Vol. B2 (1971) ACTA PHYSICA POLONICA Fasc. 4

BINDING ENERGY OF 3H AND n-d DOUBLET SCATTERING LENGTH
WITH RANK FOUR SEPARABLE POTENTIAL

By J. Darowsk1l anD M. Dworzecka*

Institute of Nuclear Research**, Institute for Theoretical Physics of the Warsaw University, Warsaw and
International Centre for Theoretical Physics, Trieste

(Received October 29, 1970)

Separable charge independent nucleon-nucleon potentials containing an attraction and
a hard shell repulsion in the 15, state and the Yamaguchi tensor interaction in the 3S,+3D,;
state are used to calculate the 3H ground state energy, E7, and the n-d doublet scattering length, %a.
For the potential which gives the best fit to the nucleon-nucleon data we get: Ep= —8.81 MeV,
2g == 0.58 fm. All our results fall on the Phillips line. The paper contains also a derivation
of the system of coupled integral equations for the bound state and for the scattering problem
for an arbitrary rank potential acting in the 1§, and 35,4+ 3D, states.

1. Introduction

The nuclear three-body problem! has atiracted the attention of several physicists
virtually since the beginning of nuclear physics. By investigating the properties of the
three-nucleon system, in principle, we should be able to gain valuable information on the
basic nucleon-nucleon interaction. The progress in gaining in this way reliable information
on nuclear forces has been very slow because of the essential difficulties in solving the
three-body problem. Thus for a long time the most detailed calculations — by Blatt and
his collaborators (see, e.g., [5]) — have been based on the variational principle. Since the
work of Faddeev [6] an increasing number of caleulations have been devoted to finding
exact solutions of the three-body equations. In most of these calculations the partial wave
projection of the two-body potential has been assumed to have the form:

Vi(r, ) = 25 Aan)oalr)s (1.1)

known as the separable approximation. Alternatively, one may make the separable approxi-
mation on the level of the two-body ¢ matrix. The two approximations are completely
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1 For a recent review of the three-nucleon problem see Refs [1]—[4].
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equivalent, This approach of solving exactly the three-body problem with a separable two-
body potential was pioneered by Mitra [7}, Kharchenko [8] and Sitenko and Kharchenko [9].

In the present paper we calculate the triton ground state energy, Er, and the n—d
doublet scattering length, 2a, with the help of a charge independent separable two-body
potential acting in the 1S; and 35, --3D; states. In the 1S state, in which the short range
repulsion is best established, our potential contains both attraction and a hard shell repulsion.
In the 35, +3D, state, we apply the pure attractive Yamaguchi [10] potential which has a cen-
tral and a tensor part. Thus our potential of rank four (i.e., it contains four components) has
probably all the essential features of the two-body interaction which are relevant in the low
energy three-nucleon problem. (The interaction in other states seems to be much less
important [11].)

The effect of the charge dependence of nuclear forces on . has been investigated
in [12], where a reduction in the triton binding by 0.7-0.9 MeV due to the charge dependence
was found. Although it is a sizeable effect, a big part of it certainly reflects the sensitivity
of E to the value of the singlet scattering length which is known less precisely than the
values of the other low energy nucleon-nucleon parameters. Let us mention also that the
magnitude of the charge dependence of nuclear forces is not unambiguously determined [13].
Obviously, taking into account the charge dependence would increase essentially the size
of the computations. Having all this in mind, in the present paper we assume that the two-
-body potential is charge independent. Consequently, the isotopic spin, T = 1/2, is a good
quantum number of the triton?, and we find it convenient to apply the isotopic spin formalism.

In the case of a separable interaction one may reduce the original three-body Schroedin-
ger equation to a system of coupled one-dimensional integral equations. In the case of a rank
three potential with a tensor force of the Yamaguchi type the derivation of the corresponding
system of integral equations has been given by Bhakar [14] (for the bound state problem),
by Bhasin [15] (for the scattering problem), by Mitra, Shrenk and Bhasin {16] and by Sitenko
and Kharchenko [17] (for both the bound state and scattering problems), and by Fuda [18]
(for the bound state problem). The generalization to the case of higher rank potentials for
the bound state problem has been given by Stagat [19]. A simple and straightforward method
of deriving the system of integral equations in the case of a central interaction for the bound
state problem has been given in Ref. [12]. A generalization of this simple method to the case
of an arbitrary rank potential with tensor forces acting in the 1S, and 35, +3D; states is
outlined in the present paper for both the bound state and the zero energy doublet scattering
problem.

The two-body potential used in the present calculation is presented in Section 2.
In Section 3 the kinematics of the three-nucleon system is described. In Section 4 we derive
from the Schroedinger equation the sysiem of coupled integral equations for both the triton
and the zero energy n—d doublet scattering in the case of an arbitrary rank potential of the
type described in Section 2. The numerical method of solving our equations is described in
Section 5. The results obtained are presented and discussed in Section 6. In the Appendix

2 The percentage of the T = 3/2 state in triton in the case of the charge dependent forces considered in [12]
was found to be 1—2x107%9,.
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we have collected the formulae used in the derivation of the system of equations given in
Section 4.

The results of the present paper concerning the triton binding energy have been presen-
ted in {20] and those concerning the n—d scattering length have been reported in [21].

2. The nucleon-nucleon interaction

The two-body nucleon-nucleon interaction is assumed to be charge independent, of
a nonlocal separable type. In the relative momentum representation it has the form:

Ns .
(K|l = ) Au (k' yu, (k) A+
=1

Ne R .
30 Ah, (o, () A, 2.1)
r=1

where A°(A% is a projection operator onto the spin singlet and isospin triplet (spin triplet
and isospin singlet) state of the two nucleons. Here and throughout this paper “‘hats” on
a quantity denote operators in the spin and isospin space (/f, v, 17) The momentum states
are normalized according to:

(K'|R) = (27)%0(k'—k), (2.2)
where k is the momentum vector in units of .

The ¢’s in Eq. (2.1) have the form:
1

/8

Bu(k) = v,(k) + —= w,(k)S(k), (2.3)
where S(k) is the tensor operator.

Our nucleon-nucleon interaction (2.1) is the so called Yamaguchi [10], {22] interaction.
Actually, it is a generalization of the original Yamaguchi interaction, as it contains NV, spin
singlet and N, spin triplet terms. The interaction (2.1) acts only in the 15; and 35, 43D,
states. The mixing of the 3S; and 3D, states is caused by the presence of the tensor
operator, Eq. (2.3). Lel us notice that whereas the original Yamaguchi potential in the triplet
state (N, =1) acts just in the “‘eigen-S state”, our potential in the case of N, > 1 acts
in both “‘eigen-S” and “‘eigen-D states”.

