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Measurable quantities, called generalized statistical tensors, which are functions of the re-
action amplitudes, are introduced and investigated. Their role in the full experimental check
of theoretical predictions between the amplitudes is discussed. As an example the polarizations
predictions following from the additivity assumption in the quark model are investigated. It is
shown that the full experimental check of the quark model predictions for the reaction $+4-0~ —
- %ti- 0- cannot be made from knowledge of the angular distribution of the linear momenta of
the decay products alone.

1. Introduction

As the volume of data on scattering of polarized primary beams on polarized targets
increases, the most convenient formalism useful for comparison of theoretical predictions
with experimental data is required.

Let us consider the two body reaction of the type

142 - 344, )

If one is concerned with polarization experiments, the initial and final states of the inter-
acting particles are determined by the initial and final density matrices ¢' and g7, respectively.
Their matrix elements are related in the following way [1]:

*
Okt = Z ka,kaklk, Ok 1L L1, 2

kyskelyl,

where k; and [, enumerate the spin states of the particles (they can denote helicities, trans-
versities or spin states in any other representation); N is the normalization factor:
N= Z /i kskgklk,gilkzl,laf I:k.l. g 3)
kiyh
Se i, denote the amplitudes of the reaction (1).
Conservation laws or dynamical models link some amplitudes with the others and thus
imply some relations between the matrix elements 0{,1@.1,1‘- However the determination of

* Address: Instytut Fizyki Teoretycznej UW, Warszawa, Hoza 69, Poland.
(191)
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gi'k‘,,,‘ from the experimental data is quite cumbersome; it was proposed [5, 6], therefore,
to derive theoretical predictions for the quantities simply connected with the measured

L;,L.

data, namely, for the expansion coefficients gu77% of the o/ into the direct products of

the operators Q{;I: ® QL.‘:

Af 344 4
e (233»L1) (25, +1) Z Z qxin 05, © 0% *)

s;LA MM,

L,L.

The explicit form of the coefficients g7 is the following [1]:

qk?ﬁ‘q = V233+1)(2s4+1) I (—1)tsehhy
ki

X (5353k—l3Lal M) {454k g — 131 Ly M, 4>9£,k.1,1,- ()
The ¢’s can be determined from the knowledge of the probability distribution of linear

momenta andfor polarizations of decay products or from double scattering. If the final
particles are unstable the ¢’s are simply expressed by the average values <}L3* YL' > [2]:

< Yz’fd’, Yiar )= am o abr b, (6)
where
% qu‘ Yf;&)

= [ sin dyddy f de, f sin 9,d9, f dpa W (95, @30 Or 9) Vi3 (B3, 09) Vit (0p 0. (7)
0

Here, W(&5, @3, 34, @) denotes the normalized angular distribution function of momenta
or polarization of the decay products, and the coefficients b; and b, depend on the decay
amplitudes only. A more detailed discussion of the measurability of the ¢’s will be given
later.

In spite of the fact that the predictions for the ¢’s can be easily checked they are not
very convenient for theoretical analysis, since they depend explicitly on the initial density
matrix.

The theoretical models always give rclations between the reaction amplitudes. Very
often they cannot be checked in one experiment; usually, to check them one has to perform
experiments with different initial polarizations. The problem of the choice of the minimal
number of experiments which can provide a complete test of the theoretical model is quite
important and cannot be solved in a simple way by the known methods.

In this paper we propose to describe the theoretical predictions in terms of the coeffi-

; L.L,LL PR s od atatiction] tensars) whi <
cients A 3r3sim, (called by us generalized statistical tensors) which are defined as follows:

(2s5+1) ( (25441) LiL,L,L
L.L, — 1duglogiog
MM, \ Z5,+1) 25+ 1) 4 M}; ARiACMm, g, ®)

L,L.

where the gl are coefficients analogous to the gy , but for the initial density matrix.
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The advantagaes of using the A’s are as follows:

(i) The A’s can be easily obtained from the linear Eqs (8), so they are closely related
to the measured quantities.

