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ON A NONLOCAL THEORY OF SCALAR FIELDS
By TrRAN HU'U PHAT*
Department of Physics, Hanoi University
(Received February 1, 1971)

A nonlocal theory of scalar fields is considered. In this theory, by using generalized
analytic functions the utraviolet divergences are eliminated without any regularization. S-matrix,
satisfying the unitary and macrocausality conditions is constructed.

1

The possibility of removing the divergence difficulties by constructing a nonlocal,
relativistic field theory was considered for the first time by Peierls [1], Rayski [2] and Rze-
wuski [3]. More recently a nonlocal theory of scalar fields, in which the ultraviolet infinities
are absent, was constructed by Efimov [4].

However Efimov’s theory encounters difficulty related to introducing a regularization
procedure: the results of the theory depend on the form of the regularization function.
The cause of this defect is as follows. For all entire functions, there is always at least a sector,
in which they increase to infinity. Consequently, there is no analytic function, playing the
role of formfactor, to be regular in the whole plane of the complex variable except for a con-
stant.

As will be seen below, such a function exists only in the set of the generalized analytical
functions, and this fact suggests the use of these functions as formfactors instead of the
ordinary analytical functions.

As it is well known, to formulate the macrocausality principles of S-matrix is one of
the fundamental difficulties of the nonlocal theory. Following [4] it is possible to find
a S-matrix, satisfying the macrocausality principle. Let us illustrate this by studying a scalar
field.

Let @(x) be the operator of a scalar field. Then the macrocausality principle can be
formulated as follows:
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besides the regions G and G, where
G:x0>9% (x—y)2 >0
G —B<{x—y)? <!

and [ means a certain ‘‘elementary’ length.

Moreover, it is necessary to state the complementary condition: The expression (1.1)
in the region G, is proportional to a certain relativistic invariant generalized function
Aj(x —y) to have the following property. Arbitrary functions f(x), nonvanishing in a certain
limited region G, of space-time transform to functions

Flx) = [d¥yA(x—2)f(y)

nonvanishing only in a limited region of space-time Gp = G;+ G, where dG; is limited
and belonging entirely to the interior of region Gg, so that x € G4 if and only if

—1? <(x—y)? <3 here y e G;.

Such a definition of macrocausality principle by Efimov is very satisfactory.
We shall prove below, thas such generalized functions exist and the theory is free from
the ultraviolet divergent difficulties without any regularization.

2

It follows that in the region G, of space-time, microcausality is violated. In the
local theory of quantized fields, basing on the microcausality principle [5, 6], one proved
that the scattering amplitudes are analytical functions of complex energy variable E and
they increase slower than a certain polynomial for E —o0.

Following [7, 8, 9] it is possible that there are two ways of introducing the violation
of causality.

a) Either the scattering amplitudes increase faster than a certain polynomial for E— oo,
i.e. they verify the following unequality

(fE) > Ae“EV a5 E >0,

b) Or the scattering amplitudes still increase slower than a certain polynomial at
infinity, but they are generalized analytical functions of Vekua type [10] and therefore
their real and imaginary parts verify the following equation:

Ig(E)+A(E)f(E) +B(E)f(E) = 0.

For simplify, we shall further restrict ourselves to studying the above equation to have
vanishing B, i.e.

IpfE)+A(E)f(E) =0 @1
Then f(E) can be represented in the following form [10]:

SIE) = e*Ely(E), (2.2)
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where @(E) is a certain analytical function and w(E) is given by

w(E) = ff A(E') dx'dy’, E =«'+iy'.

As an example, let us study the relation between the generalized analyticity of scattering
amplitudes and the violation of causality in the one-dimension case.

Let M{¢) be the scattering amplitude in coordinate space. Its Fourier transform is

given by
+oo
M) = [ e f(E)dE. (2.3)
The causality principle means that
M) =0 for t<0O. 2.4)

From (2.3) and (2.4) one deduces that f(E) is the analytical function of E and it increases
slower than a certain polynomial for E —ooc, that is

IfIE) < A|E|® as E —oco.

