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The spontaneous fission and alpha decay half-lives of even superheavy nuclei are calculated
microscopically. The calculations are based on the single-particle Nilsson scheme with the
parameters fitted to the scheme obtained in the Woods-Saxon potential at zero deformation.

The largest total half-lives of the order of 10'® years are obtained for the nuclei with
Z = 108-110 and N = 184. The strength of the pairing forces used is smaller than in previous
investigations. The use of a larger strength would lead to half-lives smaller by a few orders.

The sensitivity of the half-lives to different factors, in particular to the pairing forces strength,
is discussed.

1. Introduction

The heaviest elements, known up to now, are the isotopes of the elements 104 and 105.
Their half-lives are of the order of seconds and the efficiercy of techniques by which they
were obtained is of the type of ‘‘one atom per hour”.

According to the liquid drop model the half-lives of heavy nuclei decrease quickly with
increasing atomic number Z (or mass number A following, let us say, the beta stability line).
Thus according to this model we could not expect to go much further, in the production
and detection of heavy elements.

The liquid drop model does not take, however, into account the shell effects in the
nuclear structure which are of the basic importance for the half-lives of heavy nuclei, espe-
cially for nuclei close to a magic nucleus. For example, the shell correction to the mass of
the double magic nucleus 208Ph is of the order of 10 MeV, while the total height of the
spontaneous fission barrier of the usual fissionning nucleus (like uranium) is of the order
of only 5 MeV. Thus, if the closed shells for a proton number Z > 82 and a neutron number
N > 126 realize in nature, one may expect the lifetimes of the corresponding double magic
and neighbouring nuclei (superheavy nuclei) to be extra long, due to the shell effect.
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The first systematic analysis of the shell correction to the liquid drop mass has been
performed by Myers and Swiatecki [1]. Their phenomenological, deformation dependent,
three-parameter shell correction allowed one to decrease significantly the discrepancy between
the experimental masses and those given by the liquid drop model and to describe relatively
well the equilibrium quadrupole moments of nuclei.

The consequences of the shell correction on the problem of superheavy nuclei are of
particular interest. If one assumes, for example, the nucleus 812126 to be double magic,
one obtains a fission barrier for it as high as 9 MeV when one takes the shell correction into
account, while there is no fission barrier for this nucleus in the pure liquid drop model. This
illustrates the reason why a considerable interest in the problem of superheavy nuclei arose
after publishing paper [1].

The calculations of the single-nucleon spectra have been performed using realistic
nuclear potentials. In these spectra, obtained for both non-local [2, 3] and local [4-6] poten-
tials, considerable energy gaps at proton number Z = 114 and neutron number N = 184
have been obtained, suggesting these numbers as the magic ones. Candidates for higher
magic numbers have also been found {5, 7, 8]. Detailed estimations of the half-lives of
superheavy mnuclei neighbouring the nucleus 2%114 have been performed [9-13]. They
based on the microscopic method of the calculation of the shell correction proposed by
Strutinsky [14]. The estimations have shown that total half-lives as large as 10® years may be
expected. This gave a chance not enly to detect such nuclei as products of nuclear reactions
but also to find them in the primary cosmic rays or even on the earth.

The aim of the present paper is to estimate the lifetimes of superheavy nuclei on the
basis of the single-particle spectra different from these used up to now. It is also aimed
at discussing a few other effects, such as the effect of the deformation dependence of the
mass parameter, the effect of the pairing forces strength increasing with the increase of the
nuclear surface area, and others, on these lifetimes.

In Section 2 we describe the method and specify the details of the calculations. In
Section 3 we present the results and discuss various factors affecting these results.