(ii) The A’s are simple functions of the bilinear products of the reaction amplitudes
and are independent of the initial polarization, so the symmetries of the 4’s can be easily
derived from the symmetries of the reaction amplitudes. Also the minimal set of equations
for the A’s which is equivalent to a given set of equations for the amplitudes can be easily
found. From this minimal set of equations one can easily see how many experiments and
with what initial polarization are needed to check them,

(#ii} If the relations between the reaction amplitudes are linear then the derivation
of relations between the A’s is almost immediate and can be performed in the same way
for any reaction of the type (1). Having linear relations between the A’s one can derive
from them the relations for the ¢’s obtained in the experiments with different initial pelari-
zations.

In Section 2 we find the explicit form of the 4’s and we investigate the problem of their
independence.

In Sections 3 and 4 we find the relations between the A’s stemming from the parity
congervation and from the quark model predictions for the transversity amplitudes.

In Section 5 we discuss the problem of derivation of the relations between the ¢’s from
linear relations between the A’s and the problem of “measurability” of the ¢’s by means
of measuring <YL’ Yi© 2

In Section 6 we discuss the problem of obtaining predictions for the ““measurable” 4’s
on the example of the quark model predictions for the reactions 3t4+0- — 3+ +0-. We
also investigate the problem of full testability of theoretical relations between the amplitudes
by the use of ““measurable” A’s. It is shown that the quark model predictions for these
reactions cannot be completely tested. It is also found that the quark model implies that the
cross-section for the reactions of this type is independent of the initial pelarization.

2. General formalism

Starting from Eq. (5), using (2) and expressing o' by the coefficients gy, in the
usual manner [1},
. 1
At E— gy R YT ol X
Gkl ™ /155 1) 25+ 1) )
X LZ (sisiky, —hHa M) spsoky, 12|L2A'[2>’]ﬁllllx4, 9)
we obtain the following formula:
Lr, 1 (2s3+1) (25,+1) LL.LL, ~ LL,
Wi =7 1/ @, ) @1 Z An M, gids, (10)

Ly,L, MM,
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where the coefficients A&IM’I‘X{;‘M (denoted in the abbreviated notation by A% or A’s)!
are defined as

= zl; ol (5o M) fag it /i an
Here L, M, s, [ denote the following four-indices:

L= (LLyLoLy), M= (MMM, s = (s;s5550). 1 == (higlyly), (M+1); = M, +1

i

and
acL(s, M) = H( 1)”_1'(93 M,+1, —1 LM, (12)

One can notice that

{0000 _ 251+1) (Zvo-rl)

(255 +1) (25, 1) ° (13)

where g is the differential cross-section for the reaction (1) with unpolarized initial particles.
From the properties of the Clebsch-Gordan coefficientz we easily derive that

IZ al(s, Myak. (s, M') = 0. Oppar (14)

and

3l (s, M) (s, M) = 4. (15)
L

Using Eq. (15) we obtain the inverse formula to Eq. (10) which reads:
full = ; wp (s, k=D Ay (16)

Equation (16) shows that any product of amplitudes of the type f,f;" can be expressed in
terms of the A’s. It is clear, therefore, that the set of A4’s contains the same physical informa-
tion as the set of reaction amplitudes.

