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EFFECTIVE FORCE FOR THE NILSSON MODEL CALCULATIONS OF
THE COLLECTIVE NUCLEAR PHENOMENA

By Z. Bocunacki®, S. Gasrakov**
Joint Institute for Nuclear Research, Dubna
M. ZieLikska-PFABE
Institute of Nuclear Research, Warsaw™***
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A theoretical estimate of the strength and deformation dependence of the two-body inter-
action producing the nuclear field is discussed and tested by a RPA calculation. The deformation
dependent two-body interaction is used to describe the nonaxial quadrupole vibrational state
for the large values of the quadrupole deformation of nuclei.

1. Introduction

In 1955 Bohr [1] proposed the channel theory of fission. According to this theory
the fissioning nucleus in the saddle point of its deformation may exhibit excited states which
are similar to those at equilibrium deformation. The different excited states correspond to
the different channels. Some experiments have been undertaken in order to find the position
of this transition-state spectrum. The group of Britt [2] measured the probability of fission
as the function of the excitation energy. The experimental results indicated the presence
of a low-lying vibrational spectrum. They also measured the angular correlations for (e, pf)
and (o, tf) reactions for 233U, 25U and 23%Pu and found the position of some collective
vibrational states at the saddle point (the octupole and y vibrational states). It is therefore
interesting to look at the theoretical estimate of the energy of the y-vibrational 2+ state
in the saddle point. If one makes, for example, the microscopic calculation described in
detail in the next section, one would find that at the saddle point the nucleus seems to be
extremely stiff with respect to the non-axial quadrupole deformation, i.e., the calculated
energy is about 2 MeV while the experimental one is about 0.6 MeV. In this kind of calculation
there is only one free parameter — the strength of the quadrupole force which is responsible
for the existence of this vibrational level and the value of this parameter is usually fitted
so as to account for the energies of the equlibrium deformation.
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The simplest way to make the nucleus softer with respect to the nonaxial y-vibrations at
the saddle point is to increase the value of the strength of the quadrupole coupling constant.
This means that one needs this value to be deformation-dependent. We are thus faced with
one of the central problems in every microscopic calculation of the collective nuclear pheno-
mena: the choice of the effective two-body interaction.

This problem becomes especially important when an effective interaction is used in
the study of collective processes taking place far from the equilibrium, e.g. at deformations
much larger than the equilibrium deformation. Fine effects, such as the density dependence
of the effective interaction, which are often accounted for at equilibrium by the choice of
the phenomenological parameters of the two-body force, lead to non-negligible changes of
the interaction strength. In many cases these changes play an important role in understanding
the nuclear properties far from equilibrium.

Thus it is important to test different approaches to the problem of the dependence
of the effective interaction strength on parameters defining the density distribution in the
nucleus.

The approach to the effective interaction problem, which is tested here, is that of Bohr
and Mottelson [3] generalized to include the deformation dependence of the interaction
strength [4], [5]-

The strength of the two-body force can be obtained from the experimental data as a func-
tion of the parameters which define the density distribution by fitting calculated (e.g. by
the RPA method) energies of the collective excitations to the experimental values for a number
of nuclei and a number of excitations. The calculation must include all transitions which
give significant contribution (e.g. 4N = 0,2 transitions for sufficiently large number of
shells in the case of quadrupole excitations) in order to make ‘‘renormalization” of the force
strength negligibly small. This is essential not only for testing the strength of the force
but also for its dependence on deformation which can be strongly affected by large renormali-
zation.

First, we present this kind of calculations performed for quadrupole excitations in
deformed nuclei with the use of the Nilsson model potential. Afterwards we calculate the
effective two-body force directly from a given single-particle potential; we discuss the
deformation-dependence of the multipole interaction and compare the results obtained
by both methods.

In the last section we use the calculated values of the strength of the non-axial quadrupole
force in estimating the position of the y-vibrational state for large deformations (for the
saddle point and in the second potential-energy well).

