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The gamma-vibrational parameters By, C, and the energy Ey of the gamma-vibrational
state of the deformed nuclei are calculated as functions of the ¢-deformation in the whole region
between the equilibrium and the saddle point. Both the microscopic and macroscopic descrip-
tions are used. The following result is obtained: when ¢ increases from its equilibrium value
to the saddle point the nucleus begins to be more stiff with respect to the gamma vibration.

1. Introduction

The first theoretical description of the low-lying collective nuclear oscillation was
given in 1952-1953 by A. Bohr and B. Mottelson {1, 2] who treated the collective oscillations
of the nuclear shell structure in the adiabatic limit. They assumed that the collective frequency
is small in comparison with the single particle excitations.

In the case of the deformed nuclei there are two types of the collective quadrupole
vibrations — the axially-symmetric § vibration and the non-axial y-vibration.

In the present paper we shall discuss the properties of the y-vibrational characteristics
of the deformed nuclei (the energy of the y-vibrational state E,, the stiffness parameter
C, and the mass parameter B,).

The y-vibrational states have been found in many deformed nuclei in the rare earth
and transuranic regions. Their quantum numbers Knx = 2+ (where K is the projection of
the angular momentum on the symmetry axis of the nucleus and = is the parity of the y-vibra-
tional phonon). The energies E, have the values 600-1500 keV.

It is well known that the nuclei in the actinide region undergo spontaneous fission.
According to the channel theory of fission process [3] the fissioning nucleus in the saddle
point of its deformation may exhibit excited states which are analogical to those at equilibrium
deformation. Different excited states correspond to different fission channels. The non-
axial y-vibration may be one of those excitations. Hence, it is interesting to investigate the
problem of the dependence of the y-vibrational parameters C,, B, and E, on the value
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of the quadrupole deformation of the nucleus, starting from the equilibrium value of the
deformation parameter up to the value which describes the saddle point shape.

In general we can try to solve this problem using two different descriptions. The pheno-
menological and the microscopic ones. The phenomenological y-vibrational parameters
can be calculated for example, using the hydrodynamical model [4]. In the microscopic
description the collective vibrations are treated as a coherent superposition of single particle
excitations of the nucleons which move in the single partiele potential and interact by the
restoring short range pairing forces and the long range multipole-multipole forces. The
attractive quadrupole forces cause the f and y vibrational states. The theoretical microscopic
description of the y-vibrational state was given in 1961 and 1965 by Bés [5, 6] and in 1965
by Soloviev [7] with the use of the old single particle Nilsson potential [8].

In the present paper we shall calculate the energy of the ¢ vibrational state for even-
-even nuclei: i) in the rare earth region with the use of the experimental values of the quadru-
pole and hexadecapole deformations ¢, &, ii) for even isotopes of Th, U and Pu at equili-
brium [9} and for greater values of the quadrupole deformation £ up to the saddle point.

In section 2 we present the microscopic calculations of the y-vibrational parameters.
Section 3 gives the hydrodynamical description. In section 4 we discuss our results.

2. Microscopic model

a. General description

At the beginning of this section let us explain the notation for the y-vibrational characte-
ristics E,, C, and B,.

We shall assume that the nucleus is of ellipsoidal shape which can be described with
the use of two deformation parameters £ and y. The semi-axis of such a nucleus are given by:

e [1p/E o]
as = Ry [1—"/% B cos (y—n/?))] ,

a5 = R[1—V/5/4n B cos y]. 6))

One may notice that the f parameter gives the measure of the deformation while y
describes the nonaxiality of the ellipsoid. The nuclear oscillations connected with changes
in p are called non-axial y-vibrations.

The Hamiltonian of the small oscillation of the p-type arround the axially symmetrical
equilibrium ellipsoidal shape has the form:

H =1/2B,(8)y*+1/2C,(B)y* @

The energy of the y-vibrational state is given by

E,—ho,=Hh)/C,B, &)

where C, and B, are called the stiffness and mass parameter respectively.
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In order to obtain the values of these parameters in the microscopic model we shall
start with the assumption that the nucleons in the nucleus move in the single particle Nilsson
deformed potential [8, 10} and that they interact by the attractive restoring forces of pairing
and quadrupole types.