2. Description of the calculations

2.1. Method of the calculations

We aim here at estimating the spontaneous fission T;and the alpha decay T half-lives
of even superheavy nuclei in their ground state.
To estimate T, we base on the formula

In2 1
v="p M
where n is the number of assaults of a nucleus on the fission barrier per unit time and P
is the probability of penetration of the nucleus through the barrier for a given assault. For
n one usually uses the reciprocal of the frequency of the vibration (in the one-dimentional
case, considered here, it is the beta vibration) leading to fission.
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In the WKB approximation, the probability of penetration through the fission barrier

is [15]
P= 1—1—6\1)( f]/zB(e) [ () —E] de)}_ = (1+exp K)L. )

For K> 1

P~eK

In eq. (2) B(e) is the mass parameter describing the inertia of a nucleus with respect to its
deformation which is characterized by the parameter &. The quantity W#(e) describes the
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Fig. 1. Schematic fission barrier. For nuclei close to a magic nucleus g.q= 0

fission barrier and E is the energy of a nucleus in the state characterized by the equilibrium
deformation ¢, as shown in Fig. 1.
We calculate the mass parameter B microscopically. In the adiabatic approximation the

corresponding formula is [16]
L B = 22 (9—0) 3)

h2 @2x)?

where

Z — (qus)?® (s + Uy)®
r (Eut+E)"

with n = 1 or 3. Here ¢,, is the quadrupole moment matrix element between states |#) and
[»), u, and v, are the coefficients of the BCS wave function, E, is the energy of a quasi-
particle and Q is the mass quadrupole moment of the nucleus. The details of the microscopic
calculations of the mass parameter B are described in Ref. [16].

To estimate the alpha decay half-lives we use two alternative phenomenological formulae:
the one by Taagepera and Nurmia [17]

log Ty(y) = 1.61 [.;:_é_z —(z—z)!] —289 @
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and the formula by Viola and Seaborg [18]

log T (sec) = A,Q7* +B, (5
with
A, =2.11329 Z—48.9879

B, = —0.390040 Z — 16.9543

used by the authors [18] 1o predict alpha decay half-lives for elements heavier than those
known experimentally. In both formulae Z'is the atomic number of a parent nucleus and Q,
is the alpha decay energy.

We see that in order to calculate T, we have to know the masses of parent and daughter
nuclei at their equilibrium deformations and to calculate Tz we have to know the dependence
of the mass on deformation, as shown in Fig. 1. Thus to calculate both T, and Ty we have
to know the nuclear mass as a function of the deformation.

For the calculation of the nuclear mass or the total nuclear energy we adopt the formula
representing the nuclear energy as composed of two parts: one given by the liquid drop
model and the other corresponding to the shell correction, i.e.

E(Z, N, def.) = E,p(Z, N, def.) + A Egyps 1 (Z, N, def) ... (6)

The most microsopic method, among the practical methods elaborated up to now, for
the calculation of the shell correction is the one proposed by Strutinsky [14]. It consists
in representing this correction as the difference between the sum of real single-particle
energies of a nucleus and the sum when these real energies are smeared out to give a continuous
single-particle spectrum instead of the discrete one. Such a difference is expected to give
all shell structure effects on mass which are not present in the liquid drop mass formula
and which were found so important for nuclear masses (¢f. e.g. Ref. [1]).

After inclusion of the pairing interaction by the BCS formalism, the formula for the
shell correction is [11]

AEgz1 (2, N, def) = AEgup 1 (Z, def.) + AEgupr 1 (N, def.), (@)

where

AEgypp (X, def.) = {Z €, 2@’?_42/6—6(2 v‘5~Z’ D}—{E(g) +<Epair>} (7a)

with X standing for Z (protons) or N (neutrons). In Eq. (7a) e, are the single-particle energies,
G is the pairing forces strength, A is the energy gap and the term GZ, 1 is the subiracted
diagonal pairing energy corresponding to a sharp Fermi surface.

The quantity E(g) represents the sum of the single-particle energies when these energies
are smeared out to give a continuous density of the levels g(e). The corresponding formula is

eF
B(g) = | 2eg(e)de ®)
with the Fermi energy eg given by

X =Zor N) = [ 28(e)de. (8a)
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The level density tunction g(e) obtained by smearing out of the single-particle levels
with the help of the Gauss function is

1 —u
g(e) = ;"7; Z fcorr(uv)e (9)

with z, = (e—e,)/y. The correction function f_,.. (x,) is constructed in such a way as to
smooth out the short range fluctunations in the level density with the range [ (of the order
of the shell spacing hiw,) and to retain the long range fluctuations with the range L (of the
order of the Fermi energy). Thus the smeared level width y should be: I <y < L. Up
to the sixth order in u, the f,, function is {19, 11]

