Z; # 0 and then one finds
that the V-particle is elementary.

Finally, one can study the local limit f(k) — 1. Because, however, in this case A4 is
linearly and B logarithmically divergent, one gets Z,— —co and we have to deal with the
problem of ghost states. This last difficulty lead to the introduction of the cut-off function f(%),
satisfying the condition (3.1).

APPENDIX

NO-scattering amplitude if f+# 7
Let us consider the pair of the integral equations (4.6). We peiform a reduction of this
system to the one equaiion substituting Eq. (4.6a) into Eq. (4.6b). Then one obtains:

1

o T o) —H =i NEHa—R), 00

T ’ 7 1
= Ak, 35 F) +g(k; 1) f PRDl) i e WG —E). 0D+ (A1)
- 1 . e
.1 37 oI A —_
—l—l(k,k)fd kys(ky) ot (k) —H e IN(E+q —ky, Oky)>
where we denoted:
. - 1 -

A(k s k) = w(k) co(k)+l£ |N(k+q —K, 0(/0 »+

8o S 1

+

@) o) @) —a) i) Tl —mp i O k)0

+ [ BB E)INGE+G —Fy), O}

DIy &o f(‘l"') 1
)= oy Gk wlh) —o() + ie
oAy h(K) L
M ) =~ "o Ball))s o) —olF) + ie
P

Qo(k)*
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We substitute

1 - = - . - - - .
T -~ 0 ;' == s K L IK ] ; ! s
i W), OF) = AR 73 B+ ell VKR §)+153 K)K(E
(A.2)

where K; and K, are some unknown functions. Because generally g(k; k') and I(k; £') are
linearly independent functions, we obtain two algebraic equations for K; and K, which
have the solution in a form:

K 3) = - —D—% [ hiRa@sh + R0 00146 3 F

Kyk, ) = d3Fy[Rog(F) D(Ey) + Rag(R)s (k) A(F, 33 Iy (A.3)

(k)

where
Rolk) = [P, PRy ks Fy)
R, (k) = [d¥ks(hk)g(hs ky)
Ry(k) = 1— [@kys(ky)l(ks ky)
R (k) =1—[ d%qb(k Vg (ks ky)
D(R) = Rypy(k)Ryy(k) =R g (F)R (k).

After some tedious calculations we obtain the S-matrix for the elastic N& — N6 scattering
in such a form:

(N(@), OF)N@), OF)>+ = 8(G—7)8(k—F) -+

- ! AN S 1 g(z) fz(k) RSl(k)

+27i (k) —o(E ) 8k +¢ —k—q) G {(21)3 20() T olh) —my + e

280 2o fUR)A(R) Ry (k) I I )

(27)' 27)® 20w(k) myn+ok)—mp+ie (2n)° 2w(k)

% s ) Ryg(k) K}
(2m)® 2n)": 20(k) my-+o(k) —my+ie
K in the last term this is the constant which had appeared in the formula for @(%) (see (3.4)).
Finally one gets for D(k) the following result:

Rd‘g(k) .

(A.4)

g 1 ; hky f(k) i
DB == s s T Faall) w1 [f P 3oy (o —w<k1>+w)] B
o f - 12(ky) }{
{” Bar J M suy iy oty i | T (A5)

go fd:xz Sk .
(2 )3 L 20(ky) (my —ma— o(ky)) (0(k) —w(k,) +i€)

_ A'O g() K fd;;j; f(kl)h kl) }
27 (27)® my—my +olk)+ e 1 20(ky) (my —my —o(ky))
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