2. Determination of the quadrupole force strength from the position of 0t and 2+
vibrational states of deformed nuclei

In order to connect the strength of the quadrupole force with the energies of 0t and
2+ vibrational states, the method described in detail by Bés [6] and used in Ref. [7] has
been applied.

Nucleons are assumed to move in a single-particle field approximated by the “‘new”
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Nilsson potential [8] and interact through the pairing and quadrupole two-body forces.
Thus the Hamiltonian has the form

H = Hy+Hpaic — 3 %010 1)

where Hj, is the Nilsson model Hamiltonian, H,

pair TEPTEsENts the pairing interaction in its

standard form [9], x is the strength of the quadrupole force and {) is defined as Q) = Z q;

i=1

where
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The energies of the vibrational states are obtained in the adiabatic approximation by
calculating the stiffness and mass parameters C and B.

1/16n r’(Yy+ Y, o) in the case of y vibration

2.
B=h2 223% 3
1
C = 35, —% (3a)

where

. 1QW' l2 (u,,v,,' + le"Uy)2
2 o Z Ev+Ev’ (4)
IQW | (uvvv + uy 'Vv)z
D M s ®

In the present calculation the sums in (4) and (5) were extended over all the single-particle
states with positive magnetic quantum number valuesof N=10,1, ... ,7and N=10,1,...,8
harmonic oscillator shells for protons and neutrons respectively, in the rare earth region
and of N=0,1,...,8 and N=0,1,...,9 oscillator shells, respectively, in the actinide
region.

In the case of y vibrations the matrix elements of q between states with the opposite
signs of the magnetic quantum numbers were also included. The E, are the quasiparticle
energies and u, v are pairing amplitudes of the state ». The parameters of the Nilsson poten-
tial are those of Ref. [8]. The pairing force was diagonalized by the BCS method within
24 double-degenerated single-particle states with pairing force strength G, = 32.2/4 MeV
for protons and G, = 26.5/4 MeV or G, = 26.04/4 MeV for neutrons in the rare earth

or actinide regions, respectively.
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TABLE I

Strength of the K= 0 component of the quadrupole force.
“The first four columns give the nucleus, quadrupole deformation parameter ¢, hexadecapole deformation para-
meter £; and the experimental position of the S-vibrational state, respectively. In column five we present the
29 value calculated from the experimental value of the energy of the § vibration while the last column gives the
value of x3y obtained from formula (22)

Nucleus € i £ Eg MeV) zgocxp K(z)otheor
s25m®? 0.25 —0.02 0.685 0.173 0.191
gzom?®d 0.29 —0.03 1.100 0.166 0.188
2 Gd™ 0.24 —0.04 0.680 0.173 0.199
6 Gd8 0.28 —0.02 1.048 0.172 0.194
sGd%8 0.30 —0.02 1.449 0.162 0.189
DY 0.25 —0.02 0.674 0.171 0.202
DY 0.27 —0.01 0.993 0.174 0.199
sEri®? 0.27 0.00 1.081 0.179 0.202
bttt 0.27 0.02 1.245 0.187 0.208
g boree 0.28 0.02 1.460 0.193 0.205
L Hf1e 0.25 0.07 1.250 0.238 0.227
L HETE 0.24 i 0.07 1.199 : 0.253 0.230
4608188 0.17 0.09 1.086 0.276 0.258
Lo P1188 0.17 0.05 0.800 0.256 0.246
2sPt190 0.15 0.05 0.922 0.253 0.252
5P 1193 0.15 0.05 1.195 0.247 0.252
LgPt¥ 0.15 0.05 1.267 0.250 0.252
L P198 0.12 0.05 0.135 0.259 0.262
TABLE II

Strength of K= 2 component of the quadrupole force.
The first four columns give the nucleus, quadrupole deformation parameter ¢, hexadecapole deformation para-
meter £5and the experimental position of the y-vibrational state, respectively. In column five we give the »J, value
<calculated from the experimental position of the p-vibrational state while the last column presents the value of ),

obtained from formula (23)