1 3 3 1
fcorr(uv):1+ (é**u%) - (§—~-§—u§+§u‘3)+
5 15, 5 . 1,
+<I€‘ gty (10)

The term ( E;;
at its equilibrium deformation. We adopt here after Ref. [11] the value (E,

y in Eq. (7a) denotes the averoge value of the pairing energy of a nucleus
)~ —2.3 MeV.

air

2.2. Details of the calculations

We investigate the total energy of a nucleus as a function of the quadrupole ¢ and
hexadecapole &, deformations. To obtain the single-particle energies of a nucleus as functions
of these deformations we use the Nilsson single-particle Hamiltonian [5]

Hy =T+, a1)

where the kinetic energy is

1 2 1 e g2 g2
T = —2——71(1)0(8, 84) [—AQ—,—?E 5(29‘5“2- e 9—55 — é_n—é)]

and the potential energy is
, 1 a ” 2
V= 9 wqle, ego® | 1— 3 ePy{cos 0,)+2e,P; (cos 8 | —

—xhag [21, s+ p(2— (2]

Here, &, 7, £ are the stretched coordinates and the subscript ¢ at a quantity denotes
that it is expressed in these coordinates, g2 == &24 %242 P,, P, denote the Legendre
polynomials of corresponding degrees.

The parameters % an g are usually fitted to the experimental single-particle levels and
then, for the analysis of nuclei in the superheavy region, they are extrapolated to that region.

In the present paper we fit the parameters x and g to the levels obtained in the Woods-
Saxon potential. The details of this fitting are described in Ref. [20]. The resulting values
of % and u are given in Table I. The corresponding single-particle levels, obtained with the
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TABLE 1
The Nilsson scheme parameters % and u, used in the present calculation, versus shell number N

N %p Ky Hyp tn
0 0.112 0.102 0 0

1 0.098 0.102 0 0

2 0.086 0.102 0.230 0.145
3 0.078 0.076 0.385 0.225
4 0.068 0.066 0.510 0.288
5 0.057 0.059 0.810 0.337
6 0.049 0.053 0.739 0.377
7 0.046 0.047 0.702 0.409
8 0.038 0.043 1.000 0.435
9 0.033 0.039 1.140 0.457
10 0.029 0.035 1.220 0475
11 0.025 0.032 1.310 0.490
12 0.022 0.030 1.380 0.504

Hamiltonian (11) at zero deformation (g = & = 0), are shown in Fig. 2a for protons and
Fig. 3a for neutrons. The Woods-Saxon levels are shown in (b) of the figures and the levels
obtained with the extrapolated parameters » and g and used in the previous caleulations
[9-11] are presented in (c), for comparison.
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Fig. 2. Single-particle schemes for protons: a) Nilsson scheme used in the present paper, b) scheme obtained
in the Woods-Saxon potential and ¢) extrapolated Nilsson scheme used in Refs [9-11]
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Fig. 3. The same, as in Fig. 2, for neutrons

To solve the pairing equations for Z protons (or N neutrons) we take m = Z (or N)
levels, from the lowest level up to the Z-th (or N-th) one, for which the pairing interaction
is switched on. The pairing interaction strength G(m) is calculated from the experimental
odd-even mass differences in the actinides region. For m = 114 we obtain for protons
G, ~ (18.6/4) MeV and for m ~ 184 we obtain for neutrons G, ~ (13.3/4) MeV. These
are by 5.29, (protons) and 5.09%, (neutrons) lower than the corresponding values G,
= (19.6/4) MeV and G, = (14.0/4) MeV used in the previous calculations [9-11]. This
should be kept in mind when comparing the results of the present paper with those of Refs
[9-11].

All our calculations of the fission barrier W{(e) = E(e) and the mass parameter B(g) are
performed with the pairing strength proportional to the surface area of a nucleus: G~ S
(cf. Ref. [21}]), although the effect of using G == const instead of G ~ S is discussed. Thus
the values G, = (18.6/4) MeV and G, = (13.3/4) MeV, given above, correspond only to
the equilibrium deformations (¢ = g, = 0) of the investigated nuclei and the values G(e)
corresponding to other deformations are obtained from the relation G~ S (see Fig. 10).