Assume now the scattering amplitude f(F) to be a certain generalized analytical function
of the Vekua type. It is then of the form (2.3); here we suppose that p(E) increases slower
than a certain polynomial at infinity and @(F) has the form

w(E) == (1+ ae M ])
w(E)
from which we obtain
FE) = y(B) +aeH"
which increases also slower than a polynomial for E —oc. Then

+ 00
M) = [ e~ (p(E) +ae "E)dE

— o

and the causality principle is violated

2
M(t) = ZZ——HE A for t << 0.
By this example we can conclude that the violation of causality principle can be
described entirely by the generalized analyticity of scattering amplitudes.
Therefore, it is possible that two ways of introducing nonlocality exist:

1) Propagator of scalar field is deplaced as follows

1
k2 + m2 kZ + m2
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in which the formfactor V(k2) is an entire function decreasing for k2 —oo & and in order
to converge the Feynman integrals it is necessary to introduce a procedure of regularization
by using a regularization funection R*

2) The formfactor F{(z) is a certain generalized analytical function, decreasing faster
than 1/}z|” for z —>oc.

For example, we can choose such a function as follows:

V(z) = e~ "'p(2)
here (2) is a certain analytical function of finite order. It is easily seen that V{z) satisfies
the equation of form (2.1):
I V(2)+1PzV(z) = 0.

It is clear that V{(z) — 0 along any direction of the z plane as z —oo.

3

The Lagrangian of the scalar field @(x) is written in the following form
g = go +g1
where %, is the Lagrangian of the free field and .#; describes the autointeraction of field

@{x) and is a certain polynomial of @(x), such as Ag* Following [4], we assume that there
is no participation of field ¢(x) to the interaction Lagrangian, except the field @(x) defined by

(x) = [dYVix—y)e(y) = V(09
Vix—y) = V(0,84 —)- (3.1)

Then, we have

D —y) = PRWPG) = V(O V(O)90)(y)

2)12
= V(DX)V(Dy)AC(x —y) :fefP(x—y) [pz(—fn)jz d4

where A%x) is the causal function of the scalar field @(x). The commutator is given by
[P(x), P(y)]-= [d*'d%y' Vix—x)Vy —y) A —y")
= [V(m*)]2A(x —y) = D(x—y)
The commutator function D(x) coincides with that of the local field if we put ¥(m?) = 1.

It is possible to obtain the same results for D¥(x).
Next, let us study the generalized functions

V (x—y) = N(@)8' &)

defined in the space of fundamental functions D.
This space is defined as follows. It is such space that the functionals

WSy = [y Vx=y)fy) = V(D)%)

are defined univalently for each f(x) € D. In order to satisfy this demand, f(x) must be infinitely
differentiable functions of « in the real axis and their derivatives of n-order must increase
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slower than |x|? at infinity for a certain definite natural number p. Otherwise, if one is to
demand that the functionals (¥, > are defined univalently in every system of reference,
then f(x) must represent the values on the real axis of certain entire functions f{(z;) with
respect to each argument z;.

To summarize, the space of fundamental functions is defined as follows:

1. Each f(x) € D is the value on the real axis of a certain entire function f(z) increasing
slower than |x|? for z — .

2. Anarbitrary suite of functions of D{f, | f, € D} converged to zero in a certain region G,
if and only if all the functions of this suite converge uniformly to zero in G.

Let us now study the local properties of generalized functions V(x—y). To do this,
let us choose a formfactor to behave like the following function

V(z) = e7V|zl*p(z)
where (z) is the formfactor given by Efimov [1]:
W $(O) = [ d'eale) exp (igobo +?)
b) p(0) = [ dleale?) exp (20007+69)
and let us examine the suite of functions belonging to D{f,(x, )} so that the limit function

J&, y) = lim f,(x, )

y-0

does not belong to D and equals zero for all x # y. Otherwise f,(x, y) is normalized by
fdtaf(x,y) = 1.

Then that suite {f,(x, y)} gives a-d-function representation in the space D. Such a func-
tion was studied by [4]. Thus for every f,(x—y) so that lim f,(x —y) = 0 for all x # y, the
y=0

function

&(®) = V(O,)f.(»)
has the demanded property as follows:

glx) = lin; &,(x) =0

beside the region xy = 0, x® < /2. Therefore, these are the generalized functions stated
in the first paragraph.

