FURTHER ANALYSIS OF D⁰ MESON IN THE REACTION $\pi^+ p \to p \pi^+ \pi^+ \pi^- \pi^- \pi^0$ AT 8 GeV/c

By S. Otwinowski

Institute of Nuclear Research, Warsaw*

(Received July 2, 1970)

The existence of the intermediate $\delta \pi$ state in the decay $D^0 \to \eta \pi \pi$ is discussed. It is shown that the reflection of the ω production cannot produce a spurious maximum in the $(\eta \pi)$ mass distribution at the position of the δ .

In a previous publication [1] we reported on the production of the D^0 meson and its decay into $\eta \pi^+ \pi^-$ in the reaction $\pi^+ p \to p \pi^+ \pi^+ \pi^- \pi^- \pi^0$ at 8 GeV/c. We presented indication for the decay chain $D^0 \to \delta^{\pm} \pi^{\mp} \to \eta \pi^+ \pi^-$.

It has been pointed out in the Review of Particle Properties [2] that the " δ " peak in the $\eta\pi$ mass distribution may be a kinematical effect: "...In final states containing many pions (e. g., $2\pi^{+}2\pi^{-}\pi^{0}$, $(3\pi)^{\pm}\pi^{0}$), and with the ω copiously produced, the constraint of at least one η combination in the $\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$ mass "fakes" a bump in the mass region around 960 MeV, due to reflections from the " ω ".

In this report we discuss the relevance of this remark to our previous conclusion on the existence of the $\delta\pi$ intermediate state in the D^0 decay.

To investigate possible reflections from the ω , which is produced in 30% of the events in the studied reaction [3] we estimate first the number of the ω combinations in the sample of the D^0 events defined as follows: $1.275 < M(\pi_1^+\pi_2^+\pi_1^-\pi_2^-\pi^0) < 1.375$ GeV and at least one η in $(i.~e.~0.5 < M(\pi_1^+\pi_1^-\pi^0) < 0.6$ GeV).

The distribution of the $(\pi_1^{\pm}\pi_2^{\mp}\pi^0)$ mass versus $(\pi_1^{+}\pi_1^{-}\pi^0\pi_2^{\mp})$ mass for the selected D^0 events is plotted in Fig. 1. For both projected distributions we calculated the predictions of the modified phase space [3] (which is in this case practically equivalent to the relativistic phase space within the $(\pi_1^{+}\pi_2^{+}\pi_1^{-}\pi_2^{-}\pi^0)$ system), by generating Monte-Carlo events and applying the same cuts as those imposed on the data. The experimental distribution of the $(\pi_1^{\pm}\pi_2^{\mp}\pi^0)$ mass (projection a) agrees with the calculated curve normalized to the area of the histogram, and the estimated number of possible ω combinations is (4.5 ± 3.5) .

^{*}Adress: Instytut Badań Jądrowych, Warszawa, Hoża 69, Poland.

Later, from the modified phase space we calculated the contribution to the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ mass due to the assumed ω signal in the $(\pi_1^\pm\pi_2^\mp\pi^0)$ combinations, described by the Breit-Wigner formula. The result is shown as the shaded area in the projection b. The $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$

Fig. 1. Distribution of the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ mass versus $(\pi_1^\pm\pi_2^\mp\pi^0)$ mass for the D^0 events, i.e., having the $(\pi_1^+\pi_2^+\pi_1^-\pi_2^-\pi^0)$ mass between 1.275 and 1.375 GeV and the $(\pi_1^+\pi_1^-\pi^0)$ mass in the η band. One D^0 combination contributes two points, corresponding to pion charges indicated by upper or lower set of signs. The combinations in the η band of the projection a originate from the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ combinations containing two " η " triplets. For explanation of the curves see text

Fig. 2. Effective mass distribution of the $(\pi_1^+\pi_2^+\pi_1^-\pi_2^-\pi^0)$ system with the $(\pi_1^+\pi_1^-\pi^0)$ mass in the η band and a) the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ mass in the δ band (0.925–0.975 GeV), b) the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ mass in adjacent bands (0.8–0.925 GeV and 0.975–1.1 GeV). For explanation of the curves see text

mass distribution was fitted with the Breit-Wigner formula for the δ meson and the calculated background including the ω reflection. The probability of the fit was 65%. The obtained mass (947±7) MeV, width¹ (31±28) MeV and the number of events 21±7 agree well with the values reported previously (when the ω reflection was neglected).

¹ uncorrected for experimental resolution.

We conclude that in our experiment the reflection of the ω production cannot produce a spurious maximum at the δ mass. However, the δ peak is only a three-standard deviation effect and might be a statistical fluctuation.

Nevertheless, we shall further assume that the observed maximum in the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ mass is really due to the δ meson. Fig. 2a shows the effective mass distribution of the $(\pi_1^+\pi_2^+\pi_1^-\pi_2^-\pi^0)$ combinations having the $(\pi_1^+\pi_1^-\pi^0)$ mass in the η band and the $(\pi_1^+\pi_1^-\pi^0\pi_2^\mp)$ mass in the δ band (between 0.925 and 0.975 GeV). For comparison, in Fig. 2b instead of the δ the adjacent regions were taken (0.8–0.925 GeV and 0.975–1.1 GeV). The latter histogram is fairly well described by the modified phase space curve (with the probability of 60%), whereas the δ selection in Fig. 2a leads to the clean D⁰ signal above a low background. The fitted mass of the D⁰ is (1303 ± 8) MeV, width² (44 ± 24) MeV, the number of combinations 15.1 ± 4.6 and the probability of the fit 75%. The central value of the D⁰ mass obtained by fitting the $\eta\pi^+\pi^-$ mass without selecting on δ is (1329 ± 10) MeV [1]. However, if the D⁰ does decay in two steps D⁰ $\rightarrow \delta^{\pm}\pi^{\mp} \rightarrow \eta\pi^+\pi^-$ then the value $M=(1303\pm8)$ MeV should be considered as a better estimate of its mass. It should be noted that the latter is closer to the values reported in other experiments [2].

REFERENCES

- [1] S. Otwinowski, Phys. Letters, 29B, 529 (1969).
- [2] Review of Particle Properties, UCRL-8030, Rev. January 1970.
- [3] S. Otwinowski, Acta Phys. Polon., 35, 603 (1969).

² uncorrected for experimental resolution.