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In our paper we give an analysis of the polarization of protons from the reaction *Be(d, p)1°Be.
It is shown that the predictions based on the invariance of the density matrix under the exchange
of distorted waves (when pgry = p,rp) are in qualitative agreement with the experimental data.
The usefulness of the DWBA for the describing of the polarization in the energy range 2-10 MeV
is also discussed.

Recently a lot of experimental data on polarization of particles in direct reaction is
available [1]. The most striking feature of these data is the strong dependence of polariza-
tion of outgoing particles on the energy of projectiles. From ten point of view of the orthodox
theory of direct reaction it is an unexpected fact that the polarization has strong energy de-
pendence, while the angular distribution for the outcoming particle is smooth function of
energy.

If we are going to interpret the polarization data on the basis of a definite theoretical
model, e. g. the DWBA, we have to have the certainty that the mechanism which is governing
the reaction is unique. Of course, this is rather a rare situation in experimental low energy
physics (1-10 MeV). However it is possible to imagine the situation where that is the case,
In our paper we intend to propose a certain explanation of the energy dependence of polariza-
tion in direct reaction. OQur approach is to some extend nondynamical. This means that
we start from the general structure of direct reaction amplitude written in the well known

form |2}, {3]
A Par Ps) = (&5 (Po )1V ool l9H (P 7))
Voags = [ Wi Voav.dé o
where

@:(7) (i = 1, 2) denote the distorted waves for incoming and outgoing particles,
¥;(j = a, 4, b, B) are the internal wave functions for particles and nuclet
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and look the symmetry relation of the density matrix of one of the particles which are pro-
duced in the reaction of the type

a+A—- B+b. [#))

It is obvious that this symmetry relation is reflected in the polarization of outgoing particles.
The symmetry relations can be devided into two groups: according to their dependence or
independence on the energy involved in the reaction. To the first group belong symmetry
properties which arise on the ground of the conservation laws which operate in the reaction,
e. g. conservation of parity, conservation of total angular momentum®. The second group of
symmelry of density matrix can be deduced from the structure of the amplitude (1) — Sat-
chler [2]. The content of Satchler approach can be formulated as follows: The amplitude (1)
can be divided into two parts: the outside part constructed from the distorted waves and
the inside part ¥, 4,p which is dependent on residual nuclear interaction. If the outgoing
distorted waves are “‘equal” (in the Satchler’s meaning [2]), then the amplitude (1) and the
density matrix elements must be invariant under exchange of these two waves. Let us
neglect the spin orbit dependence of the distorting potential. The condition for the exchange
wave symmetry can be stated as follows [2]. The amplitude for the direct reaction (2) is
invariant under the exchange distorted waves @, 2 @, when rpp, = r p,. The p, denote
the relative momenta of particle a and b and r; corresponds to their relative distances from
the target nucleus and residual nucleus respectively.

Let us look for the mathematical formulation of the effect of this symmetry on the polar-
izalion of particle b produced in the reaction (2). It is well known that the polarization

%

Fig. 1. Orientation of the frame of reference when the transversity representation is used

phenomena can be described in reference frames with direction of axes dependent on the
representation which is used for describing the projection of spin. In our approach we use the
transversity quantum number [4]. In our representation the direction of axes is shown in the
Fig. 1. We assume that the particle a is unpolarized and that in the experiment we detect
the polarization of particle b only. Then in the transversity representation the density matrix

1 These are discussed by R. Johnson, Nuclear Phys., A90, 289 (1967).
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for the particle b can be written in standard notation as follows [6]:

o* =3 gh(b) Qi (3)
LM

% a(b) = 4(2,B+1) Z Z Z Z Z Z 2818291“1

By Hg By

where

X (Q )“A Har (Q )"b,"b i Hptp; "Af i IO (4)
= (L (— Iyv—rrhae);
ey = (L (1P +o=re=ra)
The coefficients g% describe the polarization of particle A. The ¢, &, denote the projection

operators which selected only those amplitudes fi, ...
fulfil the selection rules

" for which the transversities

My— Myt lg— g = even
p(=1)*FrEte = ] ©)

According to [2], [5] when the exchange waves symmetry is fulfilled then [5]

f“B“u;“A“a = (—l)in(sB_Sa)f—uB—ub;—#A-ua- (6)

When the formula (6) is taken into account the gk coefficients satisty the relation

mmm<wa‘wWhZZZZZZZ%m

Hg By My,

Ly L T L, 1
X (QMl)uA“A’(QM—'-)“b’”bf mptps gt g fuyrips o g (‘]Ml_(‘“l)L‘qI:M1 . (7