Now, we are going to describe how the functions u,, v,, w,, which determine the shape
of the interaction, and the strength parameters, 4, 4,, are adjusted to the low and medium
energy properties of the two-nucleon system.

A. The interaction in the 1§, state

To iake care of the short range repulsion in the nucleon-nucleon interaction, best
established in the 1S, state, we shall use two terms (N, = 2) in our singlet.state interaction.
The short range repulsion may be represented conveniently by a hard shell potential which
is separable in each partial wave. Hence, by adding to the attractive Yamaguchi S state
interaction [22] the S state part of the hard shell repulsion we obtain an interaction which
contains both the long range attraction and the short range repulsion and is still separable.
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This potential, first applied by Puff [23], has the deficiency of letting the two-body wave
funetion leak into the region inside the hard shell. We remove this deficiency by cutting
off the spatial representation of the attractive Yamaguchi part of the potential for distances
smaller than the hard shell radius r,. This procedure, ¢xplained in [24] in the case of the
A~ A interaction, leads 1o the following form of the attractive part (v = 1) of the potential:

vy (k) = k(ﬂ21 kz) [fs sin kre+-k cos kre] exp (—pfire), (2.4)

whereas the repulsive hard shell part (v = 2) has the form:
vo(k) == sin kr Jkr,. (2.5)

Since the » = 2 part of our interaction represents a hard shell repulsion, in our final
expressions we go with the value of the strength parameter 2} to the limit:
Ay — oo, 2.6
The three free parameters of our 1S, interaction, i, 8, r, may be adjusted to the
experimental values of the singlet scattering length, a , and of the singlet effective range,
To» and to the observed behaviour of the 1S, nucleon-nucleon phase shift, §(1S,), at higher
energies. The calculation of a, ry, and ctg 6(1S;), with the help of our potential, Egs
(2.4-2.6), is a standard one (see, e.g., Ref. [23]), and we simply write the resulting equations

for a,, ry,:

[L—(rf3a)—(ro/r)l/[1~(r/a)]®
= [%M(Q/ﬁsrc) /[1_(0'5/"} _(3;ﬂsrc)—l (2?18)
Bapyliim = —{1+2/[B,(r.—a,)]} exp (=267, (2.72)

and the expression for ctg 6(1S;):

ctg 0(1S,) = —ctg kr.+ {Sin krce,ss,c[grzl_;t_l_'f «

T

-1
X (ﬁ—; (B2 +E%)2+ e‘f’"“(ﬁs—kz/ﬁs)) +cos kre e"""c]} , (2:8)

where m = 0.02412 MeV-Ym2 is the nucleon mass divided by h2.

The values

a, == —23.7{m, ry, = 2.5 fm, (2.9)

have been used in calculating, with the help of Eqs (2.78—2.74), the values of the parameters
B,, 21 for each value of the hard shell radius, r,, considered. The results are shown in Table 1.
To choose the best value of r, we have compared the phase shift 6(1S,), calculated with the
help of Eq. (2.8),4as a function of the laboratory energy, E; oz = 2 £%/m, with the correspond-
ing YLAM phase shift [25]. The best overall agreement with YLAM, shown in Fig. 1, has
been achieved for r, = 0.25 fm.

Notice, however, that our potential gives a rather poor agreement with the YLAM phase
shifts in the range of laboratory energies around 10 MeV, which might be more important
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TABLE I
The parameters of the two-body interaction in the 15, state
re (tm) B, (fm~1) A (MeV fm™7)
0.00 1.254 —1.925< 108
0.10 1.370 —3.318x 108
0.15 1.436 —4.485x 108
0.25 1.590 —8.807x 10°
0.40 1.893 —30.808x10°

=025 fm

&('Sy) in radians

E ag (MeV)

-05 -

Fig. 1. The 1S, phase shift calculated for three values of the hard shell radius, r,. Dots denote the YLAM 15,
phase shift

in the triton problem than the higher energy range, where the agreement is satisfactory.
Unfortunately, we cannot change this situation by changing the value of r, — at least with

the shape (2.4) of v, (see Fig. 1).

B. The interaction in the 3S,--3D; state

For computational reasons, in the present three-body calculations we have restricted
ourselves to a one term triplet interaction (NN, = 1). For the functions v; = v and w; = w,
Eq. (2.3}, we use the Yamaguchi form [10]:

vk) = Y(BF+K%),  wk) = —tyk?¥(y® + kP> (2.10)

The values of the parameters of this triplet interaction, which we apply in the present
work, were found in [10] to be:

A = A = —2.561% 103 MeV fm1,
B, = 1.334 fm1,

ty == 1784,
y = 1.568 fm1. 2.1

These values reproduce the binding energy of the deuteron, gp = 2.225 MeV, the triplet
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scattering length, @, == 5.38 fm, the deuteron quadrupole moment, Q = 0.274 fm2, and
give for the percentage of the D state in the deuteron, Pp = 49,.

We have considered also the pure central force case in which we have dropped the
tensor part of the interaction and have adjusted the parameters of the central part, v, to
ep = 2.225 MeV and a, = 5.38 fm. In this case we have:

M= —4.282x103 MeV fm-1, B, = 1.449 fmrl, ¢, = 0. (2.12)

In deriving the equations for the neutron-deutron scattering, we shall need the form
of the normalized deuteron wave function, ¢°, produced by the interaction (2.1). In momen-
tum representation, we have:

(K|#®) = P x1aidor (2.13)

where ¥, 18 the triplet spin state with the z-projection of the total spin equal M, and {,
the singlet isospin state of two nucleons. For qf’D (k) we have:

o D( I
¢ok) = — —— Az/m Z .ok (2.14)

where the coefficients ¢, satisfy the system of linear homogeneous equations:

L7

(1/}.:)0”—2 E c,=0, v=12 ..,N,, (2.15)
=
with

dk

El‘[t = (2

3 [0(k) vulk) +10u(R)wi(R)]/(ep + K[ m). (2.16)

By requiring the determinant of the system of equations (2.15) to vanish, we get the
eigenvalue equation:

Det {(1/4)6,,—E,} = 0. (2.17)
With Eq. (2.17) being safisfied, we may make solution of Eq. (2.15) unique by

imposing the condition:

Ne
MNed=1 (2.18)
y=1
For the normalization constant N we have:
N2 =1/> H1uCul0 (2.19)
v
where
N ? 2.20
uy = 9—6_[; E/u- ( . )

We have introduced a minus sign in Eq. (2.14) for reasons of convenience. Otherwise,
this sign is irrelevant.
The equations (2.14-2.20) are an obvious generalization of the equations of Ref. [10].
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3. The kinematics of the three-nucleon system

By Py, Ps» P3 we denote the momenta (in units of h) of the three nucleons. Throughout
this paper we shall work in the bary-centric subspace of our three-nucleon system:
P1+P,+Ps=0. 3.1)

