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EFFECTIVE INTERACTION OF VALENCE NEUTRONS IN Nj
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In the case of 38Ni the matrix elements of the effective interaction of the last two nucleons
are calculated using Migdal’s method and compared with those given by Kuo and empirical
values determined by Auerbach.

1. Introduction

A method of caleulating the effective interaction was given by Brown and Kuo in 1966 [1].
They started with the Hamada-Johnstou two nucleon potential and assumed that the single
particle wave functions are those of a harmonic oscillator. In orvder to avoid the infinite
values of integrals, the potential ¥ iz replaced by Brueckner’s reaction matrix G for the =caiter-
ing of two nucleons. The important point in their approach is the separation method in which
the two-particle potential V' is divided into the short range part V, and the long range
part ¥ in such a manner that the atiractive part ¥, balances the repulsive core. Using this
method, Kuo [2] obtained the matrix elements of the effective interaction in nickel isotapes,
In his caleulations he took into account the rore polarization of the type

G+ Gy Qj%h Gy

and stated that this leads to an essential renormalization of the reaction matrix.
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As we know, the idea of the particle-hole core polarization pertains to Migdal’s theory
of effective interaction in nuclei. But in his method the primitive interaction is postulated
as a short runge, 8(r,—7,) type, two-nucleon force. It seemed it would be interesting to
calculate the matrix elements of the effective two-nucleon interaction in %Ni using Migdal’s
method and compare them with those given by Kuo for two reasons:

1. Tn the Brown and Kuo approach the long-range part of the realistic Hamada-Johnston
potential plays the major role, while in the theory of Migdal one starts with a short-range
force only.

2. This comparison will give us a possibility of ascertaining how sensitive Migdal’s
method is to the choice of the numerical parameters of the primitive force F.

2. Calculations
We consider Migdal’s equation for the effective intraction of two nucleons in the partly
filled shell ny [3]:
(}]1}!*2 || %3%4) = (%1%2 [F| f‘a?ﬂ) +
Nt b

Z (z ¥ IFl 2 z}) P @4 7152 (1)

Here, 4; is the set of quantum numbers describing the one-particle state (in our case
Ai=np L ty), (l-}.~|Fle7.,) means that 4, 4, and 2, 4, are coupled to the total angular

i

momentum J and 150%pm T, the summation over A4, A’ goes over particle and hole states,
respectively, excluding the ng shell, ny n,, &, ¢, are the occupation numbers and the
one-particle energy, respectively, and o is excitation energy (we shall omit it, as it is small
compared to ¢,—e;). Furthermore,

F= 06(71‘72){f0 +f’0(;1%2) (8o +g’0(;1 ;2))(51 _‘;2)}
= ¢f (N (7, —T2), 2

where fy, /', depend on ir| =r as follows:

1
Jo(r) = foin+ (foex—Foin) 77 —p=ry >
1
Folr) = foin+(f oex—f 0in) T =Ry 3

Soins foexs Soins Sfoex being constants, & = 1.49 =1, Ry == 1.279 A':f, ¢ = 2/3T¢/0g, T is the
Fermi energy and g, = 3Zj4nR}). Passing to the relative and centre-of-mass oscillator
coordinates we obtain

1 hh ERLWE
(MA|F|234,) = C § : X33 Ljog X33 lyjaye (1_(_1)~S~T)X
S A SLJ

X (n0, NL, Linylynyly, Ly <n'0, N'L, Linglyngls, LY * @00(0)00(0) Enprr- (4)
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C is a new constant, X denotes the transformation coefficients from j—j to L—S coupling,
(nl, N, Lin,l,, n,l,, L is the Brody-Moshinsky transformation bracket between the labo-
ratory frame and the centre-of-mass and relative frame

(pnlm(-;) = Rnl(r) Ylm(ﬁ’ (}7)

are the normalized harmonic oscillator eigenfunctions, and

5
Enne = f Rni(0)o®f (LZ% 9) Ryr(e)do.

TABLE I
Comparison of two-body matrix elements
1p3), 073, 1pf),
I IT k—B I It kB 1 I k—B
2 —1.129 —0.604 —0.967 —0.549 -—0.320 ~—0.558 —0.595 —0.347 -—1.241
1p —0.878 —1.259 —0.961
¥
—0.92 —~1.12 —0.97
—1.182 —0.678 —0.268 —0.390 —0.189 —0.201
0r2 —1.249 —0.952
*2 ~1.74
—0.56
2 —0.625 —0.274 —0.089
—0.89
1py, Ofs, 1ps), 1py,
1 11 k—B I i k—B
1.146 0521 —0.222 0.071 0.017 —0.089
1py;, Ofs, 0.403 —0.042
1.10 0
—0.001 —0.001 —0.133
ipsy, 1py, 0.055
J=1,T=1
1.24
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1ps;, Ofs, 0fsy, 1puy,
I il k—B 1 1l k—B
—0.190 —0.017
—0.073 —0.026 50 =001 ~0.002 90
Lp’/: Oﬁ/s
0.80 0
- 0011 —0.006 —0.118
0fs;, 1pyy, Js T 0.64
0.62
1py, Oy, 074,
I 1l k—B I I k—B
0245 —o1a0 366 0.099  0.059 —0.024
1ps) 0fs e e —0.070 0.099  0.059 —0.351
|R /2
—0.38 —0.25
—0.268 —0.119 —0.061
013, 0.461
J=14,T=1
0.32

The transition from (4, ﬂ.leM Ay 1o (2.1/1 |F|ﬂ. /14) gives the formula [4]
! 1 | [

3 (Al Fidghy) V20 +1 V2T +1 - UGjajains JT) X
Jr

d
In 38Ni the n, shell consists of the levels: 1ps,» 1py, Ofy . We assume the levels Od,/,,
Isy,, Od%, Of,/l to be the hole states (1), and 08/, 1d,/, 0g1/,» 254, lds/z, Oh,,/’ to be the
particles states ().

Apart from Migdal, Bochnacki et al. [5] and Mikhailov [6] obtained a different set
of parameters describing the two-particle force F. They took for g, and gy the same formula
as (3) and assumed the following values of the parameters: f; = 0.15; f[ = 0.62; 1.,
= —14; fi = —0.22; g, =0.1; g = 045; g, = 0.3; g., = —0.05.

The results of our calculations are given for both cases; the Migdal problem: f;, = 0.5;
fio=07; fu= —2; flo=1; gy =go=0.5 (denoted I), and that of Mikhailov and

1

1 % 1 ) (—1)/HTHT T e = (1112|F|23l)

2’
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others (denoted II). The first and second columns are the values we received. The third
column, first row, constains the results of Kuo for G, the second row gives his results with
core polarization, and the third row presents the values used by Auerbach [7].

3. Conclusions

Our results, for the case I, oscillate near the Auerbach values with the same accuracy
as the numbers given by Kuo. The variant Il gives, as a rule, too small values of the matrix
elements of the Migdal effective interaction. From comporison of the variants I and II one
can see that the matrix elements of the effective interaction are sensitive to changes of the
numerical paramelers entering F.

Two of the authors (Z. B. and W. R.) would like to thank Professor V. G. Soloviev
for hiz hospitality at the J.LLN.R. in Dubna where this work was initiated. The authors
wish 1o thank S. Lewanawicz, M.Sci. for hisz help in computer calculations,
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