The whole Hamiltonian may be written in the form:

H= I{O+Hpair_1/2xPS:Sp_1/2xn§:'§n—1/2an(§:§p+‘§:‘§n)’ (4‘)

pair
and §, are the non-axial quadrupole operators for protons and neutrons respectively.

Xp» Xn @0d 7, are the coupling constants for the non-flxial quadrupole interaction between
protons, neutrons and protons and neutrons respectively.
Let us introduce the Hamiltonian

H, = Hy+ Hyy,. ©)
We can write H; and § in the form [7,11]:

where H, is the Nilsson model Hamiltonian, H ; represents the pairing interaction and S},

Z SI'CVT Y G Z CV‘! i’ bl 4 V“‘TCV‘L’ (sa)

1>0

and

S =" rllfV2 V16a/5 rH(Yyu+ Yy o) lv'7'dcsic, e

= z ( vv'cvtcv t+sw'cncv'—1) (6)

wt’

Here ¢}, and c,, are the creation and annihilation operators of the particle in state |r7)
where 7 has the meaning of the sign of the projection of the momentum on the symmetry
axis of the nucleus and » is reserved for the remaining quantum numbers, ¢, is the energy
of the particle in the state [v41), G is the strength of the pairing interaction, s, and s,
are the matrix elements of the nonaxial quadrupole operator between two single particle
states with the same and opposite values of T respectively.

If the pairing interaction is taken into account in the approximation of the non-
-interacting qusiparticles Hamiltonian H, is given by

Hy = 3} 205, — |G+ 3 E(fa,+B,"B,)- )

¥, B} and a,, B, are the quasiparticle creation and annihilation operators given by the
canonical transformation

&, = U,C,, —V,C

VV—

ﬂv = v ,_+U, v+ (8)

with the condition

uf%—vf = ], ©)
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The value 2 is the occupation probability for state v} and

v} = 1/2(1—(e,—A)/E,) (10)
where

E,={(e,— )+ 4%* )

is the guasiparticle energy. The values 4 and 4 are the Fermi level and the “‘energy gap”
parameters respectively. They are obtained from the superconductivity equations:

D E, =2/, (12)
> A—(,—H)/E,) = N, 3)

where N is the number of particles.
If one assumes that the number of quasiparticles in the ground state due to the quadru-
pole forces is small then the S operator is given by the formula

S == Z (uvvv'_':_u’v'vv) [Sw’“j ::-*—Ew’aj aj:]' (14')
vy’
In order to obtain the energy of this state we shall use the first order time dependent

perturbation theory treating the restoring long range interaction as the perturbation [12].
If we assume that y, = x, = x,, = 1 [13] our whole Hamiltonian takes the form

H = H,—1/20(S} +5)(5,+5). (15)
Let us now introduce the single-particle Hamiltonian
H, = H,—1(S,+5,)(5,+5), (16)
where
SptSy = WIS+, w> a7)

and the wave function |p) is obtained from the Schrédinger equation

= H. (18)
If we assume that S,+S, has periodic time-dependence
S, +S, = (S, +5,) cos wt, (19
the self-consistency condition (17) leads us to the formula:

_ (19912 1 15pp1%) (¥ +vpUip)? (Ep+ Ep)
1Rr= . (Bp+ )P —(hoo,?

-+

P
5. .2 12 , , ,
+ Z (lsnn 12+ | S| ) (un Uy + Uy un) (En+En) (20)

(En+ En’)zq(hwy)2

p.p’ and n, n’ denote the states of protons and neutrons respectively.
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The energy of the collective vibrational state is given by the lowest solution of this
equation. In the adiabatic limit where one assumes that the collective frequency is much
lower than the single particle frequency

ho, <E,+E,
and
ho, <E,+E,
the stiffness parameter and mass parameter introduced in (4) are given by
C, =12, —y (21
B, =h2Z,[2% 2 (22)
where
2y =2p+21
_ (Isppr|® -+ 15pp|?) (uptpr +pUp)* (I 1?+ [5nw|®) (wnw + twvs)®
=3, E,+E, +) F,+E, (23)
and