From the formula (7) we conclude that the symmetry of g% is related to the symmetry of the
density matrix for incoming particle 4. Suppose that the density matrix for particle A fulfil
the relation

o, = (=Dl @®
The physical content of the relation (8) is very clear if the density matrix for particle 4
contains only even M. It simply means, when Mj is even, that the density matrix for particle

A is invariant under rotation & about the axis Y from Fig. 1. For unpolarized particle A4
relation (8) holds and the g% satisfy the equality

g5(d) = (—=1)kq% 4(b), M = even. (9)
For M even we also can write (9) as follows
au(b) = (=) q5((b), (10)

where we have used the well known relation for the complex conjugation of the coefficient
g 16]
@i = (=D)"g . 1)



518

From (10) we conclude that when the exchange symmetry is fulfilled then
for L even g% is real
for L odd g% is pure imaginary. (12)

The selection rule (12) imposed very strong restriction on the polarization tensors g%;.
In conclusion we can say that when the reaction

a+A-—>B+b

is performed on the unpolarized particle 4 and we measure only polarization for particle b
then the vector polarization is equal to zero. Let us look for the experimental evidence for
our last statement. Recently, a paper was published by Blue et al. [1] from Ohio State
University who measured the polarization for protons from the reaction *Be (d, p) 1°Be for
the energy range 1-6 MeV. This particular reaction was sel cted because the cross-section
for (d, p) is quite free from resonant structure above about 2 MeV. It was hoped that the
lack of resonance could be taken as an indication that the *Be (d, p) 1°Be reaction proceeds
predominantly via the direct process. In that paper the polarization at the laboratory angle of
30° was measured in 0.2 MeV steps from 1.0 to 6.0 MeV. These results shown in Fig. 2
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Fig. 2. Smooth curve denotes the function 4 = f(E(lab)) for the reaction *Be(d, p)i%Be. Experimental points
are denoted by dots

indicate that the change in the polarization with energy occurs most rapidly in the vicinity of
4 MeV. This transition from negative to positive polarization at forward angles was also
observed at 6 (lab) 2 10.7° in the measurements at 3.40 and 4.40 MeV as indicated by the
crosses in Fig. 2. We want to explain such behaviour of polarization by assuming that in the
reaction investigated by Blue et al., for certain energy region (4-5 MeV), the exchange
wave symmetry is fulfilled. First of all we define the quantity 4 by the formula

pi =pal+4).
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From the conservation of energy for the reaction (2) we obtain

E.(lab) = ’”—;’”ﬁ 0 [(1 +4) (m +ma) mam 4 ~1] - (13)

mpmp (mg-+m4)
or

O(mat-ma) + (1— %%) maE.(lab)

mama(mp+msy)
(ma-+mg)mpms

The function 4 = f(E, (lab)) for the reaction *Be(d, p)1°Be is shown in Fig. 2. It is easily
to be seen that for the energy range (4-10 MeV) A is small. This means that for the above
energy range p, = p; holds. When we take into account that for zero range approximation
the relative distances 7,, 7, fulfil the relation

A=

(14)

maE(lab)

- - M
Fo=Tp Mj (15)
. . Ms\? .
then from the equality p,r,= p;r, we obtain for 4, A= {——) —1. For the reaction °Be
4

(d, p) Be, A4 =0.235 which when substituted into the formula (13) gives E; (lab)
= 4.62 MeV. Hence for that energy, g, the vector polarization of protons, must be equal
zero. From Fig. 2 we conclude that this is indeed true. For the energy range 4-5 MeV the
experimental value of vector polarization is equal zero. It is also easily seen that the region,
where A is rapidly change with energy (only due to pure kinematic effects), shows also a mark-
ed change of polarization. On the other hand, for the energy E; (lab) near 10 MeV the polari-
zation is smooth function of energy. From our analysis of polarization data for the reaction
Be (d, p) 1°Be we can conclude that there a corelation exists between the parameter 4 and
the gross feature of polarization. Bearing in mind the fact that the function f(E; (lab)) for
the energy E, (lab) > 2 MeV does not exhibit resonances, it is difficult to imagine that the
pure DWBA can explain such a rapid change of polarization near 4 MeV, On the other hand,
the lack of rapid change of polarization for energy range above 10 MeV suggests that for this
range of E(lab), DWBA can be well suited to explain the behaviour of polarization. Our
conclusions are in agreement with the commonly adopted opinion that the DWBA calcula-
tions can satisfactorily reproduce the features of only those direct reactions for which p, = p,,

i e A<l,[2,[3]
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