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We consider two invariant dynamical problems on the Minkowski plane: & /L(ty, u,,
uy—uz)dv= 0 and 8 [L(sy, vy, v;—vy)du = 0. We show that for an oscillatory motion, u-period
and v-period in the first case are equal respectively to u-period and v-period in the second case,
provided the total energy and momentum in both cases are the same. We discuss also some
general features of relativistic dynamical problems which are solvable by means of ordinary
differential equations.

Introduction

Hill and Rudd {1} and the author {2}, [3], [4], have discovered recently that some
dynamical problems in the special theory of relativity are solvable by means of ordinary
differential equations. All the solvable problems have some common characteristic features.
We should like to analyse those features by considering a formal structure which might
be called a “‘two-dimensional relativistic dynamics”.

The structure of the Newtonian dynamics

Let us denote by ¢ and x respectively the time and space coordinate of an event in some
inertial system of reference. Two events a; = (I3, x;) and ay == (t,, x,) are said to be simulta-
neous if t; = ¢,. The relation of simultaneity is symmetrie, reflexive and transitive. Moreover,
it is invariant with respect to the Galileo group. Consequently, the space of events in the
classical dynamics is divided by the relation of simultaneity on disjoint equivalence classes;
the division is invariant with respect to the Galileo group. Let us consider now n world
lines 1, Iy, ..., I, representing n particles. It is assumed in the Newtonian dynamics that
en event a; € /; interacts with an event a, € [, if and only if g, and @, belong to the same
equivalence class. We may associate with each equivalence class a real number T it may
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be the time t or any increasing function of ¢. The Newtonian equations of motion are differen-
tial equations in which T"is a parameter while spatial coordinates of events belonging to the
same equivalence class are functions to be determined.

The structure of the Minkowski plane

In the special theory of relativity the relation of simultaneity is no longer invariant.
However, let us introduce new variables u = t—x and v = t+x. Two events a; = (u,, v;)
and a, = (uy, vy) are said to be u-simultaneous of u; = u, and v-simultaneous if v; = v,.
The relations of u-simultaneity and v-simultaneity are easily seen to be reflexive, symmetric,
transitive and invariant. Consequently, for each of them we can repeat construction of
dynamics which we have described previously.

Examples of dynamical laws

We shall assume that a particle is represented by two world lines corresponding to two
histories of a particle: history @ in which w is a coordinate while v is a parameter and history b
in which v is a coordinate while u is a parameter. The dynamical law is most conveniently
given in the form of an action principle: S, = 0 for the history a and S, =0 for the
history b. It might be instructive to write down several examples; we shall write the action
for two particles with masses m, and my; it is trivial to generalize it to any number of particles.

Sa = f my VLT1+m2 Vlg+k|u1~u2%dv’ (1)
S, = — f my Vo, +my, Vog+ v, —vyldu.

The action describes two particles interacting by means of a constant force. The equations
of motion were solved in [5].

Se= — fmll/uiﬂkmzl/u'—z—%-elezlz—z}z—idv,

Sp = f my ]/111 +my sz +e1e2 oy ”2| du. 2

The action describes two particles interacting by means of the electromagnetic forces. The
equations of motion were solved by Hill and Rudd [1] and the author |2].

S, = — f my l/dl—+—k(u1—u2)2+m2 I/Ll2 +E(u, —uy)? dv,

Sp= — f my Voy+k(v;— )% +my Vo + k(v —v,)? du. (3)

The action describes two particles bound by an anharmenic force. The equations of motion
can be solved by means of elliptic integrals.
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In general we have
Sa= [ L(iny, tg, uy—uy)dv,
Sy = [ L(dy, vy, v,—0y)du, (4
where the Lorentz invariance implies that for every real number ¢
L(e®uy, e2Puy, e¥u; —e®uy) = e®L(uy, g, 1y —u,). (5)

Conservation laws of energy and momentum in the case @ take on the form

. oL . 9L 1

i g il g —L= 5 (E-P), (6)
oL 2L 1
%5, T oe, 3 D) @

where E and P denote respectively the total energy and momentum. For the case b we have
to make in (6) and (7) substitutions u = v, P - —P.