2y= Zgp+ 2

_ (ISPP' |2+ Igpp’lz) (upvp' + up’vp) 2 (Isnn’lz + |§nn'|2) (unvn’ +v,,u,,')2
= (Ey + E)? Y (Bt B -

Hence the energy of the collective vibrational state is equal to

E, =h((12Z;—z)[h2Zy 22, %, (25)

b. Details of calculations
As was mentioned above the single particle states are given by the Nilsson potential
{10} of the form:

& wo(e,

Hy= 1/2hw(e, &) (— A2 +0%) —xha, [ 4/3 &) V7[5 92y —
wo

2l 1) + VB 25 oo | (26)

where
0% = £+ P+ L2
and
& = x(Mwy(e)(1+£/3)/h)%,
7 = y(Mewq(e) (1 +2[3)[R) %,
L = o(Moog(e) (1—2/36) ) . @)
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& and g, are the quadrupole and hexadecapole deformation parameters of the nucleus,
wq(&, &5) is obtained from the condition of constant volume closed by an equipotential
surface.

In order to obtain the position of the y-oscillation in the rare earth region the
Hamiltonian (26) was diagonalized [14] with the use of the experimental values of the
quadrupole and hexadecapole deformation for few isotopes of Sm, Dy, Er and Yb for every
nucleus separately. The parameters of the Nilsson model in this region are [10]:

%protons = 0-0037 Hpeutrons = 0-0637

Hprotons = 0-60 Pneutrons = 0-42.
In the actinide region the corresponding parameters are [10]:

%protons = 0-0577 % eutrons = 0-0635

Frorotons = 0-65 Boeutrons = 0-325.

In order to find the position of the Fermi level and the value of the energy gap the
superconductivity equations (12) have been solved with the use of 24 Nilsson levels and with
the following strength of the pairing interaction:
in the rare earth region:

Gproton = 32.2/A MeV G evtron = 26.5/4 MeV,
in the actinide region:
Gporoton = 32.2/4 MeV G eutron = 26.04/4 MeV.,

In order to obtain the values of 2 and X5 we took into account 120 double degenerated
states of protons and 165 states of neutrons in the rare earth region and 165 proton states
and 220 neutron states for the actinide region.

The only free parameter in this calculation is the strength of the restoring non-axial
quadrupole interaction; its dependence on the mass number A4 has the form:

z = Xo(Mawg(e)/ h)24-47 hag, (28)
where
hwg = 41/42 MeV. (29)

The value of y, was fitted to the experimental energies E, for all the nuclei in both regions
seperately.

3. y-oscillations of the uniformly charged ellipsoidal drop

As was mentioned in section 1 we can find the y-vibrational characteristics using twe
different descriptions — the microscopic and the phenomenological ones. It seems to be
interesting to compare the results obtained by these different methods.
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In the present section we shall calculate the phenomenological parameters with the
use of the hydrodynamical model. We shall assume here that the nucleus is a uniformly
charged ellipsoidal drop the semi-axis of which have the form [15]:

a; = Ry exp (o cos d),
a, = Ry exp (o cos (6—2n/3)),
ay = Ry exp (0 cos (6+2n/3)). (30)

The correspondence between the deformation parameters ¢ and ¢ and the 8 and y para-
meters introduced in (1) is given by the formulas:

o = 0.6314(1+0.0458 cos 6 +...)
cos 3y = cos 36 —3/140 sin? 4. (31)

In order to obtain the stiffness parameter we shall calculate the surface and Coulomb
energies of the nucleus. The surface energy U, of such an ellipsoid is given by the product
of the surface of the nucleus 27R3S and the surface tension coefficient 7 [16].

