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QUANTUM MARKOVIAN PROCESS FOR A PARTICLE WITH
ADDITIONAL DISCRETE DEGREES OF FREEDOM

By W. GarczyNski anD B. Jancewicz

Institute for Theoretical Physics, University of Wroclaw*
(Received March 31, 1970)

A quantum Markovian process within a set od states labelled by continuous and discrete
parameters is constructed. While the scheme is a general one, special attention is paid to a process
in Euclidean three-dimensional space which corresponds to a single nonrelativistic particle with
internal degrees of freedom, e. g., spin.

1. Introduction

In this paper we shall expand the theory of a particle with spin developed earlier by
one of us [1]. Namely, we shall consider here a theory of quantum stochastic processes [2], [3]
in a space of states characterized by one continuous parameter varying over some domain £
in the space #% and one discrete parameter ranging over some subset I of the set Z of natural
numbers. Physically speaking, this theory corresponds to a particle with additional degrees
of freedom, e.g., spin.

In comparison with paper [1], more atiention is devoted to the electromagnetic structure
of the Schrédinger equations and to the theory of a particle with arbitrary spin.

2. Basic assumptions and equations

Let (s, Y, 05 ¢, @, A) be a probability density amplitude of finding the particle at the
time ¢ at the point x € £ and with the additional degree of freedom 4 € I, when it is known
that at the time s <C ¢ the particle was in the state specified by y and p. Here, £ is a Borel
subset of the Euclidean space %% and [ is a subset of the set Z of all natural numbers.
Assume that I is finite and consists of 2541 elements:

1] = 28-+1. @.1)

The number S is called the total spin of the particle and the discrete degree of freedom
will also be called shortly “‘spin” for convenience.
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We impose the following restrictions on the amplitudes (cf. [1]):

(i) (S’ Yy, o5t x, Z) = (t’év’ Ass, Yy, Q)*
0) lim (s, Y, 05 ¢, &, 2) = 8,,0(y —)
(iii) ZI Qf dz(s, Y, 0; 7, 2, 0)(s, &, A5 T, 2, 0)* = 0,,0(y—)

(iv) Z f dz2(s, Y, 0: 7, 2, o)1, 2, 05 £, @, 1) = (s, Yy, ost, 2, 4) for s <t <t
ocel Q

(v) lim (s, 2’5 05 8,2, 2) = (s, 2, 03 ¢, &, A).

-z
Furthermore, we assume that the process is a diffusional one, what neans that the following
limits exist:

4. aky(s, y) = lim (¢—s)™! f da(s, Y, 05 t, &, A)(x,—y)

B (s, y) = lim (1= f dx(s, Y» 03 & %, D)(x,—y)(x,—¥,)

C. c(s> Y) = lim (t—s)~ 1[] dx(s, Y, 05 t, @, A)—d,,]

D lim (¢—s) [ dae(s, Y. €51, A=) "y =30 (=3 = 0

for all positive integers satisfying n,+ny+ng > 3.

It is now possible to derive, under the suitable differentiability assumptions [1], [5],
the following differential equations (see Appendix):

—dls,y, 05t @, ) = Z Ko(s, y)(s, y, o3 t, 2, 4) (2.2)
cel

s, Y, 05 t,®, 1) = D L (t, &)(s, Y, 05 t, &, 0) (2.3)
ocel

where K and L are the differential operators:

Kouls, y) = 7 ber(s, Y)Oud; + apals, Y)Ik+coals, Y) (2.4)
1
Loa(t, @)= 5 Ord; bQA(t x) akag;(t x) + cpilt, ). (2.5)

Summation is, as usual, over repeated indices.
In order to simplify notation we introduce the matrices, e.g.,

[57 Yy; t, w] - H(S, Y,0;: t, &, }‘)||is+1

|
K(S, y) = HKQl(S, y)'lis+1 - 7 bk](s’ y)9k9i+ak(s, y)ak'*'c(sa y) (2‘6)

1 .
L(t, @) = ||Lga(t, 2);|35+1 = 5 RIbH (¢, ) —Ipa*(t, @) +clt, x).
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The basic equations {2.2) and (2.3) take now the form
{19, +K(s, Y} [s, Y5 t,x] =0 2.7
s, y; ¢, 2] {(—19,+L{t, )} = 0. (2.8)

It follows from the first two postulates, together with the equations (2.7) and (2.8),
that

{K(s, y)+LHs, 9} fy) =0 (2.9)

(the sign T means complex conjugation and transposition of matrix indices) for any twice
differentiable function f. Putling for / a constant, a linear function and a quadratic function
in ¥ and using (2.6), we get the respective following identities

cls,y) +els, )" = Buakls, )~ - BB, y)

a*(s, y)—a*(s,y)t = Ib¥(s, y) (2.10)
b (s, y) + 6% (s, y)t = 0.