As mentioned above, we consider the fission problem as a penetration of the one-dimentio-
nal barrier. We obtain this barrier as the line on the two-dimentional total energy surface
E(e, &) corresponding to the minimal energy. In other words, for each & we find g,(¢), for
which the energy is minimal. We have found that, on the average, for all nuclei investigated
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in the present paper, this minimal energy path is relatively well described by the straight line
gy = 0.1¢ (12)

for ¢ = 0—0.7. Thus all fission barriers in our caleulations correspond to the line (12).

The liquid drop model parameters are taken according to the Lysekil paper by Myers
and Swiatecki [22].

The sixth order correction function f,,,, .¢. just the one given by Eq. (10), is taken.
The value of the shell-smearing parameter y == 0.8 hwy(e, &) is used. It was shown in Refs
[11, 19] that the shell correction energy AEgygpy is a rather flat function of p, when the
correction function of as high order as six is taken.

In the calculation of the spontaneous fission half-life T (¢f. Eq. (1)), the beta vibration
energy of a nucleus hwy = 1 MeV is assumed. Thiz corresponds to the number of assaults
of the nucleus on the fission barrier, due to this vibration, n & 102038 gec1,

In the caleulation of the fission probability P (¢f. Eq. (2)), we assume that the height
of the barrier is lowered by the zero-point vibration energy E— Wle,,) = $hw;=0.5MeV

(¢f. Fig. 1).
3. Results and discussion of various effects

3.1. Results of the calculations

Fig. 4 presents the map of the shell correction, i.e. the shell correction AEgyg;; as
a function of Z and N, calculated for all investigated nuclei at zero deformation (¢ = g4 == 0).
We see that 11 MeV, the highest shell correction (in absolate value) is obtained. It is even

728
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Fig. 4. Shell correction AEgpyppy m MeV as a function of the proton Z and neutron N numbers at zere
deformation
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slightly larger than that for the nucleus 2°8Ph (10 MeV). The map gives an idea for what
nuclei to expect the largest spontaneous fission half-lives Ty As the equilibrium deformati-
ons for almost all of the investigated nuclei are zero, the map also gives an idea about
the shell correction contributions to the alpha decay energies.

The fission barriers are presented in Figs 5 and 6. As stated above, they are calculated
along the deformation path (12). Fig. 5 illustrates how quickly does the barrier of the magic
nuclei (isotopes) with Z = 114 change when the neutron number N becomes more distant,

in both direction, from the magic value .V = 184. Fig. 6 illustrates the same for magic
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Fig. 5. Fission barrier for a few isotopes with Z = 114. The dashed straight line cutting each barrier corresponds
to the zero-point energy equal 0.5 MeV
Fig. 6. The same, as in Fig. 5, for a few isotones with N = 184

nuclei (isotones) with N = 184 and with the proton number Z becoming more distant
from the magic value Z == 114. We see that the decrease in the barrier is quite fast when we
remove the numbers Z or N from the magic values. It results in the corresponding rapid
decrease of the spontaneous fission lifetimes.
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The dependence of the mass parameter B on the deformation is illustrated in Fig. 7
for a few isotones with N = 184. As in all our calculations, the pairing strength G ~ S
is taken. We see that B fluctuates, both as a function of the deformation and the proton
number, around some average value (which is approximately B ~ 100042 MeV-1 for the
nuclei presented in the figure). It is connected with the fluctuation of the density of the
energy levels close to the Fermi level, as was pointed out in Ref. [24].
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Fig. 7. Mass parameter B as a function of the deformation for three isotones with N= 184

At last, the map of the spontaneous fission and alpha decay half-livesis presented in Fig. 8.
The T half-lives are calculated according to Egs (1) and (2) with the zero-point vibration
energy equal 0.5 MeV. Phenomenological values of the mass parameter BPP® ~ 0.054 A45/3h2
MeV-1 (see Ref. [9]) have been used. We will see later (¢f. Fig. 12) that these phenomenclo-
gical values are quite close to the corresponding microscopic values averaged over deforma-
tion. The alpha half-lives T, are calculated according to Eq. (4). The values of T, calculated
according to Eq. (5) are larger for about {0.1-2) orders, as may be seen from Table 1I.

