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By considering the Riemann space of the general relativity theory as a space imbedded in
a pseudo-Euclidean space E (1, 9), new formalism may be constructed which allows to sclve
satisfactorily the energy-momentum complex problem of the geneal relativity theory and other
interesting problems.

1L

It is known that the energy-momentum complex T} of the general relatiyity theory
must fulfil following conditions:

1. Ti is an affinite tensor density depending algebraically on the gravitational field
variables and their derivatives and moreover, it satisfies the divergence condition:

. OT":
Thi = ——F =0. (1.1

oat

2. For a closed svstem in an asymptotically flat space-time, the quantities

P, = i f f / Ty dx2da (1.2)

xt = const.
aquire values which do nqt depend on time and transform as the covariant components of
a 4-vector under the linear transformations of the space-time coordinates.

3. The four quantities T%* = T§ transform as the 4-vector density under the space
transformation of the following form

X8 = f3(xb), “at = 2t (a, b, = 1, 2, 3). (1.3)

These conditions should be fulfilled in order for the energy of the gravitational field to be
localised.

Different energy-momentum tensor densities of the gravitational field have been given
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by Einstein [1], Meller [2] and by Landau and Lifshitz [3]. But those tensor densities do not
fulfil all of the above mentioned conditions.

For example, the tensor density of Einstein fulfils only the first two conditions and
Moller’s complex fulfils in general only conditions 1 and 3.

By analysing these difficulties, Meller has shown [4] that the energy-momentum
complex T} fulfils all of the above mentioned conditions if and only if the Lagrangian &
of the gravitational field satisfies the two following conditions:

a) & depends algebraically on the field variables and their derivatives and moreover
is a homogenous quadratic function of the latter.

b) &Z is a true scalar density under arbitrary transformation of the space-time coordi-
nates.

If we consider the components of the metric tensor as field variables, no such a simple
Lagrangian can exist. However, as mentioned by Moller [5} such a Lagrangian exist if the
tetrad formalism of the general relativity theory is used, in which one uses the tetrad quanti-
ties h¢; instead of the metric tensor g for constructing the metric tensor.

By using this formalism, Meller constructed the energy-momentum complex 7} satis-
fying the three conditions 1, 2 and 3; but in his theory a new difficulty arises. To overcome
this dificulty, Moller introduced additional conditions to the field equations and these

conditions are not unique.
2.

In this part, following the point of view of Levi-Civita, we imbedd isometrically
the Riemann space of the general relativity theory into a pseudo-Euclidean space.

Friedman [6] has proved that one may imbedd analytically and isometrically an arbitrary
riemannian manifold V, (p,q) with the analytical metric into a pseudo-Euclidean space
E,(r, s) where m =14 n(n-+1) and the two integral numbers r, s satisfy the conditions r > p,
s 2 q.

The Riemann space of the general relativity theory is of Vy(1, 3) type and therefore,
in general, the pseudo-Euclidean space is of Ej4(1,9) type.

Let g, be the metric tensor of the pseudo-Euclidean space with the following signature

§oo = —z‘;’u == "§99 =1
§m =0 if uv (2.1)
we assume that the Riemann space ¥,(1, 3) is given by ten following equations
2 = ()
i1==0,1,2,3 (2.2)

from which we obtain the metric tensor of the Riemann space

Y
g;k=g,‘y~é)f;-~§£,;. 2.3)

Let g* be the inverse of g, that is
g kgkj = 6;
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Let us define
"
= %é—
= gﬂvh’;
R = g*hE
B = g*h,,.
we obtain
Kby = 6,
R%h2 = &%
RHipk — git
and
hihi = g

It is easily seen that the metric tensor g is invariant under generalized Lorentz trans-
formations in E(1, 9):

B — QU @2.4)

where % are the transformations parameters which do not depend on the coordinates.
As is well known, in the tetrad formalism (4) g, is invariant under local Lorentz-
-rotations of the form
he - wl(x) R
a,b=0,1,2,3, 2.5)
where w§(x) are the rotations parameters depending on the local coordinates .
This is the fundamental difference between ocurs and Msgller’s tetrad formalism.
Let & and £, be the Lagrangian of the gravitational field and of the matter respecti-
vely. They are functions of A and of the derivatives of the latter.
The variational principle
6f (Z+Z)dx =0
yields the following field equations
0L  6%m
&h; Sh;

0

Let us denote
8L (m) i
Sh! T 77
or
Oh%

I =g,
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The field equations become

0L
ok}

By v =—Sk. (2.6)

Clearly we can write expressions for €} as follows

gi - _9_9_?(,,,) _ 93(,,,)
LT od 9y on -

Our main problem is to find the gravitational field Lagrangian & which satisfies the two
conditions a) and b) mentioned at § 1.
In this formalism, the scalar curvature R may be written in the following form

R=G+W; 2.7
where W' is a vector density and G has the following form
6 =V =gy —0,0, 238)
where

— [ —
Vi = hm'hj;k == Vjir

@, =y, (2.9)

we can now choose the Lagrangian density % of the gravitational field as follows:
L= 1 G (2.10
=5-C. .10)

It is clear that this Lagrangian is analogous to Msller’s [4]. Using this Lagrangian we
obtain the following field equations:

0% OR g~

oht 08" SR

=—Gyhug+hug™)

or

£ i
/ll}: 6— =—2 Ck
oh
and therefore
G, = %} 2.11)
which is simply Einstein’s equation.
The Einstein energy-momentum complex becomes:
T = %46
where

&%

m

oy

0 = 0L
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From the condition that & is a true scalar density, i.e. from
(hﬁ‘-é—%) _ 2 hi;=0
Ok » OHY
we can deduce that the energy-momentum complex T} satisfies all the above mentioned
conditions 1, 2 and 3 at §l.

