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Examples of non-polynomial Lagrangians are investigated. Particularly interesting is
a Lagrangian similar to that in the non-linear electrodynamics of Born and Infeld but for
the simple case of a scalar field. Quantisation is feasible but the principle of superposition
is invalidated. Nevertheless, a probabilistic interpretation is still possible.

1. Introduction

The opinions about the origin of the convergence difficulties in quantum field theories
are widely different. Some experts belicve that the difficulties are of a mathematical origin
and are commnected with the procedure of quantisation, with the singular commutation
relations, with the appearance of inequivalent representalions and other ambiguities, They
hope that a mathematical precisation of the object< of quantum field theory and of the
prescriptions how to compute the quantities directly comparable with experiment will be
necessary and sufficient to obtain a satisfuctory theory. Some others represent an opposite
view that no mathematical precisation can help to get 1id of the fundamental convergence
difficulties but a new physical idea is needed.

We are of the opinion that both ave partly right: the mere precization of the objects
and rules of the game cannot remove the main sources of the difficulties in the conventional
theory which are rather of a physical origin but, of course, a mathematical rigour will be
also quite necessary.

The physical side of the problem concerns, whove all, a proper choice of the model
of the physical system. In particular, one has to decide whether the physical system is to
be described in terms of a Lagrangian and, if =0, what kind of a Lagrangian. In order to
answer this question we have to advocate the History of Physics, The transition from the
Newtonian to the Lagrangian formalism as well as from the Lagrangian to the Hamiltonian
formalism constituted an admirable progress of theoretical physics. These formalisms
could be taken over from the case of mechanics to the case of field theories and survived
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the revolutionary changes brought about by Relativity and Quantum Theory. Thus, there
are good reasons to regard the Lagrangian and Hamiltonian formalisms as a durable gain
and achievement of human thought. Therefore we would not like to abandon them unless
it could be proved rigorously that no Lagrangian and Hamiltonian theory is able to account
satisfactorily for the physical reality. Thus, in our opinion it is not advisable to abandon or
modify any of the first principles constituting the foundations of the traditional field theory,
e. g. to abandon the Lagrangian formulation sltogether and assume the point of view of
an autonomous S-matrix theory.

We assume that the field equations are to be derived from a variational principle with
a local Lagrangian density % (x) dependent upon the arguments x via the field quantities
and their first order derivatives taken at one and the same point of space-time. Mereover,
the Lagrangian has to be of a form allowing for a canonical formulation. In sttuations where
gravitation can be neglected the Lagrangian ha~ to satisfv the requirements of Special
Relativity, i. e. has to be a scalar with respect to the Poincaré group.

On the other hand, in order to avoid the peculiarities of the traditional thecries, we
have to look for some non-conventional forms of the Lagrangians. The Lagrangians considered
hitherto were always polynomials in field quantities @ and their first order derivatives ¢,
whereby the degree of the polynomials in the derivatives ¢ , was not higher than two.
However, the Lagrangian does not need o be as simiple ax that but may be a more compli-
cated {unction, providing strongly nou-linear field equation=. In the traditional field theories
the range of variability of the field quantities and their derivatives was assumed to be un-
limited. The Lagrangians were real functions defined in the whole domain of their argu-
ments @, ¢ ,. These requirements are sufficient but not necessary conditions for a canonical
formulation and quantization.

In order to select a particular class of Lagrangians out of the infinity of various possi-
bilities offered by arbitrarily complicated functions of ¢ and ¢, a new physical principle
or, at least, a hint is necessary. A hint is provided by the following remark: at the beginning
of this Century we wilnessed twice revolutiomury changes of utmost importance: the tran-
sition to relativistic and to quantum theories. Though different their basic assumptions
are, they exhibit one feature in common: both incorporate a fundamental, dimensional
constant ¢ or A into the framework of the theory whereby the role of these constants was
manifestly restrictive (v < ¢ or 4gdp > h). Obviously, there is still place for an intro-
duction of a third fundamental constant dimensionally independent of ¢ and A whose role
should be also manifesily restrictive.

The transition to non-linear Lagrangians which are no more polynomials offers a possi-
bility of introducing =uch a constant restricting the range of variability of ¢, or (pil, or of
the whole Lagrangian.

2. Precisation of the field concept

For both physical as well as mathematical reasons it iz not enough to assume the
field @ to satisfy a certain hyperbolic fiell equation. One has to assume reasonable boundary
conditions and 10 precise the mere concept of the field. Therefore we assume the following
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axiom: A solution of the field equation represents a physical field? if and ouly if it is of
the following form

o

(% 1) = 35 ¢.(09.(») 0y
r=0
where @ (x) denotes « complete orthonormal set of functions with the following property:
the integrals

L= dx(p, ()2, rs=0,1,2, ... an

exist for any finite r und s. This condition is salisfied e. g. by the cigenfunctions of the
harmonic oscillator? The coefficients ¢, constitute a et of generalized coordinates describing
the physical ~system called ““the field”. Field quantisation consist= in quantizing the system
described by the enumerabhle set of coordinates ¢, and their canonically conjugated mo-
menta p,, or equivalently by the complex coordinates a, und a," where a, = 27" (q,+ip,).