It is easily seen that the A’s transform under the rotation of the reference frame for
spin quantization in the following way?:

Ao, = 23 Dfian(@n o v0) Diala: oo 7)) x ()

XDIﬁ;M; (@3 P3: v3) Dﬁi.M;(aM B1- 74 A‘Iﬁ{"ifj{iﬁm.ﬂ
where a,, f;, y; are the Euler angles of rotation of the i-th particle reference frame for spin
quantization.
Now we shall discuss the problem of independence of the A’s. There exist many rela-
tions between the A’x following from the construction of the A’ from the amplitudes of

1 The A’s are functions of energy E and the scattering angle &, but we shall not write out this dependence,
unless necessary to avoid confusion.
2 Notice that we rotate the reference frame for spin quantization for each particle separately.
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the reaction. The most simple ones are readily obtained from the definition (11):
(A )* — ( 1)M1’)“M.TM3+M4AL (18)

However, in general, construction of the maximal set of independent A’s seems to be quite
difficult. Therefore, we shall find the maximal set of independent equations which have
to be satisfied by the 4’s. At first we construct the set of independent products of ampli-
tudes for the reaction (1). If nothing is assumed about this reaction we have n=(2s, +1)x
% (255 +1) (255+1) (254+1) independent, complex amplitudes. We write them as elements
of an n-dimensional vector (fy, fzs ---» f,)- We can represent all products of these amplitudes
as elements of an (nXn) hermitian matrix B obtained in the following way:
. i

[f1 AL et |
e A e fuf

| |
| | .
} (fo o) =] : (19)
|
The matrix B is of rank one [3], since all its two dimensional minors vanish, so the matrix B

is determined by any non vanishing row or column. If we assume that p-th row is given
and that B, # 0, then all other matrix elements can be caleulated with the help of the
equations

B,,B; .. .
By="22%_ 1<ij<n, j#p. (20
BPP
TABLE I
Table of the coefficients af (s, M)
s=0
a’l (0.0)=1
s=2
My

A 17 (10 11-1]00

22|21 (2,0 271122| 11|10 |11

5= 3/2

M

ANJ23 (2237 |20 3.-1(3-2[3-3|2:2) 2,1 12,0 |21 [2-2) 17 | 1.0 1,7 | 00
L A 1 12 212

Ifr oz lolglol-111 10 70|71 570 50

7

2lo i1 om0l 1jo0lolro|-1{a]o %5 o0
21, -2 2 7 1|7

1 0;05,_/5—_(; vﬁg 2|0 0\/?0 0 5 0-—5"'.;-5-—

0 040 0 00 f0 0 010101010 ﬁ olo
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Equation (20) and the condition Im(B,,) = 0 written in terms of the A’ form the maximal
set of independent equations to be fulfiled stemming only from the fact that the ampli-
tudes are complex numbers. From Eqs (20) also follows the equality

4
A4y =11 ! Z Z(—l)’é V2L;+1 J2L; +1

i1 V2541 LIy ‘T,

X LiLi" M—M', M'|LM ) W (LisiLisgs sili") A%y A%, (21)
where W(Ls,L;s;s s;L;") are standard Racah coefficients. Since Eqs (20) written in terms

of the A’s and the Eqs (21) are rather complicated it ix difficult to deduce from them the
complete set of independent A’s. The easiest way to find such a set is to choose the set of
A’s (the easiest to be measured) and then to check whether they form the complete set
of independent functions of all independent amplitudes. The simplest way to perform this
is to check whether the appropriate Jacobi determinant does not vanish.

3. Svmmetries of the coefficients A

By the symmetries of the A’s we shall understand relations between them following
from the symmetries of the amplitudes of the reaction (1). To derive some the most important
symmelries we have to use some representation for numerating the spin states of the particles
participating in the reaction (1). In this paper we shall use the transversity representation,
we choose the normal to the reaction plane as the quantization axis of spin of the particles
in the reaction. We choose alzo the z-axis for each particle in the direction of its momentum.
To write our amplitudes explicitly we define the states:

OIELLY = ]/ % > R(9) (L,(2)000 I; YL_ (1000 [, 3), (22)

where R,(#) is the operator of rotation through the angle ¢ around the y-axis and L (v)
is the operator of the Lorentz transformation in the direction of the z-axis with velocity v.
The states {000 [;> and [000 [;) are the =pin states of the particles ¢ and j in their rest
frames with the y-axis as the quantization axis. The velocities v; and v; are chosen in such
a way that the total three-momentum of the two-particle system vanishes. The transversity
amplitude in the ¢, m. system is written with the help of the states (22) in the following way:

T

, 2 ,
FraaaE, 9) = ;”- COIELLIT|00 EL LY, (23)

where E is the total centre of mass energy, @ is the scattering angle and p is the relative
momentum in the ¢. m. system.
If parity conservation and rotational invariance are assumed, the following relations
between the amplitudes (23) are obtained:
gy It =11 5
Srgga, = m(=DF T (24)
where 1 = nyn3m, is the product of intrinsic parities of the interacting particles. Now
starting from Eq. (11) and using Eq. (24) we easily obtain the following equations:
! oy * - My My .
Afy =D ai (s, M) fary, i (=DM Ma+ Moot M, (25)
7



and
Ay =1 ZI: (=1)Hhbmhad (s, M)fypys ST
Using Eqs (14) and (16) we can write Eqs (25) and (26) in the following form
Akd — (_1)M1+M,+M,+M.A11c4
and

Ay = =1y S ok (s, M) A,
2

where

G, M) = 3 (—Lysetsstontahobiotiil (o M) ol (s, M),
I
The coefficients ak.(s, M) factorize:
4
af.(s, M) = 111 a,f:,(si, M),

where

“ﬁ'(sia M) = Z (_1)5i_li<sisiMi by —LILMD (sis M+ _lilL:']Wi>'
1

The coefficients afi(s;, M;) fulfil the following relations:
apl(s;, M) =0 for L; < M| or L; <|M],
Qb (s, M) = HL+(— D L Mgl (o),
agids;, My) = ag}(s;, M)
and

Vs M) = (_1)Mia£§’(si,“jw-i)‘

L
(l:Li
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(26)

27)

(28)

(29)

(30)

(31)

(32)
(33)
(34)

(35)

From the properties of the Clebsch-Gordun coefficients it is easy to show that the af'(s;, M)

are orthogonal:

L Ly ~
LZ agy(s;s Mpapy(s;, M) = 8y, 1,
e

(36)

The transversity amplitudes f;,,, of the reaction (1) and the amplitudes g;,,, of

the “‘time-reversed” reaction
344 —>1+2

are related in the following way:
’

=F
ﬁal¢lxl. P g’xl:lnla’

(37

(38)
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where p and p’ are the initial and the final relative momenta for the reaction (1) in the c. m.
system. Taking into account the definition of the A’s the following relations among the
generalized statistical tensors for these two reactions are obtained:

LL.L,L 1 4L, L L.L
At isam, = A iris, (39)

where A% and 'A%, are the A’s for the reactions (1) and (37) respectively. If the reaction (1)
is elastic then the relations {39) reduce the number of independent A’s.
If the reaction (1) is of the type

A+4->B+B (10)

then it is invariant under charge conjugation, and the amplitudes of the reaction (40) fulfil
the relations

: _ Ll —1,
Jigga, = (=L Jiga (41)
If we combine the relations (41) and (20) we derive the following relations:
S, = W, (42)
which rewritten in terms of the 4’5 takes the form
LL.L,L, __ 4L.L.LL .
Agtiia, = AviAnsim, (43)

4. Quark model predictions

We shall present here the synunetries of the .f’s following from the quark model.
We shall consider the reactions of the type:

1t 3+
5 F0T 5 0 (44)
é—++0“ - -gf +17, (45)

The following relations among the reaction amplitudes hold [7]:
Sragae = N Nolg) fi 10,010,
N, (=b) N~ ot (48)
Amplitudes of the reaction (47) fulfil additionally two other classes of relations
Sraaa, = Notla) N L) f1 g 0100m41 7
+N (=) N, (—1) fr 11001 (49)
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and