It is seen in Fig. 8 that the largest total half-lives are obtained for Z ~ 108-110 (and
N = 184) and they are of the order of 109 years. The values of T obtained in the present
paper are larger than those of the previous papers {9-11}]. It is connected with the larger
energy gap for N = 184 in our scheme (¢f. Fig. 3) and thus with the larger (for about 2 MeV)
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TABLE 1I

Logarithms of the spontaneous fission Ty and alpha decay T, half-lives, both in years, and the alpha decay
energies Q, in MeV for nuclides specified in the first two columns. The variants (4)—(D) of the calculation of
Ty are described in text. The variants (E) and (F) of the calculation of T, correspond to Eq. (4) and (5),

respectively
VA N log Tse(¥) log T,(y) Q,(MeV)
i
(4) (B) i (€) D) (E) (F)
108 180 —3.7 2.5 8.0 9.5
182 1.9 9.8 14.7 17.0
184 8.8 18.6 23.0 28.7
186 1.6 9.9 14.8 18.0
188 —5.5 1.3 6.6 8.0
110 178 —3.7 3.5 9.3 10.5 0.1 1.7 7.05
180 2.7 10.3 16.2 18.0 4.5 6.4 6.19
182 8.3 16.5 21.3 25.0 7.3 9.3 5.72
184 15.0 24.8 29.0 36.7 9.5 11.6 5.39
186 8.5 17.0 21.5 27.0 0.3 2.0 7.00
112 176 —2.5 6.0 11.3 13.0 —4.2 —2.8 8.25
178 4.5 13.7 18.3 22.5 0.6 2.3 7.11
180 10.8 21.7 26.9 30.7 3.5 5.4 6.52
182 16.0 25.6 29.9 36.0 4.3 6.2 6.38
184 22.3 34.0 37.8 47.3 6.2 8.3 6.04
186 16.6 27.0 31.0 39.3 —1.9 —0.4 7.68
114 172 —8.0 —1.7 4.7 5.7
174 —0.7 9.6 17.5 17.3 —3.9 ~4.6 8.92
76 6.6 21.3 28.3 29.8 —18 —-0.3 7.81
178 13.3 32.8 39.0 43.5 12 3.0 7.13
180 19.0 39.3 44.8 49.7 0.9 2.6 7.20
182 24.0 45.3 50.0 57.5 1.6 34 7.05
184 29.8 55.0 59.3 69.6 3.4 5.2 6.70
186 24.9 48.6 53.3 62.7 —4.0 ~2.6 8.37
188 20.5 43.0 47.8 55.8 —~2.5 —1.0 8.00
116 174 —9.7 —54 0.5 1.5 —12.3 —11.5 11.37
176 —2.0 5.6 10.7 12.5 —11.5 —10.7 11.05
178 5.5 13.3 17.5 21.8 —10.9 —10.0 10.80
180 11.3 22.6 28.0 30.3 —11.2 -10.3 10.91
182 16.6 25.5 29.7 34.8 —10.9 -10.0 10.80
184 22.5 33.7 37.0 44.8 —10.0 -9.0 10.45
186 17.0 26.9 30.7 37.3 —14.2 ~13.5 12.19
118 178 —3.0 2.0 7.0 9.0 —12.3 —11.5 11.56
180 3.9 12.0 18.1 17.3 —12.6 —11.9 11.68
182 9.6 15.5 19.8 22.8 —12.3 —11.5 11.56
164 159 23.8 27.3 32.5 —11.4 —10.6 11.21
186 9.8 160 | 201 24.0 —153 -14.8 12.97



Table II (continued)

z N log Tye(y) log T,(y) 0,(MeV)
(4) (B) (Y] D) (E) (F)

120 180 —4.0 3.0 8.5 5.3 —13.9 | —134 12.52
182 1.0 4.6 10.6 113 —13.7 | —13.2 1241
184 8.5, 14.8 18.7 —129 | —123 12.04
186 0.5 4.0 9.7 113 —166 | —16.3 13.84