Consequently, we have two independent vectors to label the states of the system. Following
Faddeev [6] (see also [26]), we introduce three such pairs of vectors (see Fig. 2):

q; =P;+Pp  ki=i@—p) (3.2)
where the indices i, J, k form one of the three cyclic permutations of 1, 2, 3. The momentumq;
is the total momentum of the particles j and & (which we shall call the i-th pair), and k; is
the relative momentum of the i-th pair. Each pair of the vectors q;, p;, according to the
equations:

k), =qlqK ), ElqE);=K|qk), (3.3)

labels the momentum states of three different bases, |qk); (i = 1, 2, 3), normalized accord-
ing to:

{klq'K); = (2n)*6(q—q') S(k—K). (3.4
Let us notice that Eqs (3.2) imply:
1 1
4@=—50tk. = —5qk,
3 1 3 1 _
ky=— ;q,— ?kl’ k, = i ey k. (3.5)

These equations enable us to interchange the bases | ); and | ),. Namely, the corresponding
transformation coefficients are:

Kqkiq'E ), = Lq'F k),
1 3
oo La k) ofws a2

1 3 1
= (27)8 0 (q + 5q'+k') 8 (k~ S+ 5 k’) . (3.6)

By replacing the indices: 1 -> 2,2 —3, and 1 - 3, 2 - 1, we may obtain from Eqs (3.5-3.6)
all the remaining transformation equations.

As far as the total kinetic energy operator, K, is concerned, the choice of any of the
three bases is irrelevant in the sense that we have:

2 2
Kigh>; = (iim + %) lgk>:,  for i =1,2,3. (3.7)

To classify the spin states of the system, again, we introduce three different bases with
the help of the operators:

I =s,ts;, I,=s8,+8;, I;=8,+s, (3.8)
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where 8; = }@; is the spin operator of the j-th nucleon, I; is the total spin of the i-th pair
of nucleons. To get the total spin of the three-nucleon system, I'®", we may use any of the
three equations:

I’t=s,+I, I"=s,+1, I"= I,+s, 3.9

Each operator 11-2, together with the operator (I*°%)2 and with the operator of the z-com-
ponent of the total spin, I'°%, according to the equations:

I MY = [T+ 1) |[ITMS,
(Itot)2fIIt0(M>}) — PO{(PO(+1)III(O(M>;, (3.10)

[ IM); = MM,
z J 7

labels the normalized spin states of three different bases, [IT°'M)7 (j =1, 2, 3).
Actually, we shall need only the spin doublet states with I*°* == %, for which we introduce
the simplified notation:

1
[ It = —, MYy = |1 )%, (3.11)

In the presence of the tensor forces I'®" is not a good quantum number, and one expects

the presence of the spin quartet states (I =

£} which, however, will be generated auto-
matically by the action of tensor operators on the doublet states.

In constructing the states |I){, one has to fix the order of adding spins of the three
nucleons. Here, we accept the order of coupling indicated in Eqs (3.8) and (3.9), which is
the order applied in [27].

To be able to change from one base to another it is necessary to know the transforma-
tion coefficients {(diagonal in M):

UMI, K) = UR(K, ) = KKID? = KIKY, (i #h). (3.12)

The U™ coefficients may be calculated easily (see [27]), and with our order of coupling
one gets for them the following values:

UB(1, 1) = —UB(0,0) = U0, 0) = —U¥2(1, 1) = U0, 0)
= U%(1, 1) = 1/2, (3.13)
UB(1,0) == U0, 1) = U2(1, 0) = U0, 1) = U0, 1) = — U1, O)= 1/5/2
Notice that we have:
U(I, J) = (—) U247, J). (3.14)

For the sake of completeness let us mention that in the case of the quartet state (I*°* = 3/2)
the spin of each nucleon pair is equal one, I; = 1 (i = 1, 2, 3), and for the transformation
coefficients we have:

3 3
<1, 5 MPL, o, MY5§ = Smmr- (3.15)
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With the isospin states, we proceed in exactly the same way as with the spin states.
We apply the same coupling order, and introduce the notation:

|T, Tt = 12, TP = IT); , (3.16)

where T'is the isospin of the j-th pair of nucleons, T"* is the total isospin of the three-nucleon
system, and T3°" is its third component. In the case of charge independent forces T is
a good quantum number. The transformation coefficients for the isospin states are the same
as for the spin states,

XTIy, = UXT, T). (3.17)

Collecting the spatial, spin and isospin states, we may write the complete set of states
of the three-nucleon system in the three different bases:

gk TTOM; TTVTRNY, = |qled )T IO MY | T TR, (3.18)

Obviously, because of the Pauli principle, only certain combinations of these states are
realized in nature.

The advantage of the i-th base is that it forms the most convenient base for the descrip-
tion of the interaction between the two nucleons of the i-th pair. Often the name ‘i-th
natural base” is used. Since in the three-nucleon sysiem there is an interaction between all
three nucleons, we need all three natural bases for the description of the system.

In constructing the three-nucleon wave function we shall find it convenient to have
the following spin and isospin states defined:

1100 = 171007 105); = [0)7[1)} - 3.19)

Obviously, the states |I)); are antisymmetric in spin and isospin coordinates of the i-th pair
of nucleons. The total spin and isospin of the states |I)), is equal 1/2, whereas the spin of
the i-th pair of nucleons is I.

In the next section we shall impose on the wave function of the three-nucleon system
the condition of complete antisymmetry. For this reason we should know the behaviour
of the momentum, spin and isospin states introduced above under the exchange of the
coordinates of two nucleons. Let us introduce the exchange operator of all the coordinates
of the nucleons ¢ and j:

Py = PyPiP; = PPy .20

where the superscripts r, g, T denote exchange operators of spatial, spin and isospin coordina-
tes, respectively.
Now, the following relations hold (for ¢ #j # £k #i):

Pilgk), = lq—k),,  Pilqk); = lq—k);, (3.21)
PZIV».@ = _![>>k9 P?;U)x = -31;!]>>j, (322)

where

=1 for k=23,
=Y 31 for k=1 (3.23)
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Some of these relations are obvious (the first relation of (3.21) and the first relation of (3.22)),
the others may be checked easily. For the second relation of (3.22) our order of coupling
spins and isospins is relevant.

4. The Schroedinger equation of the three-nucleon system

The Schroedinger equation satisfied by the state vector |¥) of the three-nucleon
system whose energy is E has the form:

DYy = V), (4.1)
where
D= F—K, 4.2
and
Ve Vi Ty Vs,

where ¥, is the interaction between the two nucleons of the i-th pair (see Fig. 2). If we

introduce the notation:
@, = V|, (4.4)

we may write the Schroedinger equation (4.1) in the form:
3
;) = V,-D‘IZII@,-% (4.5)
=

where D! is regular and uniquely defined for negative values of E, to be considered
throughout this paper.