Finally, an other important property of the generalized functions is discovered. This
is that the product of two arbitrary generalized functions can be defined univalently without
regularization:

Clx—y) = V(x—y)V Bz —y).
The proof is similar to that of [4]. However, there is a feature of this theory, which is absent

in the Efimov’s theory: if ¥ and V® belong to two different types (a) and (b), then their
product is still defined entirely.
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4

Let us now study the members of the perturbation theory series. Formally, S-matrix
can be represented as follows:

S=Texp{—i [ L d*}. (4.1)
Then the matrix element of a diagram in n-th-order approximation is of the form:
F(xy, oy x,) = [T Dolx; —x;). (4.2)

i
The above amplitude F(xy, ..., x,) is a generalized function of D’ space dual to D since
Dix—y) = V(O )NQ,) 4= —y)

and therefore it is integrable in the space of fundamental functions.
The Fourier transform of F(x,, ..., x,) is given by

* 2
F(pys vy pa) =j ...fHd%;IjI%%}% (4.3)

here k; — four-momenta corresponding to the interior lines of the diagram and /; — four-
-momentums of integration.

With the formfactor V(k2) given at the third paragraph, the above integral conver-
ges without any regularization.

Thus, all the members of the series of the perturbation theory converge and thereby
the ultraviolet infinity difficulties appearing in the local field theory is overcome.

-

2

We prove next the wunitarity of S-matrix in each approximation of perturbation
theory on the mass shell, that is

(alSSHby = <alb) (5.1)

for all two arbitrary physical states (@) and |b).
It is easily seen that in our theory the unitary equality (5.1) is still true. In effect,
equality (5.1) was proved by [4] in the case where V{£?) has the form

ViE?) = p(k?)
here (k%) is given at 3.

In our theory F(%?) is only different from y(%?) by a real factor. Then the unitary equality
(5.1) is not violated.

Therefore, in the general case, formfactor V(k2) is chosen as follows. It is of the form
(2.2), in which p(k?) is Efimov’s formfactor and exp w(k?) is a real function of complex
variable k2 and decreasing at infinity to zero along any direction of the k-plane.

In particular, if we choose V{k?) to have the simple form

V(k?) = e®)
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then the truth of the above obtained results is not violated and S-matrix becomes a unitary
operator, that is it verifies the equality

5SSt =1

which is deduced easily by using the form of S-matrix (3.1).

6
To end, the causality of S-matrix is considered. To do this, let us study the following
operator
d aS
=2 (485 51)
®) = 5o \ 50 D

In the local field theory C{(x, y) equals zero for (x —¥)% << 0. Now we shall prove that C(x, y)
in a non-local theory is equal to zeco apart from a region of the form given at first paragraph.

In effect, by decomposing the S-matrix (3.1) with respect to the degress of inter-
action constant A, we obtain

oo 1 .y
S= Zomj ...flns(xl, oo ) D) . D) 2 Ry . it 6.2)

where S(xy, ..., %,,) contains the Green function D(x; —y;). When writing in the N-products
of field operators, @D(xy)... D(xy)... P(x,): give the D=-functions which are not different
from A=. The substitution of (6.2) into (6.1) gives an expression of C(x, y) being different
from that in local field theory by deplacing D(x) by Ax).

On the other hand, basing on the localization of the formfactor F{x —y), which was
mentioned in 3, we can conclude that the function D°(x —y), whose form is given as follows

Di(x—y) = [ dt'dly'Vix—x )y —y) 40" —)
behaves asymptotically like the causal function A%x—y) for
W00 > 1 and  (Z-y> 1
Following [11], that is the proof of the macrocausality of S-matrix:
Clx,7) =0
apart from the regions G and G;:
G:a® >y (x—¥)2 >0
G —P<(x—y)? <2

It is necessary to note that in the approximation of high order, the acausal region is enlarged,
for instance, in the n-order approximation the acausal region G, is deplaced by G,;. This
situation is similar to that of Efimov’s theory [4]. Itis possible that the violation of causality
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in those region G, can be neglected since there are no remarkable contributions of high

order members to the final results.
In resuming, by using the generalized analytical functions, playing the role of form-
factors, the nonlocal theory of scalar field was constructed satisfactorily:

1. The ultraviolet infinities without regularization is overconte.
2. The unitarity of S-matrix is conserved.
3. The causality of S-matix at large distances is guaranteed.
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