The above axiom removes the difficulty connected with the appearance of inequivalent
representations: these which are inequivalent to those bazed on (1) are not representations
at all.

The quantum field theory is to be considered as a limit of the quantum theory of
systems with a finite number of degrees of freedom

@, 1) = lim @g(*, 1) 2
R-
where
- R -
Pr(x, ) = Zf)(Ir(L)(pr(‘x)‘ 29

Inasmuch as gg decreases sufficiently rapidly for [x] = oo il is no more necessary to intro-
duce two cutoft’s (in the x-space and in the k-space separately) but only one cutoff r < R.
The limit transition R — oo bring= about with it singular commutation relations

3,0, @7, 0] = —id®GE —x7) ©)

wherefrom it is seen that the operators ¢ and 7 ave highly singular. Thercfore the limit
transition R — oc iz a very «elicale problem and, most probably, is not feasible in the case
of conventional interactions (polynomials in field quantities). In order to secure the existence
of the limit transition we have to cvonsider some examples of rather non-conventional La-
grangians.

! For simplicity we consider a single, real scalar field.
% In this case r is an abbreviation for the set of three indices nyngn; or nlm where I, m are the
indices of spherical harmonics.
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3. An example of « bounded interaction
Let us conzider a Lagrangian
L =%,+Z 4)

where &, denotes the usual Ligrangian for a free field whereas the interaction part of the
Lograngian is

== g1 - [4<p4)f'!:“_ng4. 5)

The domain of variability of ¢ is resteicted by the form of the Lagrangian

2g2.--1 < 0. (6)
~ ’ 9 pr
. . S QF ¥ L .
[he Lagrangian &£ s well as its derivatives 22— and -~ are bounded in this domain
‘2 cq”

and vanish for 12¢? — 1. This Lagrangiun may be developed into a power series and yields
terms proportionsl to @4, ¢8, ... deseribing an interaction of the field with itself by means
of two-body, four-body, ... forces. In both limits 12¢2 — 0 and {2¢2% — 1 the field becomes
a free field.

D& Q2 o

The fact that the devivatives =7 and 2.2 are bounded ensures the existence of
o o=
unique solulions which may he computed for auy Anite time interval by means of iteration
starting with « free field salisfving ioitial conditions consistent with (6) but otherwise
arbitrary. Thus, the elassical field of thiz tvpe s very regular,

Going aver to quantizition ve face e problem of attaching a well defined meaning to
the interaction term (5). In order to precise this complicated operator we apply Wick’s
ordering prescription and secure the hermitian character of the interaction energy density
by the following substitution

A+ A )

4. An example of a temperate action
Let us consider a ficld twory with the Lagrangian
~ 1 s
&= (1—(1—2a2£})"), (8)
@
where @ is a constant with dimension em# and & is any conventional Lagrangian, for example

1, 2 '
L = — 5 (pitmPe® 4 gg7). ®)

The Lagrangian & possesses an upper bond 1/e. In the limit @ — 0 it goes over into the
conventional Lagrangian (8').
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The relation

L% _ g
*= 9% ~ 1—2a@)% ©)
is soluble uniquely with respect to ¢
: 1 +a(gh+me®+gor) |*
G=mn { s (10)

whence this theorv is canonical. The Hamiltonian density is
P 1 2 3 1
H = —{(l+an®) (A talgh+m*e® +gg))h — —. (1)

Tt is positive definitive (at least for g >0 and even n). The restriction
20 <1 (12)

is automatically satisfied if ¢ is replaced by the function (10).

Going over to quantum theory the expression appearing under the square root (11)
has to be symmetrized. Assuming Wick’s ordering prescription to the Hamiltonian (11)
the positive definite character of the expression under the square root is lost and we have
to secure the hermitian character of the energy density by a redefinition of the Hamiltonian

1
H — 3 (-0 (13)

This secures the hermition character of the density but does not ensure its positive defi-
nitness, In order to guarantee a positive definite character of energy we have to impose

a restriction upon the physically acceptable state functionals |@ >
(D|:H: D) >0. (14)

This restriction may be secured as an initial condition because H is a constant of the motion.
Thus, it does not constitute an encrouchment upon the dynamies but means a new situation
in the theory of measurements.

The main novelty of such a theory consists in the fact that a superposition of physical
states ix not necessarily a physical state again. Fortunately, the principle of superposition
is only a =ufficient but not a necessary condition for a probabilistic interpretation. We may
divide the eigenstates of an arbitrary observable 4 into physical [4E") and unphysical
| 43> and postulate that the probability of obtaining (in a measurement) an unphysical
state is @ priort zero whereas the coefficients

PR — (AP D) (15)

mean relative probability amplitudes for obtaining a physical state |AP®) in a measurement
of A if the state just before the measurement was (@Y. Thus, we have to normalize the

coefficients (15) so0 as 10 have the sum over all physical states equal unity

Sjghp = 1. (16)