Each state vector |@;) shall be written in its “‘natural” momentum representation, for
which we introduce the following notation:

(qk|D;) = P, (qk), (4.6)

where here and further on we use bold face charcters, like ®; to denote wave functions in
momentum space and state vectors in spin and isospin space.
By using for each |@;) its natural momentum representation, we get from Eq. (4.5):

D, (qk) = Z(Zn) f dq'dk’; (qleD‘llq’k’)J (q'K'). 4.7)

Now, we have:
LRV gk, = @n)*o(q—q') (k| Tk, (4.8)

where (J|V,|le') is the two-body interaction in the relative momentum representation (it

is an operator acting on the spin and isospin coordinates of the i-th pair of nucleons). When
we exploit Eqs (3.6) and (3.7) we may transform Eq. (4.7) easily into:

@iah = [ @i 7 k) Buigr) +

+ ;{jn(gg)’:;(kml il (q' + —;- ))D(qq)"1 @, (q,* (Qi . q)), (4.9)
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where
_ 32 K
D) =E—F—-— (4.10)
, 1 N o1
D(gq) = E—5-l¢*+(q+q)*+q"] = 9((1, 9+ 59 ) (4.11)

The lower signs in Eq. (4.9) apply when i and % are a cyclic pair of numbers 1, 2, 3 {e.g.,
i =1,k =2), the lower signs in the reversed case (e.g., i = 1, k = 3).

In the case of a general two-body interaction, ¥, the system of integral equations
(4.9) seems to be, at present, numerically unmanageable. If, however, we assume for V; the
nonlocal separable form, Eq. (2.1), the system of equations (4.9) is simplified tremendously,
and may be reduced to a system of one-dimensional integral equations. From now on we
assume for V; the form (2.1). Since we have three different pairs of nucleons, we have to
indicate in Eq. (2.1) the particular i-th pair of interacting nucleons by making the substitu-
tions:

a0 ~ A & N N
A 9/113 A. ‘9'/_[1', 'Uv'—>’l)i1,,

where v, is given by Eq. (2.3) with § — S;. When this separable form of ¥, is introduced
into Eq. (4.9) one is led to the following Ansatz for ®:

®,(qk) = X {1,()1(q) + 0, (-1 @)} (4.12)

where
XilD) = s:(9)[0) ;5 (4.13)
X5 @) = {t,-,(q) + V% Tiu(q) 5:-(!1)} 1> (4.14)

The sum over » in Eq. (4.12), and in similar equations to follow, runs from 1 to N, in
the first term and from 1 to NV, in the second term of this equation. The unknown functions
in the Ansatz are s,,, t;,, T;,. We shall prove the correctness of our Ansatz by simply showing
that with this Ansatz we are able to solve Eq. (4.9).

First, let us derive the conditions imposed on s;,, t;, T; by the Pauli principle:

P,|\¥) = —|¥) {4.15)
In the case: k # j # i # k, we have:
ij@i) = ijﬁﬂ’) = I;}ijll—m = —|D) (4.16)
On the other hand,
Kak|PLPE|D) = (q—k|PFI0,) = PE@,(q—H), @17)
where we have used the property (3.21). Since, however, according to our Ansatz
®.(q—k) = ®,(qk), (4.18)

Eqs (4.17) and (4.16) imply:
Pi®(qk) = —®,(qk) (4-19)
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This requirement of the Pauli principle, however, is automatically fulfilled by our Ansatz,
as one may see immediately with the help of the first of Eqs (3.22).
In the case: k == i, we have:

Pj|®;) = P:';'m?') = f/iPijlyj> = —|D). 4.20)
On the other hand, with the help of the property (3.21),
KGRIPGPF|P) = (q—K|P7|®) = PFd(q—k). (4.21)
Equations (4.20) and (4.21), together with Eq. (4.18) imply:
Pi®(q, k) = —P;(qk). (4.22)

This requirement of the Pauli principle has definite consequences for our functions s T,
Namely, with our Ansatz, Eq. (4.12), we have:

PF®,(qk) = 3 {u,(DPFX4(q) + 0, (R)PTX (@) (4.23)

iv? tiv’

Now, from Egs (4.13-4.14), we get with the help of the second of Eqgs (3.22):
Pixi(g) = Salg) P 0> = —eSulg)| 0>
or_t 1 A 4.24)
Pixalq) = —¢ {tiy(q) + l7§ Ti(q) Sj(q)} [1>;.

Eqgs (4.23-4.24), when compared with the requirement (4.22), imply the following condi-
tions:

Sjv(q) = &5,(9) tju(q) = &4t,(9), j}u(Q) = &,T;(9), (4.25)
where j # i # k # j. Since g = ¢g,¢;, Eq. (3.23), we satisfy the conditions (4.25) by putting:
si@) = 5,(9)> :(2) = &2,(9), Tikq) = &T,(q)- (4.26)
Thus, our final Ansatz for ®; which obeys the Pauli principle is given by Eq. (4.12) with
va(Q) = 8‘-8”((]),0 >>;”»‘ (4'27)

1 ~
Xola) = [z,,(q>+ 7510 54«1)] 115, (4.28)

To get the equations for the N;+2N, unkown functions s,(g), t,(q), T,(g), we insert
our Ansatz into Eq. (4.9). By comparing the coefficients at u,(k) and (k) on both sides of
the equation, we easily get:

Kol =Y {f:y(q> Xila) + Y f ook Dlae wle) i
ki

“

X [t @) X 9) + (@) Xkl )] } (4.29)
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z 14 4 z dg’ , N ~
xilq)/ Ay = Z {J,.,,(q)x,~,‘(q)+ Z [ (23)3 D(qq') ! Bi(€) A;
kit

"

X [uu(a)xiu(fZ') + {)k/t(a)x;eu(q')]} > (4.30)

where

Fle) = f R Gy k),

(2m)°
- (4.31)
Il = | G5 27N @R Bl (BB
a=q+iq.c=}q+q. 4-32)