We should stress here that the sign * concerns only the discrete indices and does not mean
the hermitian adjoint of the differential operator.
These identities show that

b — i/f}ki
o — Eh _; b 2.11)

1 .
c = §~ akgkrf—l’)?

where ¥, £ and % are arbitrary Hermitean matrices.

3. Wave functions

Let {u,x),x € 02,0=1,2,...,25+1} be a set of square integrable functions. We
consider them as the initial wave functions of a particle. The future and past wave functions

are then defined as follows (cf. [1])

wylt, &5 s, u) = ZI [ dyu,y)(s, y, 05 t, , A) (3.1)
oel Q

Pols, Y3 tyu*) =3 [ da (s, y, 05 t, 2, A (). (3.2)
Ael 2

Both of these functions are square integrable with the same norms as u. This follows from
the unitarity postulate (ii7). Here w,(t,®; s, u) is the probability density amplitude of
finding the particle with the degree of freedom 2 at the point & at the time ¢ if it is known
that at time s < ¢ the particle was distributed in space according to the wave function
{u,(y); 0 €I}. Accordingly, @,(s, y; ¢, u*) is the probability density amplitude of finding
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the particle with the degree of freedom o at the point ¥ at the time s if it is known that at
the ¢ > s the particle will be distributed in space with the wave function {uj(x); 2 € I}.
Owing to the second postulate (if) we have

Pas, &5 5, 1) = wy(X). @ ls, Y58, u¥) = u:(w). (3.3)
From the first postulate (i) we get the relation
Yt @y s, u) == @, x5 s, u*). (3.9)
It will be convenient to use matrix notation in what follows. Therefore, we define a row
Pt x5 s, u) = [Pt x5 5, 4}y .o, Pog {8 5 5, U] (3.5)
and a column
‘ #als, Y5 1, u™)
@ls, ys t, u¥) = : (3.6)
Pas1(s: Y5 b, u¥)
Similarly, let u(y) be a row
w(Y) = [ug(Y)s -0ty 4 (Y)]- 3.7)
Then we have with this notation
ylt, & s, 1) = f dyulyls, y; t, x]
[#]
gls, Ys 1, u*) :j diels, y; t, T)u(x) (3.8)

QI’J"(‘, x5S, Il) e (r({. xrs, li*),

Using the equations (2.7) andd (2.8) together with the last formulue we get the Sehrédinger

cquations
{9+ Ks, 9iets, ys £, u*) =0 (3.9)
plt. ks s, u){—8&,-+Lit, )} = 0. (3.10)

The operation (AL plays the role of the Hamiltonian of the system. Note that in stundard
quantum-mechanical notation these equations should be trunsposed. The g wave function
is given by vur »T column function.

It i possible 1o restore the amplitude if & complete family of imitial wave functions is
known. Namely, if {&"@);n = 1,2, ...} i~ a et of rows such that

48

w0 (uix) = 0,,0(y —x) (3.11)

—

"

then it may be easily verified that

[s. g5t =) gfs, Y3 t. u™") ") (3.12)
n=1
[s, Y5 ¢, ] = D] W yyy(t, a; s, ). (3.13)

n=1
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These are useful relations since they enable us lo find transformation properties of the
amplitude when they are known for the wave functions. Moreover, due to the postulate (iv)
there is satisfied the relation

> @5, Y5 T uY(t, x5 7, w) =[5, ys 0, ). (3.14)
n=1

We end this section with a derivation of the continuity equation which follows from
the Schriodinger equation. Namely, we have

2, 121 la(t, ®)|? = 9, (v(t, ®)yp*(s, )
by virtue of (3.8), (3.9) and (3.10)

= y(t, J,‘)Z(t, ) (¢, ) —yp(t, EB)K(t, w)(p(t’ x)
due to (2.6)

1 . .
=5 {9r9,(pb") p—yb¥ 9,00} —n(yary) = —JH(t, X), (3.15)

where the current J% is

ﬂ@@:wmw%mmf;@wm@+§wm@@—§@%wﬁwmu
(3.16)

An analogous equation is valid for @ and may be obtained from the latter by substitution
(And ok

4. Electromagnetic structure of the Schridinger equation

In this section we shall explain a possible dependence of the quantum diffusion coeffi-
cients a¥, b% and ¢ on the potentials A and ¢ of a possible external electromagnetic field.
This investigation is in principle similar to that given for the case of a spinless particle [4],
but it contains one specific new feature.