S, = Ni (1) N (L) N, (5) N, (L) S snnine1 +

+ N, (L) Ny (—1y) N (ly) N (—1y) S -1 1-1t (50)
+N (=) N, () Ny (—1y) Ns‘(ltl) So—ypun-1 41t
+ N, (—1) N(—ly) N(—13) No(—=L) fi, 14,10 -1,0-1

where Eq. (50) is obtained by iteration of Eqs (48) and (49). The coefficients N(l) are

defined as follows:

1 for [ = —%
_ 51
N {0 for all other cases (51)
and
1 1
Vg fOI' l = E—
1
1 for I= —
Noy(l) = 2 (52)
_ 3
V3 for I=— 7
0  for all other cases

Relations (48) put into the definition (11) of the A’s give for them the following relations:

L,L,L,L L. ’ ’
At i, = szz .(ﬂ L1, My)PLess M) ARy P Uag st 1,0, +
1 i3

L+ Ly +Ls+Ly ALy ( 2 (o y'LoLy'L,
+ (=t Lt Lt L (51 —Ml)ﬂfa,(s3, _Ms)AﬁdlliﬁNﬁ,Ma—l,Mﬂ” (53)
where the coefficients B.(s, M) are defined as
L

BEAs, M) = D) N(ly) (ssly, —L|LM )y (ssly+1, —LiL'M+1). (54)
Ll
The coefficients B%.(s, M) for s = 1/2 and s = 3/2 are displayed in Table IL
If we take the complex conjugate of Eq. (53), exchange M; — —M; and apply Eq. (18)

we come to the relation

Alﬁfxﬁj{;’;M‘ = Z (_1)L1+L"+L’+L3’(/3£I'(31» Ml)/gliz'(sen M3)Aﬁi;ﬁ2{f}\£3Ma+LM4+
Ly,Ly’
+(_1)14A“L‘(+L3+L3’(ﬂ£i'(3v —M;)Br(ss —Ma)AIX/};If{T};/IL;,Mrl,M‘)‘ (55)

Now combining the relations (53) and (55) we derive

L . 'LLy’L
0= > (A—(—Dk+hiibil )(lgff(sv My)BE(s3 ]V[3)A1L\illff,xM,fMa+1,M.*
Ly,Ly"

—ﬂIL,:'(Sv "M1)13fi'(537 —M:s)Aﬁ/};l—"ﬁ:fI:fMa-l,M) (56)
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TABLE II
Table of the coefficients fF (s, M)
1
s=5
MNE a] NRE OJ
1|0 110
L=1 o [&RE L£=0 oo a]
E _L
-1 -73; -1 i
5=3/2
NEIEBED NEEBHD
3]0 3o
7177
2 |7g g 2100
v (AR 2[R
3 D L 2 7
0 vl 277"2;75] o0 V_f'gﬁl
JPR T N RN R E
”Z’?' Y} 5v2 RWE VE | V1D,
7
-2 | 2|7 |+
]
e il 2
NEBREHDO NEEHEBD
3lo 3o
2100 2jo0]e
t{ae]o]o 1jo0]a|o
L=1 0lo Ov”f'x?_'ya‘l U'=0 [o]ofo]o aJ
el E A N
! [BREEvE Rl W
-2 —z—y%s—é%— 2|00
-2l0 -2le
and
2 ; L,+L,"+Ly+ Ly 1 ] 3 A
At = 3 ()RR ) B o, M B(sy M) X
LWLy
LyL.LyL, 1 L,'L,Ly'L,
XAM!"‘I:IMz;Ma“FI:Ma *"ﬁi'(sl’ - )ﬁL A(s3, — 3)AM£-21 M,,Ma—l,M,)' (57
For applications iteration of Eq. (57) is also very useful:
ARidiaia, = 25 2 (=D L) ()RR
L!')L(‘)I Ll’/)LQ'l
W IRL: (¢, AT \ALs (< Ve AL L 2 (e L,"L,.Ly'L
X[Bridss, M) (s ]V[:s)ﬁf,“(bv M, -+ 1)4811:3"(53» M+ 1) ARy Y83, v, M
L, L, Ly Y "’ Ly'LyLyL,
+/3L {31 —]V[l)ﬁLa'(S:i’ —M)‘BL (S1 —1W11+1)/91£,"(53’ —M;+ 1)AMl MM —2,M,