1
_ 20, 0. D2 _
ot = 2wRGS = 2rRon [a%ag sing ' ayaysind @ cos® P sin? P X

cos? psin? §  cos?d  af a5 COs @ 1 1
x( 7+ — —1) bt " 2 = (32)

) 7 2
a¥ a3 3 2sin? g cos? P \ a3

where

. ag
sin @ = —=,

. 1—(asfay)?
2.9 3/%2
sin?$ = T=(ay)a))® °

@
F, = f (1— sin2d sin? y)~%dy, (32a)
H

P
F,= f (1— sin? & sin? y) dy

0

and 7% is the surface tension coefficient.
The Coulomb energy of the ellipsoid has the form [17]:

u, = 1—1/562—1/10503 cos 30 +1/280*+13/46200° cos 36 —
—203/286000° +379/9009000° cos 38 = (r3> ufPhere, (33)

It is easy to notice that both the surface and the Coulomb energies increase with the
non-axial deformation parameter 8. One can also notice that the harmonic approximation
may be used here. Thus the energy of the y-vibrational level is given by the formula:

E,=h(C,B)*%, 34
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where the stiffness parameter C, is equal to

. O (Usurt + Ue) _ 2 f?ﬁ PRGY
C’“(“—a—af )a = 2nRon \ o 4% ),y 39)

The fissility parameter

__ Coulomb energy of sphere 2% A (18]
" 2 (surface energy of sphere) 51.77 (1—1.79 (N—2)/4)?) )

X

(36)

The mass parameter B, can be obtained by calculating the kinetic energy of the potential
ﬂ.O\‘\’

T=1/2 [[[ v?dr (37)
where gisthe density of the liquid and © is the velocity of the potential flow. We have then
rolv =0 (38)

and
v— —grad g (39)

so the potential of this velocity ¢ may be calculated from the equation

Ap =0, (40)
with the condition
grad ¢ grad F+ %{- == (), (41)
where
x2 y2 22
F(x,y, z,t) = + + —1=0 42
532 0= Gl * wor T P “
is the equation of the ellipsoid.
It can be noticed that ¢ has the form [19]
1oy B ey G
@ = 1/2(alx+azy+a3z), “43)
and for the kinetic energy we obtain the formula:
T = 1/10M(af+ a2+ ad) (44)

where M is the mass of the drop. Now with the use of Eq. (30) we can write the last formula
as the sum of three terms

T=T,+Twu+T, (45)
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T,, has the meaning of the kinetic energy of f-vibrations. T}, is the corresponding energy
for the vibrations of the y-type and T, describes the interaction of both types of the vibra-
tional motion. For the non-axial vibration arround the axially symmetrical ellipsoidal shape

Taa == O and
T,s = 3/20MR20%e 52, (46)
For the mass parameter we obtain
By = 2T66/82 == 0.3MR%O’2€~° (4«7)
where
5/3
MRE~ 20334 h2 MeV-1. (48)

1-L79((N—2Z]4)*
Using (35) and (37) we get
2 . P V*
o hl/@ _ P (S/AnR2) + 2x 552 Gy , (4«75R§17) " (19)
4 B, 0.3 o%° MR2 |~

where

AnRin\*% 1—1.79 (N—2)/4)2\ *
h( MR%) = 23.12 y MeV.

4. Results and discussion

The results for the rare earth region are given in Table I. The calculations are performed
i) with the value of the hexadecapole deformation parameter g, taken from experiment [20]
and ii) with the value g = 0. One can notice that the case i) gives much better values of
energies than the case if).

TABLE 1

Energy E, of the y-vibrational state in the rare earth region. First column gives the nucleus, the next three

columns the experimental values for E,,, the quadrupole ¢ and the hexadecapole &, deformation parameters.

Two remaining columns present calculated values for E, obtained with the corresponding value of g, and the
result for g4 =0

Nucleus E, exper. (MeV) € £ E,, theor. (MeV) E, th(z;;(;‘(;)‘ =9
(2Sm152 1.09 0.25 —0.02 0.79 0.83
(@Smi 145 0.29 —0.02 1.60 1.60
ssDy1% 0.97 0.26 —0.02 1.12 1.21
(sEr1% 0.84 0.27 0.02 0.97 1.26
osEX170 0.95 0.27 0.04 1.04 118
70 Yb170 1.23 0.27 0.06 1.20 1.10
YD1 147 027 0.06 1.27 1.21
7o Y178 1.26 0.27 0.07 0.98 0.82
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The value of y, in this region is y, = 1.748.
In Table II we present the results obtained for the even isotopes of Th, U and Pu at
the equilibrium deformation &, ;. Here y, = 1.64.