122 182 —4.0 ~1.0 2.5 0.3 —~15.1 | —14.8 13.32
184 0.6 5.0 8.3 7.3 —144 | —14.0 12.95
186 —4.2 —1.2 1.6 0.3 -179 | —17.8 14.80
188 -7 —6.0 —3.2 —4.7 —172 | —171 14.43

shell corrections and consequently higher fission barriers. Also the shape of our contour
lines corresponding to T, = const is different, especially for V> 184, from this of Refs
[9-11, 13]. This is due to the fact that we do not observe in our scheme the neutron shell
at N = 196 which is obtained in the scheme used in the papers [9-11, 13| (c¢f. Fig. 3).
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126
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718

774

110

172 776 780 84 188 N

Fig. 8. Map of the spontaneous fission (solid lines) and the alpha decay (dashed lines) half-lives

3.2, Discussion of various effects

In this section we will discuss mainly the sensitivity of the lifetimes on the pairing
strength G and the effect of the deformation dependence of the mass parameter on these
lifetimes. The effect of a change in the Nilsson scheme parameters on the half-lives was
discussed very recently by Gustafson [23].
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3.2.1. Sensitivity on the pairing interaction strength G

Fig. 9 presents the fission barrier of three nuclei obtained in two cases: one calculated
with G ~ S and the other with G = G(0) == const. It illustrates in what degree is the barrier
reduced when we use G increasing with deformation (as G ~ S) with respect to the barrier
calculated with G independent of deformation. The dependence of the strength & ~ .S

(S
I

A=292 : I~ Z=108 -

Potential energy [(MeV]

[ 02 04 06 08 €

Fig. 9. Fission barriers calculated with G ~ S (solid lines) and G = const (dashed lines) for three isotones with
N= 184

on the deformations ¢ and &, related by Eq. (12), is shown in Fig. 10. We see that for the
largest deformations & a 0.7, involved in the problem of the barrier penetration of the
nuclei considered, the corresponding increase in G is obout 9%,

The reduction of the mass parameter B (calculated at the point £ = 0.2, g, = 0.02 which
is close to the saddle points of the considered nuclei), due to the increase in the pairing
strength G, is illustrated in Fig. 11 for a few nuclei. Each curve 1s drawn through three
points corresponding to 0%, 5% and 109, increase in G. We see that this reduction, although
different for different nuclei, is quite large. For example, the 5%, increase in G reduces B
by about (25-45)%. As a result, for most nuclei the reduction in B, due to an increase in G,
influencies the spontaneous fission lifetimes T stronger than the corresponding reduction
in the fission barrier.



548

5/6, T T T T T
710

T
i

108 |- .

1.06 -

702 - n

1.00 - E

U S NS SR SR SUDU B B
r n2 04 06 0.8 €

Fig. 10, The dependence of the strength G ~ S on the deformation. The quantity G, denotes the value of G
at zero deformation

8/80 [ (A D S D R S D R R B |

N =784
1+

7.0
09
08 -
0.7 - -

0.6 |-
Z2=120

=116
0.5+ .

Z-108
z=12

0.4

0.3 - ]

0.2

0.7+ -

0 PO NS AU SO N A [N TN N (N S G A ¢
100 7.05 10 6/6,

Fig. 11. The dependence of the mass parameter B on the pairing strength G for a few isotones with N = 184.
The quantity By denotes the value of B calculated at £== 0.2 and g;= 0.02
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3.2.2. Effect of the dependence of the mass parameter on the deformation

The dependence of the mass parameter B on the deformation is shown in Fig. 12 for
three isotones with N = 184. The parameter B is calculated in three variants:

(a) with G = G(0) = const i

(b) with G ~ S } and Q= ¢

(c) with G ~ S and Q = Q™.

The phenomenological value BPh*® = 0.054 453h%MeV-1 is also shown in Fig. 12
(denoted by (d)), for comparison.
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Fig. 12. Mass parameter B as a function of the deformation, calculated in four variants described in text, for
three isotones with N = 184. Variant (b) coincides with that of Fig. 7

The quantities Q"™ and Q™" correspond to different methods of the calculation of the
quadrupole moment of a nucleus. The quadrupole moment is needed for calculation of its
derivative appearing in the formula (3) for the mass parameter B.

