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POINCARE INVARIANCE IN SIX-SPACE
By E. Y. Hsu*
Dapartment of Physics. University of Michigan
(Received June 11, 1970)

Implications of Poincaré invariance in six-space are considered. It is shown that isospin
space emerges in a natural way. The usual space-time is defined by electromagnetic interactions.
The one meson exchange amplitude is naturally modified to have a sharp forward peak. The
corresponding potential is derived.

1. Introduction

The fundamental nondynamical symmetry group is here assumed te be the Poincaré
group in six-space. The rotational symmetry is expressed by the constancy of the metric
e n=12,3,4,5,0); g1 = oo = & = — 1, B4 = 8o5 = &es = 1, £z, = 0 (£ # ).
The translational symmetry gives rise to the six-vector p*. Four of its components p*(u = 12,
3, 4) are identified with momentum and energy. The physical meaning of the extra compo-
nents is found in Section 2. The special role of the photon as the mediator of electromagnetic
interaction and therefore macroscopic measurement is discussed in Section 3. As an applica-
tion, a generalization of the one meson exchange amplitude and the nonrelativistic potential
corresponding to it is given in Section 4.

2. Isospin space
The Clifford algebra for six-space is
I'’or,+I,T, =2, M
An irreducible 8 X8 matrix representation using the Dirac and Pauli matrices Vi and T3 1is
Ty =yp,X7, 1x1, 1x74 )

where x denotes direct product.
The Dirac equation is generalized to

I'ep*y(p) = py(p) @)
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where u is an invariant parameter of a particle. Writing the eight component spinor in the

form
A
= ()

where A and B each is a four component spinor and N is a normalization factor, (3} can be
rewritten as

(n—y.p") A =f*B (4a)
(u+y,p*)B=f4 (4b)

where f = p5+ipS. B is therefore determined given A.
A is specified to be the solution of

y.p*A = mA (5)
where m is defined to be the positive root of
me =~ () = wi—|f]? ©
From (4a), B must satisfy

y.P'B=mB (7

a n+m
T @

where the normalization yty = A*A = P4m is used.

In case f =0, (4a) becomes (u—p)A = 0 which puts no further restriction on A;
(4b) becomes 2uB = 0 which means B =0 if gy =m # 0.

Since A and B satisfy the same Dirac equation as in (5) and (7), they are identified as
isospin components. A graphic interpretation can be obtained by writing p in the form for
a spin 4 spinor and spin axis making angles § and ¢ with the third axis:

An explicit solution of (3) is

6

py=A 0 )
The angles are given by

f == arccos ~’£~ , @=argf. (10)
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The picture then emerges that the three-space spanned by mp®p® or equivalently 75a8
where 7 is the proper time is the isospin space. The direction of isospin is the direction p*
makes in the mp3p® space (Fig. 1).

T

m

Fig. 1. The direction of isospin in the mp®p® space

3. The photon

Relation (6) is assumed to hold for any real particle. If a particle has p = 0 then m?
SI? being positive must also be zero. So the photon may be assigned p = m = f = 0.
For a virtual photon that is being exchanged in an electromagnetic process it is plausible

and

as shown in the next section that the relation 0 = p > sup [Af], where Af is the amount of
5-and 6-momentum carried by the virtual photon, holds. Then Af = 0 too. This reduces
the lowest order form of current conservation

¢p(p+q) Tey(p) =0 (11)
which can be derived from (3), to the well-known form
7“p(p+9) v xTap(p) = 0 (12

which singles out an axis of isospin space.

4. One meson exchange amplitude

Consider a one meson exchange process. The Green function is

1 1
R

(13)

where ¢° is the six-momentum carried by the meson, x is its invariant parameter, g% = 79"
Af = ¢5+ig®. For simplicity let the external particle lines all have identical invariant para-
meter g and mass m. Then they all have the same |f]. The range of |Af|? is then

0 < |Af2 <42 = 4(u2—m?) (14)

Since |Af]? is not measured in experiment the physical amplitude must be averaged
4{pt—m?)

_ o(|4f B)djAfT*
w- [ AR 09
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where o is a weighting function. A simple choice for g is the constant

1

Q= 4'(;“2 “:’—77?2-5 . (16)

Thisisjustified on the ground that the integral over |Af|2is really over dg®dqta| Af|d|Af |ad|Af ?
which has no weighting as in an usual Feynman integral.

Using (16) in (15).

1 b
where b =4(p*—m?). (17) has the limit

. 1
limM= ——-+.
b0 q%—x
M is analytic in g2 except on the cut from x2—b to %% The restriction »? > b is im-
posed so that the cut does not extent to the physical region. (This is the basis of u? > sup|Af?
in the last section). The discontinuity across the cut is —2mi/b. The cut reduces to a pole as

Fig. 2. The contour for evaluating the integral in Eq. (18)

b — 0. For b very near x2, the amplitude has a sharp peak at small negative ¢% This does
not disagree with the experimentally observed feature of forward peaking in many two
body and quasi-two body processes. '

A scattering potential can be derived from M. It is defined as the Fourier transform
of the static form of M.

| 21,2
oy Ly, P Erb
(2m) b g2+

Vi = (18)
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The |g| integral is evaluated using the contours in Fig. 2. The result is

V() = Z;ibr [ Jx*—b exp (—-Vx2r—b r) —x exp (—xr) N

+

exp (— V/x®—br) —exp (—xr) ] . (19)

r2

It has the limit

lim ¥ — — exp ( —xr)
b0 4or
i. e., the Yukawa potential.
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