As is well known, the vectors describing an electromagnetic field are
> 1
§=——A—pP
¢
#=pxA

where ¢ is the velocity of light. The potentials A and @ are specified up to the gauge trans-
formation

A=A =4+vVA

@»@:@-%A (4.2)
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where the gauge function /A is arbitrary. This leads to the conclusion that both equations

—9,9(s, y) = K(s, 9y, A, D)g(s, y) (4.3)
—0,9'(s, y) = K(s, 9y, A", )¢’ (s, Y) (4.4)

should be physically equivalent, i.e. their solutions may differ only by a phase factor
Po(s: Y) = @05, Y)eTely. (4.5)

Here F is a real funciion of s, ¥, ¢ and a functional of A. This functional dependence should
be homogeneous and linear since at 4 = 0 both equations coincide and the gauge trans-
formations form a group. Using this connection between @ and ¢’ we easily obtain from (4.3)

and (4.4) the conditions

BH(A, D) = BY(A, D) (4.6)
ah(A', ') = ag,(A, D) —ibgi(A, D)IF(A) 4.7)

ca(A', D) = c (A, @) —iF(A) 6Ql—iazl(A, D) F () +

_— 1 . &
— ZL bE(A, B2 9F(A) — 5 bE(A, D)OF A N)FA(A). (4.8)
The dependence on s and ¥ is suppressed since we are mainly interested here in the functional
dependence on the potentials.

Solving these equations we get that
FyA) = a(d) A (4.9)

where a(2) is a real number depending only on spin. The following form of dependence
of a*, b¥ and ¢ on the potentials A, ¢ is obtained:

VoA, D) = V(S #) (4.10)
at (A, D) = a*\(8, #)—ib%(&, A#)a(R)A; (4.11)

cal A, @) = o5, #) +icald)y DO,y —ialA) aky(&, #) Ap—

x*(4)
2

- 7‘ a(A)OE(E, H#)DpA;— bE(E ) ArA; . (4.12)

Here, a’;z (3’, 9?), b’;fl(,fy, jf), cel(g’, =;»_’f) are almost arbitrary functionals of &, #. The only
restriction of an algebraic nature follows from the general structure of the coefficients
a®, b% and ¢ (see (2.11)). Namely, the general formula
1
(A, P)+ct(A, Py = 5 hi{at(A, D)+ a*H(A,D)}

together with the above expressions for a@® and ¢ vields the restriction

(&, #)+cH(E, #) = % W{ak(&, #)+arH (&, #)}. (4.13)
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Thus, we have arrived at the most general Schriodinger equations describing a particle with
spin moving in an external electromagnetic field:

— [0 +ica(o)P(s. Ylgols, y)

=Y {% binls: Y, &, #) (i) Au(s, Y] [0~ i) Aifs )1+ (419)

cel

+(1‘:U(39 y’ (g;, i) [ak_ia(a)*/Ik(sv y)] __CQG(Sa ya g'j» %)} ¢"a(5’ y)
[9: —ica(A) D(¢, ) |pa(t, )

— Z {% (9 +ic(0) Ax(t, 2)] [0+ ic(0) As{t, a6)|bB(t, @, &, H) + (4.15)

cel

— [0 +ia(0) Ax(t, ®))aRalt, 0, &, H) +cos(t, 2, &, 9?)} Valt, X).

The same equations are valid for the transition amplitudes. We shall see later that when the
additional degree of freedom becomes an ordinary spin of value 1/2 these equations contain
the Pauli equation as a special case.

5. An ordinary spin as the additional degree of freedom

We say that the discrete indices p, 4, o ... correspond to different orientations of
an ordinary spin of value § (see (2.1)) if the wave functions transform under the 2% — space
rotations in the following manner:

25+1
P, Y) = 2 Dpo(R)p,(s, R71y). (5.1)

g=1

Here, D(R) is the matrix of the irreducible (25++1)-dimensional unitary representation of
the SU, group, R is a rotation. In the matrix notation this will be

?'(s, y) = D(R)g(s, R"'y) (5.2)
(¢, ®) = y(t, R-1x)DH(R). (5.3)
Using the formula (3.13) we may get a transformation law for the amplitude,

[s, ys &) = 35 @)ty (1, a5 5, ut)