Nucleus € & E, [MeV] xg;xl’ xg;he‘“
|
g2om1%? 0.25 —0.02 1.090 ‘ 0.465 0.405
c25mi5t 0.29 —0.03 1.450 0.486 0.428
oDy 0.26 —0.02 0.970 0.486 0.410
s BTttt 0.27 0.02 0.840 ! 0.485 0.419
&sErt?? 0.27 0.04 0.950 0.488 0.421
Y1 0.27 0.06 1.230 0.481 0.422
TS 0.27 0.06 1.470 0.475 0.422
L Ybi7e 0.27 0.07 1.260 0457 0.423
L0518 017 0.09 0.633 0.424 0.371
o ThE3? 0.19 —0.02 0.790 0.459 0.374
2,U%2 0.20 —0.02 0.870 0.456 0.378
90U 0.21 —0.02 0.920 0.459 0.383
g Pu?3® 0.22 —0.02 1.030 0.467 0.387
ga Pt 0.23 —0.02 0.940 i 0.486 0.394
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The relation

- o %
) 22
E _— h —_— = 1
Vs £ ©
22%
relates %, which is the only free parameter of this calculation, to the vibration energy values.
By taking the experimental values of E we obtain

1 2y e

=75 (1 > Eexp). 7y
The calculations were performed for experimental values of quadrupole deformation e.
The experimental values of the hexadecapole deformation &, were used in the rare earth
region only [10]. The values of £, in the actinide region were taken from calculations of
Ref. [6].

The results of our calculations are presented in Tables I and Il where the values of

X

o nt | ®

0

are given. Column five of Table I gives the strength x3 of the K = 0 component of the
quadrupole force which is responsible for § vibrations, while column five of Table IT shows.
the strength x93, of the K =2 component responsible for y-vibrations.

3. Deformation dependence of the multipole-multipole interaction

According to Ref. [4], the field-producing two-body force used in the RPA calculation
of the collective excitations with a self-consistent single-particle potential U is
dU(ry)
do(rs)

where g is the density distribution of the nucleus.

Fip = Flryry) = ©)

The components of Fy, corresponding to collective modes of given symmetry (Au)}
may be obtained by resiricting the variation of the density distribution to the variation
having this symmetry. For a self-consistent potential U a deformation parameter determines.
both the density variation and the corresponding distortion of the potential. Thus the
relation (9) may be rewritten in the form [11]

dU, 605;,
Fi = L %, 10
12 9“}4‘ 692 ( )
It is convenient to define the deformation parameter a;, by the relation
1y = flo3,)35,41) 1)

where

T = 8N Y,(9, @) (12)
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U}# is the part of the single particle potential of the (Au) symmetry type, and f(a,,) is such
a function of @;, that the equipotential surfaces of the distorted potential are given by

r==ro(l+ AZ“WYA#) (13)
o
‘We have then
_ o) oy 00 » o fans) 9%y a0
FlZ"— aam QQ&R F) . 1/‘(1) = 9051” QQly ql!‘(l)qlﬂ(z) (14')
where
Qz,; = f ‘;A,‘(z)deV 2 (15)

is the average value of the operator ‘}z,v
Thus the multipole force strength is given by

o IMflar) %z,
o = o) e 16)

where the derivatives should be taken at the value of the deformation parameters & which
correspond to the nuclear state just considered.

In general, both the f(a,,) and Q,, are not linear in a,, so the strength parameter x,,
changes with the deformation of the nucleus. It should be stressed that, as a rule, the para-
meters x,, change differently with deformation not only for different 4 components but
also for different u components of the same A. For example, in the quadrupole case,
increases while xy, decreases with the increasing quadrupole deformation [5].

In order to avoid calculating the derivatives of the expresion (16) for given values of
deformation one can define the operators

27) = gD Y3, p) (17)

in such a streched coordinate system (%, 7, z) in which the potential and the density distri-
bution become sphérical again. In this coocdinate system we have

- @) ..
Fr= 33 00, TGl (18)

where the derivatives should be taken at '5:,1” = (.
For g(r) = 7 the value of

[ Of(B) P
Hau == ( 9&1‘“ il _9@},,‘ );2”:0 (19)

coincides with the estimate of Bohr and Mottelson [1] for the multipole force strength of
spherical nuclei.