TABLE II

Energy E, of the y-vibrational state in the actinide region. For description of columns, see Table I, with the
exception of the last column

Nucleus E, exper. (MeV) £ & E,, theor. (MeV)
g0Th%28 0.96 0.177 —0.026 0.64
90T h2%0 0.78 0.184 —0.023 0.72
g0 L0232 0.79 0.193 —0.021 0.81
93UP2 0.87 0.200 —0.024 0.92
95U 0.92 0.209 —0.022 0.98
520238 — 0.212 —0.018 1.06
92UZ%8 1.06 0.218 —0.016 1.18
gaPu38 1.03 0.216 —0.019 1.14
" gaPu210 0.94 0.230 —0.015 1.35
gsPu24? — 0.235 —0.012 1.37

In both regions the agreement with the experimental results is quite good, therefore
we use the same method of calculation for larger values of the quadrupole deformation
parameter € — up to the saddle point.

The microscopic results for E, for U232, U236 and Pu?%? and the hydrodynamical
results for U6 are shown in Fig. 1. It may be mnoticed that in the microscopic results
the energy of the y-vibrational state decreases with the deformation up to the valuee ~ 0.3-0.4,
then increases, and at the saddle point it is about twice as large as that at the equilibrium.

In Fig. 2 and 3 we present the stiffness parameter C, and the mass parameter B, for
the microscopic and hydrodynamical methods of calculation. One may netice that the
microscopic C, has its minimum for &~ 0.3-0.4 and then increases very rapidly with
the deformation &. The mass parameter B, increases nearly monotonically with the
deformation of the nucleus.

As a general conclusion from Figs 1, 2 and 3 we see that the strongly deformed nucleus
is more stiff with respect to the non-axial vibration in comparison with the nucleus at its
equilibrium state. We also notice that the same result is obtained in the hydrodynamical
model. The decreasing of C, and E, for ¢~ 0.3-0.4 is a microscopical effect connected
with the changes of the density of the Nilsson single-particle levels in this deformation
region. All the microscopic resulis for the y-vibrational parameters for different deformations
of the nuclei in the actinide region are calculated with the use of the same value of the
pairing force strength G. We assume also that the quadrupole coupling constant y, does
not depend on the deformation parameter.

There are some experimental suggestions that for U234, U236 and Pu240the y-vibrational
state in the saddle point has the smaller energy value than at equilibrium [21].
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Fig. 1. Microscopic values of energy of y-vibrational state for U232, U228, Pu# and hydrodynamical results
for U8 as the functions of the deformation parameter &
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Fig. 2. Microscopic and hydrodynamical stiffness parameter C, as function of the deformation parameter &
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Our results are not in agreement with these experiments. However if the value of yx,
in the saddle point is increased by about 309, the agreement is quite good in all the cases.
It may be interesting to notice that the equilibrium results for the rare earth and the actinide

by
[rmev’y
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200

750

700

; } !
02 03 04 25 06 &

Fig. 3. The microscopic mass parameter B, for U?®2, %6, Pu?%® and hydrodynamica] mass parameter for U3¢
as functions of the deformation parameter

regions suggest that the value of y, increases with the deformation of the nucleus. This
seems to support the conclusion of Ref. [22].

One may also try to change the strength of the pairing force for different deformations.
If one assumes that G increases proportionally to the surface of the nucleus [23] then the
stiffness parameter does not change appreciably in comparison with the case of constant G
value. However the mass parameter decreases and as a result the energy increases by about
5% in comparison with the result obtained for G g = Gequitibrium'

The author would like to express her.gratitude to Professor B. R. Mottelson for suggesting
the problem. She is indebted to Professor Z. Szymanski and Professor J. R. Nix for
stimulating discussions and valuable comments.
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