= D(R) 3} u"(R-'y)yp(t, R"e; s, u™)DH(R)
= D(R)[s, R~y; t, R~1x]D*(R). (5.4)
The Schrédinger equations for the amplitude should be covariant under rotations, i.e.,
=dls, ys .2} = K'(s, y)ls, y; t, )’ (5.5)
Sls,y;t.x] =[s,y;t,2)'L'(t, ) (5.6)
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where K'(s, y) and L'(t, &) are differential operators of the same type as hefore with trans-
formed coefficients. Using (5.4) we easily conclude from (3.9) and (3.10) that

K'(s, y) = D(R)K(s, R-\y)D*(R) (5.7
L'(t,®) = D(R)L(¢, R"'®)D*(R) (5.8)
where

22

I(R-1y)d(R1y);

DR)K(s. Rg)D(R) = — DR)bH(s, R-1g)DHR)

o

+D(R)aks, RIYDHER) 5oy

+D(R)e(s, R-y)D*(R). (5.9)

We see here that the following transformation properties will be appropriate for the covariance
of the Schrédinger equations:

R,R,;D(R)BH(s, R-y)DHR) = b™(s, y)’ (5.10)
RyuD(R)a*(s, R-y)D(R) = al(s, y)’ (5.11)
D(R)c(s, R-y)DHR) = c(s, y)'. (5.12)

We made use here of the obvious fact that 9/9(R™'y), = R;8/dy;. Thus, b¥, a* and ¢
should have tensorial transformation properties of second, first and zero rank, respectively.

In order to sce any possible internal structure of these lensors, let us discuss the equation
(5.12). We can rewrite it in the following way:

c;Q = (DcD),, = Dhc“ﬁD;Q = DMD:ﬂcaﬁ.

Hence, the transformation ¢ — ¢’ is a tensor product of transformations D and D*. As is
known, the complex conjugated representation D* of the SU, group is unitarily equivalent
to the representation D (e.g., see [6]). So the above transformation gives a representation of
the SU, group which is equivalent to the tensor product D ® D of representations of 2541
dimensions each. It then splits into a direct sum of representations labeled by spin L ranging
from 0 up to 25:

DS@DS=D"@ D@ ... ® DS (5.13)

It can be understood that the matrix ¢ is a linear combination of (25 +1)2 matrices collected
info sets which are composcd, respectively, of one matrix (L = 0), three matrices (L = 1),
five matrices (L = 2), and =0 on, and each set forms an irreducible representation of the SU,
group.

The same argument goes for each of the matrices a* and d%. Let us consider the simplest
example, 7.e., the case of spin 1/2.
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6. Particle with spin 1/2

k

In this case all of the coefficients ¥, of and ¢ are matrices of size 2x2. It is well known

that one may represent them uniquely as linear combinations of three Pauli matrices (L = 1)
supplemented by the unit matrix (L = 0):

¢ = cgl+¢0!
a* = afl +ako’ 6.1)
BY = bk 4 bl

where the Pauli matrices

CR L [0 i L (10
“=\o] T \io =10 -1

have the following transformation properties
D(R)&DH(R) = R, 0" (6.2)
We put this into the equation (5.12):
D(R)c(s, R-y)D*(R) = co(s, R1y)D(R)LD*(R) +c,(s, R-"'y)D(R)o'DH(R)
= cofs, RTIYL+Ryells, R'y)o*
= co(s, )Lt eyls, ) 0" = cls, y)'.

We see thus that the required covariance is fulfilled if ¢, is a scalar function and the three
functions ¢, form a vector.
Similarly, equation (5.11) gives

R, D(R)a*(s, R-1y)DH(R) = Ryal(s, R 'YL+ R,R,,a%(s, R1y)o™

= al(s, y)'L+al (s, y) 0™ = a'(s, y)'.

Now we see that the functions af should form a vector and @® o tensor of second rank.
In the same manner we conclude from Eq. (5.10) that b¥ should be a tensor of second
rank and &% a tensor of third rank.