Now, the right hand sides of Eqgs {4.29) and (4.30) have to be calculated. In particular,
it is important to perform the integration over the azimuthal dependence of ¢’. This calcula-
tion is perfectly straightforward. Notice, however, that, e. g., the term ﬁiv(C)f)kﬂ(a)x;“(q’)
gives rise to a product: S(€) S,(@) S,(q’), which has to be integrated over the azimuthal
angle of @'. This type of terms makes the calculation lengthy, and we feel that it would not
be reasonable to present the whole calculation in detail. Instead, we have restricted ourselves
to collect, in the Appendix, the identities and relations which we have used in the calcula-
tion. The result of this straightforward calculation is that the right hand side of Eq. (4.29)
has the form &.9(¢)!0 >, and the right hand side of Eq. (4.30) has the form ¢[%(q)+
+%(q) Si(@)]|1>;- This means that the right hand sides of these equations have the same
form as their left hand sides which proves the correctness of our Ansatz for ®,. By comparing
the coefficients at ¢]03>; on both sides of Eq. (4.29), and those at &|1>; and at
sigi(q)]l >, on both sides of Eq. (4.30), we get the following system of coupled one-dimen-
sional integral equations for the functions s,(g), £,(g), T,(g):

s — zf (@s.lq) = [ dq'q® [K54qq") s,da') +

—K“(qq )ty (q)*K Tqq) TN, (4.335)
LA =25 lalke) = f dq'q"® [K5lqq') sa)+

+ K399, (q)—~K’T(qq )TAq)], (4.331)
L0/~ 255 Tla) = f dg'q"® [KTqq) s,(g) +

+KZ(qq) tlq) + Lf(qq)Tﬂ<q )1 (4.33T)

Here

- ' 1 2 ~r ’ ’
K2lgq) = (}:) f di Digq)™ A4, (39
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where
45,09 = 5 wl)unla)
£5,00) = — o w0,
AL(qq) = — 5 0(ag)u(w,la),
4599) = — 5 vAJua)
A5(9q) = 5 wlIeula) — Qlachunhu(a)
4509 = 5 Qag (@) — Q@ O)wileIunla) +
+ 1—/% [0(ag) + Q(ea) + Qlcq’) — 1w (cwula),
A%(q) = — - Qeq)woua),
AT(aq) = 5 Q(eqhuon(o)—Qlaq)un(cluwala) +
+ ‘Vlg [0(cq) +Q(ag) +Qea)—1Juw,(c)w,la),
A7) = — Qg o)+ 1000a) Q') +
+0(@)—Untuna)+ g [Qeq) + 0D+

+Qleq)—Uwileu(a) + 5 [20(cq) +
+20(aq’) —Q(aq)— Q(q'q)—Q(ca) — Qleq ), (a), (4.35)
with

Q(ab) = - [3(abjab)—1] = P,(ab). (4.36)

Let us notice that the change of variables: g < ', implies the change @ < ¢ (see Eq.
(4.32)). Consequently, we have A(qq’) = A(q'q). Furthermore, since D(qq’) = D(q'q),
Eq. (4.11), we conclude that

K5qq) = K2 q'q)- (4.37)
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If we make the substitutions:

s{9) = 5.9)/a> tA9) =1l T = T(9)/a, (4.38)
we may write Eq. (4.33s) in the form:

S0k = Z{ 20+ f dq' [K5(9q)5.49) +

+K“(qq t(q) + KX(qaq) T ()} (4.395)
where
K2(qq) = qK2(qq)q - (4.40)

Similarly, we may write analogical equations (4.39t), (4.39T).
Since Eq. (4.37) implies:
R2(qq) = K 9), (4.41)

and, obviously, £ =%, the form (4.39), because of its symmetry, is particularly suited
for numerical solution.

The system of coupled integral equations (4.33) or (4.39) has to be solved numerically.
In this way we obtain the functions s,(¢), £,(g), T,(¢) which then may be used to construct

the wave function of the three-nucleon system. From Eq. (4.1), we have
3
|¥) = D13 D) (4.42)
=1

We may represent [¥) in any of the three bases. Let us, e. g., use the momentum states of
the first base, |qk);, and define the wave function in the momentum space, and the state
vector in the spin and isospin space, W{(qk):

¥(qk) = (qk|¥) (4.43)
With the help of Eqs (3.7), (4.10), we get
¥(gk) = 2 (qEk[DY®;) = D7Ygk) Z Kqk|P)), (4-44)

and by applying Eqs (3.6), we get finally:
W(gk) = 27(gk) {P1(qk) +By(q.1,) + Py(gske)}, (4.45)

where

ky=—q— 5k k=g 5k (4.46)

with @, given by Eqs (4.12), (4.27) and (4.28). It should be pointed out that the total spin
J(J = L+1I'") of the state ¥ is J=1/2.

Now, let us discuss the distinction between the case of determining the bound state of
the three-nucleon system and the case of determining the n-d scattering amplitude, both
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of them in the state J = 1/2. In the first case, we have to determine the value of £ = E.
for which the system of homogeneous integral equations (4.33) or (4.39) has a nonvanishing
solution. For this value of the three-nucleon (triton) energy, E, we then solve the system of
equations (4.33) or (4.39) to determine the corresponding ground state wave function,
Eq. (4.45). Details of the procedure will be described in the next Section 5.

Let us now discuss the case of the n-d scattering (see Ref. {2]). Here, we have the initial
and final states energies, Ey and K

Ey= —ep+qp/2u By = —ep+qp2p, (4.47)

where 2 = 2m/3 is the n-d reduced mass, and @, g are the momenta of the incoming and
scattered neutron.

If the nucleon 1 is considered to be the neutron which undergoes the scattering, then
the scattering amplitude f (in the CMS system) is:

Aqo—~>9qp) = — *—” <1j13!][}2+ I}:i'yjqa>|qa=qf
2n
=L im (g3—ad) f-di (<€ 1[3P(R) PE(—q k), (4.48)
47 gy, (2m)®

where | Ei’gf) in the |qk), representation has the form:

Kqk| P4,y = P4 (qh) = (27)° 8(g+qy) ¢P0)|1 >, (4.49)
and satisfies the equation:
(K+7) |93,y = E,|93,). (4.50)

The ¢P in Eq. (4.49) is defined by Eq. (2.13) with the subscript 1 indicating the spin and
isospin variables of the 1-st pair of nucleons forming the deuteron. Notice that V2 ) is not
antisymmetric in all the coordinates of the three nucleons and this is indicated by the tilde.

The state | ¥, ) is the solution of Eq. (4.1) for E'= E,, Eq. (4.47), with the boundary

condition:
Kqk|¥, ) =¥, (qk) = W? (qk) +outgoing wave, (4.51)

where ‘i’go is given by Eq. (4.49) with g being replaced by ¢4, and with additional terms
arising from antisymmetrization. The last step in Eq. (4.48) may be checked easily with the
help of Eqs (4.49), (4.50), and the equation satisfied by |¥, ).

By comparing Eq. (4.49) for q; = q, with the general form of ¥, Eq. (4.45), we notice
that to get |7 ) we must put:

(@) = T3(g) = 0, £,(q) = N(27)* 5(q +9o) ¢, (4.52)
where ¢, are defined by Eqgs (2.15), (2.18), and N is the deuteron normalization constant,
Eq. (2.19). Notice that s°, £, T?, Eq. (4.52), inserted into Eq. (4.45), produce automatically
a completely antisymmetric state IW&) Notice also, that in the case of the n-d scattering

with the initial neutron momentum ¢, the functions s,, ¢,, T, which appeare in our Ansatz,
Eqs (4.27-4.28), depend on the direction of g (with respect to gg). This complicates the
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derivation of the equations for the functions s,(q), ¢,(q), T,(q). The problem, however, does
not arise in the case go = 0, to which we shall restrict ourselves in this paper.