The quantity Q" is the quadrupole moment of an axially symmetric ellipsoid with
a uniform distribution of mass. The formula for it is (¢f. e.g. Ref. [16])

unif] 2 2 c¢2—a? = 2
Qille) = 5 AR}~ = 0.8 AREF() (13)
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with

12 al
38 1+3£

1 2 3 1 1
=05(1— —¢&— — & - —
F(e) 05( 3¢ 276) ( 5 )2 ( h )2
In Eq. (13) ¢ is the semi-axis of the ellipsoid measured along the symmetry axis and o
the semi-axis along perpendicular direction. The radius of the non-deformed nucleus
Ry =1y AY3 with ry = 1.2 fm has been taken in the calculation.
The formula for the microscopic value of the quadrupole moment Q™ is

Qmicr — Qg\icr + Qmicr (14)

with
Qpimy = 23 9w 20},
vp(n)

The index p corresponds to protons and n to neutrons.

It is seen in Fig. 12 that the use of G ~ Sinstead of G = const decreases B very strongly.
For the deformation ¢ = 0.7, the decrease is about 509, which is in line with the results of
Fig. 11. This stresses once more the strong sensitivity of the mass parameter B on the pairing
strength G and its dependence on deformation. The consistent use of Q™ in the microscopic
calculation of B, instead of Q"™ used up to now [9, 11, 16], leads also, as a rule, to a decrease
in B. It is seen that the mean value (obtained by averaging over deformations involved in the
barrier penetration) of such B™ is quite close to the phenomenological value BPP" (¢f. espe-
cially the nuclei with Z = 116 and 120 in Fig. 12). This is the reason why we have used BPhe"
in the calculation of T presented in Fig. 8 and why we consider these values of T the
most realistic of the four varlants gives in Table II.

Table II presents logacithms of the spontaneous fission Ty and alpha decay T, half-
lives, both in years, and the alpha decay energies Q, in MeV.

The half-lives T are caleulated in the four vaciants:

(4) G~ S, B = Bphen, E,= 0.5 MeV
(B) G~ S, B = B(e) with Q"if, E, = 0.5MeV
(€) G~ S, B = B(e) with QUi E,=0

(D) G = G(0) = const, B = B(e) with QUnif, E, = 0.5 MeV.

In other words: in the first three cases we use G ~ S and in the last one G = const.
In the last three cases we use B dependent on deformation and calculated with the quadrupole
moment Q", and in the first case we use B = BPM" — const (g). At last, the zero-point
energy Fy is 0.5 MeV in all cases excluding only the third case, where it is zero.

Comparing variants (B) and (D), we see that the use of G ~ S instead of G = const
decreases T very strongly (up to about 14 orderss for nuclei with the largest Ty). The rather
small differences in the barriers of the two variants (¢f. Fig. 9) give a relatively small contribu-
tion to this effect. The main contribution follows from the large differences in B (¢f. variants

(a) and (b) in Fig. 12).
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The effect of the zero-point energy on Ty is illustrated by comparison of variants (B)
and (C). It is seen that the increase of the zero-point energy for 0.5 MeV decreases T,; by
a few orders. This illustrates the importance of the reliable estimation of this energy.

Variant (4) of the calculation gives the lowest values of T;. As already stated above,
we consider this variant the most realistic of the four variants presented in Table II.
However, contemplating the values T of this variant themselves, one should remember
that we use the pairing strength G (fitted to actinide region) lower by about 5%, than that
recomended in Ref. [9]. If we took G of Ref. [9] the Ty values would be still lower by a few
orders.

The large sensitivity of T on the strength G (mainly via the mass parameter B} is one
of the main points we tried to illustrate in the present paper.

The alpha lifetimes are calculated in two variants: one () corresponding to Eq. (4) and
the other (F) to Eq. (5). It is seen that the lifetimes (E) are shorter for all nuclei (by up to
two orders) than the lifetimes (). They are presented graphically in Fig. 8.
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