*“/3L, (51, M, )ﬂL, (s3> M. ﬂLl 515 ~—~Ml—1)/3f°:,(sg, _M3‘1)A1[ﬁ;;5le\'ff:;{;t:+

+5L:’(31’ ‘iwﬂigl,:'(ssa _1113)51,:"(51, M, 1)131,,"(33’ 1)*4%},’1{25?,1&123 (58
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Using Eqs (49) and (11) we can derive analogous equations for the 4’s of reaction (47).
These equations are obtained from Egs (53), (55), (56), (57) and (58) by simple exchange
of indices: 1452 and 3 « 4. The relations for the A’s implied by Eq. (43) are obtained
in a similar way as the relations for the A4’s following from Eqs (48) and (49).

With the help of Eqs (18) and (28) one can easily derive the relations for the statistical
tensors given in [5] following from the quark model. It has to be noticed that the connection
between the A coefficients and the statistical tensors of [5] is the following:

] 1
V(@1 1) (25, +1) Tagin, = 7 (Avoniain) ™ (59)

5. Relations among the q's implied by the relations between the A’s

We shall now consider the problem of derivation of relations for the coeffficients (1’1{,;5“4

4

stemming from the relations among the A’s. Let us suppose that we have linear relations
for the A’s. Any set of linear relations for the A’s can be written in the form:

my
LiL.L.L, __ LiL,Ly'L,’ LL.L'Ly 4LYLyLyLy
ARiiais, = 20 20 Cnaratim Orai i s AN R b (60)
k=1L ,Mi’
Let us now suppose that we perform the polarization experiment with the initial polarization
Pl p ‘ 1

described by (I‘A{‘,’j{jn; if we contract both sides of Eq. (60) with ¢jjp5: , then using Eq. (10) we
obtain

—————————— M,
ditin= . | e N B Y et
TN, 2s;+1) (255 +1 MMM
0 (2s141) (255 +1) &4 LT M
(L, L. L,L,’L, L/LLy’L,
X 21 2 (2 2 Cinanbetaciia) As R v (61)
L\ L, M\"\My" L,,L, M;,M,

'» is the normalization factor caleulated from Eq. (3). From the expression in the bracket
we can form the nxXn matrix (n = (2s;+1)(2s,+1)):
My= 2 3 2 X dianbuiaiam On @V (62)
LL, MMy LiLy MM,
In the space of the n Xn matrices we can always form a basis (o) consisting of n? positively
definite, hermitian matrices with trace equal one (each of the matrices g’ is a spin density
matrix). If we now expand the matrix ﬁfk in our basis we obtain

My, = 2 pu (63)
Equation (56) immediately yields

iL.L L,L,L,’L, — 1L’ Ly’
D by = 2 Prdst (64)
LysL, M ,M, !

Substitution of Eq. (64) into Eq. (61) gives

LsL, — 1 A7 LsLeL. Ly’ &l IL, 'L."
G =5 2 Y Y Y, Nediaiat g (65)
0

",
k=1 1 L, L, My,M/
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where ¢'%’ I;h " dl‘e the ¢’x of the final density matrix when e initial polarization is described
by the matrix of, and N, are the appropriate normalization factors. The choice of our basic
polarizations (o) is quite arbitrary. In any particular case we choose such a basis that in
the Eq= (63) the =mallest possible number of basic matrices appear, because in this case
we have to compare the ¢'s of the final density matrix measured in the smallest number
of experiments.