We ought to notice that the transformation properties of coefficients a* given by (5.11)
exclude any possible dependence of the parameter a on spin index: Indeed, from the formula
(4.11) one sees that a®(A, ¢) transforms properly only if

D(R)aDHR) =a  for each R (6.3)

where  is a diagonal matrix with nonzero elements a(p), ¢ == 1, 2, ..., 25+ 1. Equation (6.3)
says that @ commutes with all with D(R) which form an irreducible representation of the SU,
group, hence g is proportional to the unit matrix and dependence of charge on ordinary
spin is excluded. We say charge because the coefficient a is usually related to electric charge:

—ahe = q. 6.4)
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As we have said before, the equations (4.14) and (4.15) contain the Pauli equation as a spe-
cial case. In order to derive it we assume that

boi(s. y) =i L’ 8441 6.5)

a5, Y, A B) = — —L Ay(s, Y)dos (6.6)

Colss s A, B) = casls, Y, &, ) —i L Do,y du— 5L div Adp— S5 A%, (6.7)
and

sy, &, B) = — 1 Vs, y) L — 1 fF ). (6.8)

The phenomenological coefficient § has the value §q_h_ , as may be derived from the relati-
me

vistic theory of a particle with spin [7]. Putting the above expressions into (4.14) and (4.15)
we end up with the following equations:

. i h2 i 3
ih (9:‘ TZI ¢) Pols, ) = — o (9k+ % Ak) (9k+ % Ak) Pols, Y) +

2
V(s Ppels Y+ 57— Z Hdopals, ), 0=1,2 (6.9)

) A . .
h (9:4— lh—q@) yalt, ) = — 5. (ak_ % Ak)<9k— %Z_Ak) (L, &)+

2
+ VTt ®)palt, )+ 2—‘1— Z Hidhwolt, @), A=1,2 (6.10)

These equations coincide with the usual Pauli equations for a charged particle with spin 1/2.
One should note that normally the p-function is to be ordered into a column, while its
adjoint, @, into a row.

We hope we have convinced the Reader that the theory of quantum stochastic processes
is really adequate for the requirements of quantum mechanics. Clearly, a theory similar in
principle may be set up along the above lines for « more complicated case of physical interest.
Our quantum causality postulate (iv) expressed by the Smoluchowski-Chapman-Kolmogorov
causality equation [8], [9] supplemented by other suitable assumptions is a basic postulate
in our approach to the quantum théory.



351

APPENDIX
The equation (2.2) may be derived in the following way. First we consider the amplitude

(s—A4s,y,0:t,2, 1) =, [de(s—As,y, 0; 5,2 0)s, 2, 05 t, 2, A). (A1)

celQ

We expand the second factor in the integrand into the Taylor series around the point 2 =y

o2
(s,2,0;t, 2, A) = [1 +H(E—yn e+ = (z,e —yu) (5—v)) ——=— e 9}, ] (s, y,0:t, 3, A)
(A.2)
and calculate the limit
hm0 2—- [(s—4s,y, 05t 2. ) —(s, Y, 05 t, @, O)]| = —3s, Y, 0;t, @, A).
As—!

Using the notation 4 =D of the second section we get from (A.1) and (A.2) the differential
equations (2.2):

1 .
—as, Y, 03 t, @, &) = Z [—2— bg{,(s, Y) 9k9j+a’,_fl,(s, Y) O+ cools, y)] (s, 9, o3t, 2, 2).
cel

A slightly different method has to be applied when deriving equations (2.3). Namely,
we consider the quantity

[ dxe f(®)d:(s, Yy, g5 t, &, ) = lim A— defx)[(s,y o:t+At,®, A)—(s, ¥y, 0; 1, %, 1)}
. 40
' (A.3)

where f(a) is an auxiliary test function which we shall choose accordingly below. Using
the quantum causality postulate (7v) and exchanging the variables of integration, 2 and &,
we obtain

f dxe f(x)(s, y, 05 t + At, 0, )
——Zfdacs,y,g,r @, a)fdz(t x, 03t + At 2, D)f(2).
ael Q

Now we expand f(2) around 2z =@

f(&) = [1 +(zr—x1) P+ —;— (26 —2x) (2j—2j) ;i + ] Sflx)

and calculate the limit (A.3), using again the notation A=+D of section 2. We easily find
that

fd:x:f(m)é),(s, Yy, 05t,2 4)

fda:(s, Y, 05 t, T, o) [c,,,(t x) -+ aralts ®)+ 5 b 2, )99 ] Sfx).
ae[
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Performing suitable integration by parts and assuming that f(2) and &;f(x) vanish at the
boundary of 2 we get

£ dze f(@)d.(s, Y, 03 t, %, A)

- Z f da f(x) [—;— :9bE(2, 26) —Oralalt, w)+cu,1(t,w)] (s, 4, 03 t, 2, 6).

sel g

Since the function f is otherwise arbitrary, we obtain the differential equations (2.3) valid

throughout £2:

1 .
s, y.05t, @, ) = Z [; Du9b(t, ) —Onaba(t, T) +carlt, w)] (s,y, 058, 2, 0).

cel
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