In constructing the state [qu), we must use the functions s,, ¢,, T, of such a form that
the boundary condition (4.51) be satisfied. Thus we put:

5,(q) = N{—4nai(q)/[g*—5—i0l},
t,(q) = N{(2n)® 8(q +qq) c,—4mai(q)/lq*—q5—i0l},
T(q) = N{—4xnal(q)/lq*—qg5—i0]}. (4.53)

It is easy to show that Eq. (4.48) with ¥ constructed with the help of the funciions
Sy b T, of Eq. (4.53) gives:3?

f(QO - qf) = '—Z Ava‘:(_qf)['lf==‘1,’ (454')

where

A, =N e, W (4.55!

with y;, defined by Eq. (2.20).

In the case of zero energy neutrons, g, = 0, we come back to the case when the fune-
tions s,, t,, T, depend on ¢ only, and thus satisfy Eqs (4.33). Eqs (4.53) may now be written
in the simple form:

s,(q) = N{—4na}(9)/q%,
t,(q) = N{2n% ¢, 8(q)[q>—4nai(q)[q%},

T(q) = N{—4xna(q)/q%}- (4.56)
Since our |¥,) is a state with J==1/2, we have:
— lim f(qo — qy) = 2a, 4.57)
2~0
where 2a is the doublet n-d scattering length. Thus, from Eq. (4.54), we have:
20 = Y, 4,a)(0). (4.58)

To get the equations for the functions ai(g), al(g), al(g), we insert the expressions
(4.56) for s,, t,, T, into Eq. (4.33) and obtain the following system of inhomogeneous integral
equations for the functions a(q):

00

Z {qig [£0u(g)— 8o [ B ailq) + f dq’ [Koulgq)) alq) +
P 1]
+ K399 au(q) + K ilaq)ai(q)] } Z Ko (qer, (%)

3 Only the part 21, of ¥ constructed according to Eq. (4.45) gives a nonvanishing contribution to
Eq. (4.54).
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o =]

Z {'q'l? [£0u(@) — Sl B)an(q) + | dq'[Konlqq)aidq’) +

u

=

+K(99)aulq) + Koi(aq)an(q)] } -7 Z Kudq0)cu, (4.591)

D {q—lz [£34q) — Sl Ailas(q) + f dq'[K7i(qq ) aiq’) +
0

+K3qa) ) + K3 (qq')a,T(q')]} = 5 Y K0, (459T)
"

The & part of ¢, does not contribute to the left hand side of Eq. (4.59t), which is a conse-
quence of Eq. (2.15) (notice that.#; (0) = E, ). This is the mathematical reason for the pos-
sibility and necessity of imposing the boundary condition (4.51). Let us notice that by multi-
plying Eq. (4.59t) by ¢® we get:

In the case of the deuteron wave function coefficients, ¢,, being determined uniquely,
Eqs (4.60), (2.15) imply that

a,(0) = const. X c, (4.61)
and Eq. (4.58), in turn shows that const. = 2a. Thus we have:
a;(0) = c, %a. (4.62)

Equations analogous to Eqs (4.60-4.61) hold for aX(0). In this case, however, the structure
of the equations (4.59) causes that the constant in the analogue of Eq. (4.61) vanishes.

To determine the n-d doublet scattering length, 2a, we have to solve the system of cou-
pled inhomogeneous equations (4.59) for the functions ai(g), a}(g), al(g). The doublet scatter-
ing length has then to be calculated from Eq. (4.58) (this requires knowledge of the solution
of the system of linear equations (2.15)).

5. Numerical procedure

The numerical calculation of the ground state energy of the triton, Ey, and of the
doublet n-d scattering length, %a, has been performed for the two-body potential described
in Section 2, Eqs (2.4), (2.5), (2.10). In this case we have N, =1, and we shall drop the
subscripts , u = 1 at all the triplet state quantities like ,, T,,.#%,, aj, al. Notice that in the
special case N, = 1, we have only one coefficient ¢, =1 in Eq. (2.14), and Eq. (4.62) is
simplified to:

a’(0) = %a. (GRY)
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The quantities #;,(q) and £} (q), Eq. (4.31), may be calculated analytically with the

result:

k
T L | 2
Tl = = s =) (5.3)
$uld) =50 = — g e e, (5.4)
() — — ™ 1 t§f(5k2+4koy+yz)}
PO =" g {ﬂkaﬂaz Bylkotr)t )’ >3

where

e
kg = 'I/Z q*—Em . (5.6)

The integrals over the cosine of the angle between ¢ and q’ in the expression (4.34)
for K3%(qq’) have been calculated numerically by means of the Simpson rule with an integra-
tion step of 0.1, although some of the integrations could have been performed analitically.

The integrals over ¢’ in the systems of the integral equations (4.39) and (4.59) have been
approximated by sums with the help of the Simpson rule, with the following meshes:

g’ == 0.0 (0.06) 1.08 (0.15) 1.68 (0.30) 2.88 (0.60) 6.48 fm™? 5.7
in the case of Eqs (4.39), and
¢ = 0.0 (0.03) 0.12 (0.06) 0.48 (0.15) 1.08 (0.30) 2.28 (0.60) 4.68 (1.20) 11.88 fm~* (5.8)

in the case of Eqs (4.59). Both the meshes have been established empirically, i. e., making
them denser and shifting further the upper limits did not change the results for Fand %a
within the desired accuracy.

In this way we have reduced the system of integral equations (4.39) determining the
triton ground state energy and wave function to a system of 4 X 33 = 132 homogeneous linear
equations with symmetric coefficients. If we take all the terms of Eqs (4.39) on the left
hand side we may write these equations in the form of an eigenvalue problem:

QI = AT .9)

where I'is a vector of the dimension 132 whose components are the values of the functions
515 Sg5 &, T in the mesh points, and £ is a symmetric matrix of order 132. The solution re-
presenting the triton bound state corresponds to the eigenvalue A = 0. Thus, we have cal-
culated the eigenvalues of (5.9) as functions of energy, 4 = A(E), with the result that
only one of the eigenvalues vanishes in a reasonable range of energies, E. This value of E
represents the triton ground state energy, E, i. e., we have

A(Ep) = 0. (5.10)
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The corresponding eigenvector of (5.9) gives the triton functions s, s,, ¢, T. For deter-
mining the eigenvalues and eigenveetors of the big symmetric matrix £, we have used the
program BIGMAT based on the Householder method. In a few cases we have checked our
results by calculating directly the determinant of the homogeneous system of equations,
QT = 0, by means of the Gauss method, and by solving the system of equations for the
value of E = E; for which the determinant vanishes.