A specific feature of this formalism is that the Lagrangian % defined by (2.7) and by
(2.8) as well as T% and the field equations (2.11) are invariant under the generalized Lorentz-
-rotation (2.4).

Therefore it is possible that we may not need to add additional conditions to the
field equations.

In the tetrad formalism the Lagrangian & is only invariant under local Lorentz-rotations
with the constant rotation parameters depending on the coordinates at each point. Such
Lorentz-rotations do not exist in our formalism.

3.

Let us now examine the relations between g; and A¥. In the case of a weak gravita-
tional field

8 = B+ M%) 3.1)

where 7,, (x) are small. On performing, if necessary, a coordinate transformation, we may
choose

1
W= 8 + 5 ). (32)

In Meller’s tetrad formalism, we obtain relations analogous to (3.2), only if the coordinate
system is harmonic. Equations (2.2) defining Vy(1, 3) should then have the following form:
FH) = LA() +&4(+) 3.3)
where L#(«) are linear functions of %' and e“(:\f) are small differentiable functions.
Geometrically, the functions f#(x’) differ from the equations of a four-dimensional
hyperplane by very small quantities.
In the case when the Riemann space V(1, 3) is of Friedmann’s type with the metric
given by
do® = A(s)(c?dt® —dr?) (3.4)

s = V%212,
the equations (2.2) are simply the parameter equations of a four-dimensional sphere in
E;4(1,9). Hence we may easily define the quantities A%,

It is well known that in this case, such a pseudo-Euclidean space needs to have
only five dimensions.

Instead of equations (2.2) we have the following equation defining the Friedmann space:
Al ad—ad = a2 (35)

Hence, quantities A7 are defined uniquely.

where
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As the mext case, let us study the Schwarzchild metric

2
da?= (cz-— 2km km) dt?—r? (sin2 6dg?+-do%— _dr_
r 1— 2 I;m 3.6)
cr

we obtain

ht =V g;dk. 3.7
Let us finally study the conditions at infinity:

(=]
8ir = Bix
we have then

) ~ L)
where L*(x") are linear functions.
4.

The problem of spinor equations in the gravitational fields has been studied by
many authors [7], [8] and [9] by medns of the tetrad formalism.

We shall now present spinor equation in our formalism. Some of the results are presented
in {10]. There are two methods of establishing the spinor equations in the gravitational
field. One of these has been developed by Arbuzov and Filippov [11] in analogy with Ivanenko-
-Fock method [7], we shall present here the other method.

Let 9 be a spinor in the tangent space of Vy(1, 3) we assume that there exists at any
point a spinor @ induced by y and connected with g by the following relation

yp=2Sp (4.1)
where S is a matrix called the inducing matrix.
From the relation between the vector of the tangent space and its inducing vector

h:‘ Vu =1
we infer that
d 3
fist =S(a? —G,-) 9 4.2)
where
oS
Som o G-1 92
Gi=—5 dxf
with S-1 defined by
SS-1=1,

It is easily seen that the operator
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is the covariant derivative of a spinor in Vy(1, 3). We call G; the spinor connexion. We
shall now study its properties. Let I'* be the Dirac matrices in Ey(1, 9):

rerryrre=2g” 4.3)
and y' be the Dirac matrices in Vy(1, 3)
Yy = 28%, 449
We can easily see that
I, = Sy, S1
or
I, = hSyS1
from which we have

_ 9k @ ug e
0= 97 mh,W(II,S/S )

or

ohy ; 951 BN
h“ak+ Tk VY o SRS o ¥ =0

and therefore, we obtain

Ii is easily seen that
we finally obtain the following equations:
oy .
% T Ty +yiGr—Cryf = 0 (4.6)

which allow to define G,.
We can easily find that the quantities

1 ok} .
Gk':—zgab [é) z F.i] S%tag- L

are the solutions of (4.6), where S% = 1 (y*»* —3%°) and a* are arbitrary constants.

Let us now study the transformation properties of G, under the transformations of the
space-time coordinates.

Let us assume the following spinor transformations

p=2y
‘@ = op.
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Therefore
’w — ’S’¢ p— ESQJ
hence
’S = XS
which gives us
&S 92l &S dxt &o-?
O BT % KA I A v AP |
T TR o’ tia® gE
we have finally
G o ,, o .
rp = —9,7,; O'G,'O'_ -+ W 080 \4‘7)
where we have denoted
do1
[ == D 1; —— .
& 5 &
5.

To conclude we suggest that our formalism may be useful in studying some problems
of the general relativity theory.

On the basis of above results we can conclude that this formalism can enable us to
construct satisfactorily the energy-momentum complex to fulfil all conditions of § I.
Moreover the connexion between the metric tensor g and the A¥ quantities has been
found correctly.

Finally, the spinor equations in the gravitational field may be established in a simple
way with the aid of this formalism.
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