As an example of this procedure we shall consider the Egs (53) for the reaction (44).
In our case we have

LOLO bLL LL LOLy 0
A= 23 2 (blM TR2TINR +b il My [”M@n) A5t 08,00 (60)
Ly, Ly M, LMy
where
blMtM;' — PL; (A[) OM% SMi+ D
Lil LitLipL
bolik = (— VYR BE(— M) Opr gy (67

The muatrices M, (k =1, 2) are

M, = 22 bkf\?tf}(/!;‘llszthﬁ;'®Og- (68)

Li,L MM/

One should notice that QY is the identity matrix. It we assume that the initial particles are
unpolarized we obtain

M, = 24 Z kaMl Q]Lw1 ®05. (69)

Thus,
. sy {01
= 10 Gie 8= ().

My = —plOQL. ® O = ((1’ g) (70)

If the following matrices are chosen as our basis:

*0__1 10
=95 101)

.y 10 -

My = —(1+i) go+ 0 +ig%

then we have:

My = —(1—i)+ 1 —ig? (72)



203

and this immediately gives

g Mo = 2 (B (M) [— N1 +1) g2k 0+

1‘1
o ==
Ly 0 - Ly 1\ Ls+ Ly’
+Nl‘ilMﬁ.1()"1""]\72(1'21\41pIO]TL(”‘ ) * Ly ( M) x

X[—No(1 =)0 _1 0+ Mgt i 10— iNgg2 %y 1 O3 (73)

Thus, we obtained the quark model predictions between the ¢’s. To check these predictions
one has to measureall the ¢’s in three experiments with initial states determined by the density
matrices 0%, ol, g% The matrix g® describes the unpolarized initial particles and ¢! and g2
describe the polarization of the initial fermion in the reaction plane. The use of our
basis (71) enables «imilar derivations for any equation between the A’s in the form (60)
and this was the reason for the detailed caleulations given above. The analogous, however
more complicated, reasoning can be performed for other reactions. We are not going to discuss
this problem any longer, because there are experimental difficulties which make the rela-
tions (73) useful only in cases when all the ¢’s involved in the relation of this type are measur-
able. However, not every coefficient ¢ can be easily measured. The coefficients qf",;ljw can
be calculated with the help of Eq. (6), but’unfortunately for parity conserving decays the b,
coefficients with L odd vanish for the angular distribution of momenta and thus in this

case the measurement of qL'L

with Ly and Ly odd would require the cumbersome observa-
tion of polarization of the decay products and at present technical reasons make thisimpossible.
For reasons given we shall call the qll\‘}:x,‘ with Ly and L, odd the ‘‘non-measurable” ¢’s.

Since we are interested in theoretical results which can be tested by the existing methods,
we shall solve the problem of this section in another way. We shall consider in the next section
the set of ‘“‘measurable” A’s (which can be calculated from the “‘measurable” ¢’s) and
relations between them stemming from the relations (48) between the reaction amplitudes.
It will be seen on the example of the reaction (44) that the relations among the ‘“‘measurable”
A’s do not check the relations (48) completely. Therefore, at present a thorough check of
the additivity assumption in the quark model for that reaction is not possible.

6. Full testability and quark model predictions

At first we shall give a precise definition of the notion of the “‘measurable” A’s. By
“measurable” A’s we mean those (non-vanishing from parity conservation) 4’s which are
coefficients in the expansion (8) of the measurable ¢’s. To calculate them one must have
all measurable ¢’s measured in (2s; +1)2(2sy -+ 1)® experiments with different initial polariza-
tions of the initml particles, The initial polarizations should be chosen in such a way that the
obtained system of linear equations for the A’s:

L.L . l (233’*‘1) (254’L1) L,L,L,L o
34 I / v 1- 34-g ‘4
gt (i) = N; (25,+1) (2s,+ 1) 2;2 P AR gz () (74)

<

could be solved. Throughout this section by ““A” we shall understand the ““measurable”
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Now we shall discuss the problem of derivation of the relations between the A’s from
the relations between the amplitudes predicted by some model. The relations for the ampli-
tudes can be divided into two classes:

i) vanizhing of some amplitudes

ii) some amplitudes expressed as the functions of the other amplitudes,

To check the relations (i) we write down explicitly all the A’s with all M; = 0; they
are the linear combinations of the squares of the moduli of the amplitudes. Next, we try
to build a linear combination L(4) from the mentioned A4’s equal to the linear combination
with positive coefficients of the squares of the moduli of only those amplitudes which have
to vanish. The vanpishing of L(A) implies the relations (7).