The deformation dependence of the force given by (14) is determined by the trans-
formation of the expression (18) from the space (%, , z) to the space (%, ¥, 2).
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In the case of an ellipsoidal nucleus with the semi-axis

a, = Rye’?
ay = Rye? (20)
ay = Rge

% = xe°2
§=yeh (21)
z=ze™°
where
o= 0.631(1+0.0458+...)
and

e ~ 0.958.

The quadrupole force dependence on ¢ in the (%, y, z) system implied by this transformation
is given in Ref. [5].

A static hexadecapole deformation introduces an additional distortion of the density.
In the space (x, ¥, z) this introduces the dependence of the multipole force strength on the
hexadecapole deformation parameter &4. In the formula (14) this dependence is determined by
the dependence of the multipole moment (,, on &. In the case of quadrupole force with

g(r) = r? the complete formulas for the strength with ¢, dependence included have the
form:

A Mw? 2e=°+e° [ 1.12+2.7¢
Moo = 3 ARg 2¢% 1 g0 1+e, “—‘1+0 (22)
dn Mw?
Mgy = _3_” - ;’g ¢2[1+0.19 ¢,] (23)

where R, is the radius of the nucleus.

The values of 3, and #5, obtained from Eqs (22) and (23) are listed in column six of
Tables I and II, respectively.

The quadrupole force strength values calculated from the experimental energies of f
and 7 vibrational states are in good agreement with the values predicted on the basis of
the simple oscillator model according to formulas (22) and (23). Both the absolute values
of the strength and their deformation dependence agree within an average accuracy of
a few per cent in the case of f-vibration, and 10-20 per cent in the case of y-vibration with
the predicted number. In particular, the calculation shows the opposite tendencies in the
deformation dependence of 9 and 9, in accordance with formulas (22) and (23). Both
methods of calculation give nearly the same difference between these two components of
the quadrupole force.
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It is interesting to notice that even the slight dependence on g4 predicted by formula (22)
appears in the value of the strength calculated from the experimental data. It appears
quite clearly in the splitting of %9 value for nuclei with the same quadrupole deformation ¢
but different hexadecapole deformation &,.

The results obtained above support the conclusion that the force extracted from the
phenomenological potentials may be used in the calculations of the collective nuclear
properties,

4. Vibational states for large deformation

The method described in Section 2 was used to study the behaviour of the y-vibrational
state for large deformation. The quadrupole coupling constant s, is taken from formula (23).
In this case we took into account nine harmonic oscillator shells for protons and ten for
neutrons. The pairing force was diagonalized within Z and N double degenerate levels
for protons and neutrons, respectively, and the pairing force strength was assumed to be
proportional to the surface of the nucleus [12]. The results of these calculations are shown
in Fig. 1. We see that the energy of the 2t vibrational state has two maxima which correspond
very nicely to the minima of the total energy of the nucleus calculated with the use of the

234
| —
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Fig. 1. The energy of the p-vibrational state for 234U, 238U and 240Pu is drawn as the function of the deformation
parameter ¢ for the %gz value calculated from formula (23). The haxadecapole deformation parameter ¢, = 0.06

Nilsson potential by the method of Stirutinsky [13]. The position of the 2+ vibrational
state in the second minimum is of the same order of magnitude as at the equilibrium. It
seems very interesting to notice that we have no real solution at the deformation corresponding
to the saddle points. This seems to be in agreement with the result obtained by Pashkevich
[14] who calculated the total energy of the nucleus with the inclusion of the y deformation
parameter. He concluded that while in both minima the nucleus seems to be axially symmetric
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the saddle point occurs for y # 0, so if there is any experimental evidence about the
y-vibrational state at the saddle point {2] this kind of vibration may exist only if 9 = 0.

The authors would like to express their gratitude to dr V. Pashkevich and dr D. Arseniev
for helpful discussions.
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