In the case of Eqs (4.59), determining the scattering length, with the mesh (5.8) we
have reduced these equations to a system of 4X29 = 116 linear inhomogeneous equations.
Whereas a3(0) = a4(0) = a%(0) = 0, special care had to be taken with the crucial value of

a'(0) = 2a. On the left hand side of Eq (4.591) we have the term

1 1 -
el Rl RO (5.11)
For ¢ =0 we have
i 1]
—f H0)— 7= 0. (5.12)

which is in the case of IV, = 1 the eigenvalue equation for the deuteron. Hence, for ¢ =0
we have replaced the term (5.11) by

[;? J’(q)]Fo a*(0). (5.13)

Furthermore, instead of simply using the value of 4* of Eq. (2.11), we had to calculate 2*
in our program from Eq. (5.12) to get reliable accuracy of our results. The system of 116
inhomogeneous linear equations (with the special treatment of the term (5.11) for ¢ = 0)
has been solved with the help of the Gauss method.

All the numerical calculations have been performed on the IBM 7044 computer of the
Centro di Calcolo dell’Universita di Trieste.

6. Results and discussion

All the results of the present calculation are collected?® in Table II. The dependence of
the calculated values of the triton energy and of the neutron-deuteron doublet scattering
length on the two-body potentials used is shown graphically in Figs 3 and 4, respectively.
The functions s,, Sy, 7, T and the functions a}, a, a’, a” in the case of our best two-body
potential are shown in Figs 5 and 6, respectively.

As may be seen from Fig. 3, the binding energy of the triton, B = — E, is diminished
by both the tensor force and the hard shell repulsion. The effect, however, of the two factors
is not additive. In the presence of the tensor force the hard shell repulsion is less effective

4 Qur pure central force result for r,= 0, Ep= —11.88 MeV should coincide with the corresponding
result of [12] which, however, is Ep = —11.6 MeV. A similar small discrepancy with the result of [12] has been
noticed by Jaffe and Reiner [28]. This would suggest that the accuracy of the results of [12], obtained on a small
computer, was not sufficient.
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TABLE IT

The vatues of Ey and 2a calculated with and without tensor forces for different values of the hard shall radius, r,

Pure central forces With tensor forces
re(fm) Er(MeV) 2a(fm) Ep(MeV) 2a(fm)
0.00 —11.88 -1.51 —9.58 —0.15
0.10 —11.19 —0.93 —9.28 +0.15
0.15 —10.84 —0.66 —9.11 +0.30
0.25 —10.20 —0.18 —8.81 +0.58
0.40 —9.43 -+0.43 3 — _
-8
_____ Experimental
-94
=10 4
2
=
e
w
-11 4
212 ] 0.11 0'12 0.13 0.|/4
re (fm)
Fig. 2 Fig. 3

Fig. 2. Momenta in the i-th natural system
Fig. 3. The value of Eg obtained with and without tensor forces as a function of the hard shell radius, r.. Dots
denote the calculated points. The dot within the circle corresponds to our best potential. The broken line indicates
the experimental value of Ep

in diminishing B than it is in the absence of the tensor force. And vice versa, the effectiveness
of the tensor force in diminishing B is reduced by the presence of the hard shell repulsion.
Similar is the situation with the doublet scattering length, 2a. As may be seen from Fig. 4,
both the tensor force and the hard shell repulsion increase the resulting value of %a. Again,
however, the effect of the two factors is not additive: the total effect is smaller than the sum
of the two effects.

It is encouraging to see that the best results E; =—8.81 MeV, is obtained with our
best potential which contains the tensor force and a hard shell repulsion with the hard shell
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radius 7, = 0.25 fm in the singlet state. Compared with the experimental value, Ej
= —8.48 MeV, we get an overbinding of 0.33 MeV. There are several possibilities to ac-
count for the small difference, 4 = 0.33 McV, even without mentioning the role of the two-
body interaction in states different from the 1S, and 35, +2D, states considered in the present
calculation®. Let us mention some of them:

(1) The ambiguity in the strength of the tensor force. Similarly as in other nuclear
structure calculations, this ambiguity has its consequences in the 3H problem. A measure
of the strength of the tensor force is the probability of the D state in the deuteron, Pp,.
Our triplet potential leads to Py, = 4%, According to Levinger [29], the minimum value of

1 ‘-7’//,'/17
. / .
) /
711 17/
i
id
T L Exp. { neW
&
\ol 0 “
<
\‘0\
- &
5
_1 —d
0.1 02 03 04
“ I 1 | 1
re (fm)

Fig. 4. The value of 2a obtained with and without tensor forces as a function of the hard shell radius, ;. Dots
denote the calculated points. The dot within the circle corresponds to our best potential. The new [42] and
the old [40] experimental values of 2a are represented by the shaded areas

P, consistent with the deuteron binding energy and quadrupole moment and with the
effective range is Pp = 0.45%, whereas the upper limit is probably about 7%,. Within
this range ot admissible values of Pp, we certainly could get a value of E which would
coincide with the experimental value.

(2) The ambiguity in the singlet effective range, ry,. Its value is probably between 2.5
and 2.7 fin (see, e. g., [30]). According to [31], an increase in ry, from our value of 2.5 to
2.7 fm causes a decrease in B by 0.44 MeV in the case of r, = 0. In the presence of a repul-
sive core this decrease would probably be smaller [32], {33].

(8) The short range repulsion in the triplet state. This repulsion, not considered in the
present calculation, certainly would reduce the *H binding (see [34]). A comparison of our

3 According to [11] the neglected interaction in the P, 3P and 1D states contributes energy of the order
of only 0.01 MeV to Erp.
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pure central force results with the results of [12] and [28] (where, however, a slightly different
form of v, has been used) suggests that the reduction should not exceed a few tenths of one
MeV (see also [35}).

(4) Charge dependence of nuclear forces. According to [12], as the result of the charge
dependence one would expect in our pure central force case a reduction in binding of about
0.8 MeV, althoug in the presence of the tensor force the reduction might be smaller. It should
be stressed, however, that it is difficult to separate from the reduction obtained in {12] the
part due to the charge dependence from the part due to an inccease in the singlet effective
range.