In the case of the relations (i7) the situation is more involved. Now the procedure is
the following:

a. assuming that the relations (7} hold we write down all the 4’s in terms of the non-
-vanishing amplitudes,

b. we write down the maximal set of independent relations between the A’s stemming
from the relations (it),

c. we derive all the necessary equations for the amplitudes which also lead to the
relations (b) for the A’s,

d. from the equations (c) we choose, if possible, such a set of equations which is equi-
valent to the equations (if) and then the set of the equations for the A’s following from the
chosen equations for the amplitudes is the required set of equations for the A’s equivalent
to the relations (i7).

As an example of this procedure we shall discuss the reaction (44) once more and quark
model predictions for this reaction. In our case we have the following amplitudes f;:

Si=Fp0-y,00 Fo=L010s (75)
fa :f"l/zo_l/zo’ ‘f4 :f—s/eolllo'
Equations (53) imply the following relations:
i h=0,f,=0 (76)
and
i) fo=Tfs (77)

Let us notice that Eqs (76) are implied also by much weaker assumption that the value of
transversity in the reaction can be changed by 1,0 or —1. To check the validity of the
quark model for that reaction one has to check the relations (76) and (77).

For simplicity’s sake we denote:

LOLO __ 4LL
Anorto = Asiir, - (78)
Now we write explicitly the “‘measurable” A’s with M, = 0:
1

AR = —
® 2)2

(AR LR+ 2+ 1/,
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‘48(2)_ q/* = ({1211 = Sl A19),

Am“ -—(“tf1‘2+Qf2‘2—lf‘sf2+’f4‘2)’

V

A= s CLAP P ) (1)
For L(A) we have
1
L) = A+ AG= o (A=< 1 £, (80)

so the relation
AR+ AR =0 (81)

checks the relations (76).
If Egs (76) hold then the only non-vanishing A4’s are those from Eq. (79). In our
case the relations (i7) imply only one independent equation

A =0, (82)
The necessary equation for the amplitudes leading to Eq. (82) is

(ol = f4l (83)

and thus the quark medel cannot be fully checked in this case.
Other relations among the A’s which follow from the relations (76) and (77) are:

Ay =0, AR=0,
Aoz =0, A 11 - (84‘)

and they can be treated as a complementary test of the relations (76) and (77

Let us notice that from the relation (84) and from parity conservation it follows that
the differential cross-section for the reaction (44), with polarization of the initial fermion
equal to P, is independent of the polarization of the initial fermion:

a(P) = a,. 85)

The reactions (45), (46) and (47) coan be considered iu a similar way. Perhaps for these
reactions the quark model predictions can be experimentally checked to full extent. The
investigation of thiz and other problems i= continued and the results will be published
elsewhere.

7. Discussion

Since we discussed results in each section we shall only add some comments here. At
first we would like to compare two methods of derivation of the relations between the A’s

-

stemming from the relations between the amplitudes. The method presented in Section 5
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gives quite general results, but checking them requires knowledge of the ““non-measurable”
A’s and ¢’s. The method of Section 6, heing less elegant, gives predictions hetween the
“measurable” 4’< only. This method has vet one more advantage, namely, direct calculation
gives a clear view of the changes inresults caused by the use of weaker or stronger assumptions.
The second method gives a set of independent relations, while for the first method this
problem is quite involved.

The authors are very thankful to Professor J. Werle for his kind interest in our investiga-
tions, valuable suggestions and ecritical reading of the manuscript.
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