Relationship between the two histories

It might happen that the history a is identical with the history &; for example this is
the case for the attractive force (¥ < 0) in the action integral (1). The interaction part of
this integral represents an area between two world lines. Since

[ 1wy —ugldv = [ [vy—v,|du, ®)

the integrals .S, and S; are in this case identical. In general we shall call an action integral
reducible, if S, = S;. There are, however, irreducible integrals, for example the electro-
magnetic action is certainly irreducible.
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Fig. 1. An oscillatory motion

Suppose that two particles attract each other and as a result perform an oscillatory
motion. An increment of the coordinate u in each period will be called u-period; similarly
an increment of the coordinate v in each period will be called v-period (Fig. 1). We shall
prove the theorem: if the total energy and momentum in the case @ are equal to the
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total energy and momentum in the case b, then u-period in the case a is equal to u-period
in the case b and z-period in the case @ is equal to v-period in the case b.
Let us multiply the conservation law (7) by u, and substract from (6). We obtain

1 1 .. .. 8L
3 (B=P) 5 (B Py = (i —iig) 57 —L. 9)

Let us integrate this equation over the whole v-period vy(a). Integrating by parts and taking
into account that u;—u, vanishes for v = 0 and v == vy(a) we obtain

vy(a)

L (E—P)og(@) + & (E+Pugla) = — [ (g —ug) 2£ 1 L. (10)
2 2 . Juy
0

In general this is all we can say about periods. However, for Lorentz invariant Lagrangians the
right-hand side of (10} can be caleulated. In fact, let us differentiate (5) with respect to ¢ and
put ¢ = 0. We obtain

. 8L . oL oL
2LL1 -971 +2u2 “‘a—l't;' +(u1_u2) '5;'1' S L (11)
Eliminating velocities by means of the energy integral we find

(2 —uy) _3%1— +L = —(E-P). (12)

Hence, the right-hand side of (10) is equal to (E—P)yya) and consequently
(E—P)vg(a) = (E+ Plug(a)- (13)
Now, if for the case a uy(a) = f(E, P) then for the case b vy(b) = f(E, —P) because the

case b arises from the case @ by substitution u = v, P — —P. Hence

(E+Pugfa) = (E—P)uy(b),

(E—P)vy(a) = (E+P)ug(b) (14)
and consequently from (14) and (13)

14(@) = 1g(b), ve(a) = v,(b). (15)

Looking through the proof we can see that the theorem holds also for half-periods.

The electromagnetic case

Unfortunately, the theorem does not hold in the case of electromagnetic forces because
integrating by parts and using equations of motion we have assumed equations of motion
to hold everywhere. This is not true for the electromagnetic forces which are singular for
u; = u,. But even for the electromagnetic forces.there exists a simple relationship between
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periods. Let us denote by v* the internal point in which u; = u, and integrate again equation
(10) over two segments

e <v < v¥=g, v*+e <v < vyla)—e, (16)

where € is a small positive number. Assuming that the solutions u, and u, are continuous

we find

3 (B Phufa) — 5 (E—Pluyfa) = lim {Flop(a) —e) —F(o* ) + Flo* —e) (e}, (17)

where
) dL
F= (uy—u,) 5;; (18)

The limit may be calenlated by means of the conservation laws of energy and momentum.
In this way we obtain

1
2

(E +P)ugla)— % (E—P)vy(a) = —Aet. (19)

Hence, we have in the electromagnetic case

8e?
ugle) —toB) = — ppe
, 8e?
vo(a) —vg(b) = 7. (20)

Generalized solutions in the electromagnetic case

We find that the theorem on periods, which is a general integral theorem based on con-
servation laws, does not hold in the electromagnetic case because equations of motion are
not valid for u; = u,. Assuming that the solutions are continuous for u; == u, we choose
a principle of continuation in the point in which we have none because equations of motion
do not hold. It is possible to take another point of view, namely to assume that the conser-
vation laws hold always and to use this assumption as a principle of continuation in the points
in which equations of motion break down. Such a procedure is used for example in the
theory of shock waves. In our case the theorem on periods can be made valid if solutions
are discontinuous; for example in the case @ both solutions u, and u, have to make a jump
[} = [uy] = 4e¥(E 4 P)~1 after each half-period.

The case of repulsive forces

It is very likely that a general relationship between the two histories exists also for
repulsive forces, when the distance between particles tends to infinity. For the electromagnetic
forces such a relationship can be derived from the exact solutions [2], but we have not found
as 'yet a general theorem similar to the theorem about periods.
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