Relative scale

q(fm™

Fig. 5. The functions 3, Sy, I, T in the case of our best potential (rg = 0.25 fm, central-+tensor)

(5) Off-shell effects. By this we mean the ambiguity in choosing the two-body potential
subject to the restriction that it should reproduce the experimental phase shifts and the pro-
perties of the deuteron. As shown in [36] on a model of triton, one may obtain different
values of E by using different phase shift equivalent potentials. Thus, we may hope that by
playing with the shape of the potential we could get a coincidence of the calculated value of
E with the experimental value, without changing the fit to the two-body data.
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(6) Relativistic effects and three-body forces. Some estimates [37] suggest that relativ-
istic effects should increase the 3H binding by about 0.25 MeV, althoug other estimates [38]
suggest that they should reduce it by about 59,. Obviously, our knowledge of possible three-
-body forces and of their effect on E is extremely poor (see, €. g., [39]).

Less satisfactory is the situation with the doublet scattering length, 2a. For a long time,
the old value,

2 = 0.720.3 fm, (6.1)

—[- 23]

Ov ———
[5xa3]—"
2 ‘ 6 q L]

Fig. 6. The functions af, a3, af, aT in the case of our best potential (r,= 0.25{m, central{-tensor)

determined by Hurst and Alcock [40] had been accepted as the experimental value of 2a
(the ambiguity of the iwo values of 2a of [40] was resolved in [41]). The recent analysis of
van Oers and Seagrave [42] has led to a new experimental value$,

2g = 0.15+0.05 fm. 6.2)

As may be seen from Table I and Fig. 4, we are able to reproduce both values of 2a. However,
with our best two-body potential, which also gives the best value for Ey, we get the value
2g = 0.58 fm which agrees with the old value (6.1) and disagrees with the new value (6.2).
The situation is best represented in Fig. 7, in which — following Phillips [43] — we have
ploited Ej versus %a.

If we accept the new experimental value of 2a, we are faced with the impossibility of
reproducing both E and 2a with our two-body potential. In the discussion of our results
for E we have pointed out several methods of getting the calculated value of Ej. closer

8 We quote this value after Ref. [1].
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to the experimental value. Most of these methods would not work in improving the simultane-
ous agreement of E. and 2q with experiment. To get an idea of the effect of increasing the
strength of the tensor force we have drawn straight broken lines through the points on Fig. 7
calculated for the same value of r, with and without the tensor force. We see that all these
lines point towards the old experimental value of 2a. This suggests that we cannot solve the
E—2a problem by changing the strength of the tensor force, as had been pointed out already
by Phillips [43]. Exactly the same situation is encountered in the dependence of the position
of the calculated points on the E;—2a plot on the magnitude of the singlet effective range
ros [43]. A similar situation seems to occur with the off-shell effects. Namely, by investigating
the position on the E;—2a plot of the points calculated with different forms of the separable
two-body potentials, one finds that all the points stay close to a straight line (the Phillips

-84 Experimental : N oLD
perimental : _i:«.

Tensor

I I 1

]
2a(fm) 10
Fig. 7. The values of E and 2a obtained with and without tensor forces. Dots denote the calculated points.
The corresponding value of the hard shell radius, r,, is indicated at each point (in fm). The dot within the circle

corresponds to our best potential

line) which goes through the old experimental point. This conclusion has been confirmed
recently by Brady, Harms, Laroze and Levinger [44] and is further supported by the collec-
tion of results by Shrenk, Gupta and Mitra [33].

The interesting question is whether the same situation persists in the case of local two-
-body potentials. Unfortunately, the error involved in the variational calculations with
realistic local potentials does not allow one to answer this question on the ground of the varia-
tional results [5]. On the other hand, an exact calculation of 2a and E; with a realistic local
potential is very difficult and not many results of such calculations have been obtained so
far. However, the local potential results of Belyaev, Wrzecionko and Zubarev [45], and
of Malfiet and Tjon [46] (mentioned in Ref. [44]) also stay on the Phillips line.

In looking for the solution of the E;—2a problem, let us discuss the effect of the short
range repulsion in the triplet state. As mentioned before, this repulsion is expected to
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have only a small effect on E, in particular in the presence of the tensor force. How would
it affect 2a? A direct calculation with a separable potential would certainly be possible.
However, looking at the dependence of the position of the calculated points in Fig. 7 on the
hard shell radius in the singlet state one might expect a similar dependence on the short
range repulsion in the triplet state. This expectation is supported by the results obtained
by Tjon [35]. Consequently, one should expect that the short range repulsion in the triplet
state would shift the points in the E;—2a plot even more away from the new experimental
point.

The fact that all the results obtained so far for E and 2a stay on the Phillips line should
not prevent us from investigating other forms of the two-body interaction. For instance, by
inserting addidional terms of the two-body potential inside the hard shell one may leave
the fit to the two-body data unchanged, but change the off-shell behaviour in such a way
as to get off the Phillips line [47]. Also the role of higher partial waves, and of the spin-
-orbit force should be investigated. Furthermore, the effect of the charge dependence of
nuclear forces deserves an investigation (the difference in the n—n and n—p singlet effective
range might have a different effect on E; and on 2a). If these investigations would not lead
to a solution of the E;—2a problem, and if the new experimental value of 2¢ is confirmed
by further experiments, then it might be an indication that the three-body forces and the
relativistic effects play an essential role in the three-nucleon system.

One of the authors (J.D.) is most thankful to the late Dr Jerzy Sawicki for his suggestion
to apply the BIGMAT program in the present work. He also expresses his gratitude to Pro-
fessor A. Salam and Professor P. Budini for the hospitality extended to him at the Interna-
tional Centre for Theoretical Physics in Trieste. He wishes to express his appreciation to the
staff members of the Centro di Calcolo dell” Universita di Trieste for their helpful assistance
in the numerical computations. He also is indebted to Dr V. K. Gupta and Dr J. Wrzecionko
for their interesting comments. An important role of Dr J. Borysowicz at the early stage of
this work is acknowledged.

APPENDIX

Here, we collect the identities and relations which we have used in deriving Eqs (43.3)
from Eqs (4.29) and (4.30). In all the equations we have i #j # k # i. Furthermore, we
use the notation: b = b/b (where b is an arbitrary vector), A = 1(3 +6,6), @ and ¢ are
the vectors defined in Eq. (4.32).

Z eigrll > = % [0>; — % 1> (A.D)

ki
g‘e,-ekékw)nl»k = —S5®)1));. (A2)
A5, )1, =0, (A.3)

which is a special consequence of the fact that by acting with S,(b) on any three-nucleon
spin state with I** = 1/2 we get a state with I'*°* = 3/2.
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1 - -
o [ as5m) - cvarii@. (A4
where ¢ is the azimuthal angle of b measured around the direction of q.
L az’ siekg,-(C) [(oi+0)) (axq)]|1>r =0 (A.5)
27 &~

where @’ is the azimuthal angle of ¢’ measured around the direction of ¢q.
S5up)Sia) = —Sup)— S —201- 0pg)1Supxq) +
+8Q(pg) A5 +9i(pq) (o;+6)) (px 9)- (A-6)
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