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A DYNAMICAL QUARK MODEL OF MESONS

By F. Kajzar anp J. Rayskr

Institute of Physics, Jagellonian University, Cracow*
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A dynamical quark model of mesons based on the principle of a temperate interaction
enabling the application of the Tamm-Dancoff method combined with a suitable cut-off is presen-
ted. The main result is that it is not at all necessary to assume an unreasonably high value of the
coupling constant in order to obtain a very large mass defect of the bound quark-antiquark
system.

1. Introduction

Our dynamical quark model of mesons is based on the Principle of Temperate Action.
[t is assumed that the Lagrangian of interaction is a function

L' = L'(a) ey
of the argument
a = gy @

which is either bounded or, at least, does not increase too rapidly if its argument a tends
to infinity, e. g.
1
L'=a(1+Aa®) % a > e (3)
The quantum field theory with such (or similar) temperate interaction is free of the usual
convergence difficulties [1].

The method of computations with such complicated Lagragians consists-in the follow-
ing: it is possible to expand the Lagrangian into a power series in terms of the parameter 4
and to curtail the series after a few terms if the field is sufficiently weak. This, however, is
a condition upon the state vector. The state represents a weak field if it is a superposition
of eigenstates of a small number of particles with comparatively small momenta (in the
centre of mass system). Thus in the first order of approximation we may consider only the
first term of the expansion of (3)

L' = igyyspe (3)
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but, at the same time, we have to consider the smallest possible number of particles and
a suitable cut-off dependent upon A. Thus, the method of approximations is a combination
of the Tamm-Dancoff method [2] (further quoted as T. D.) with a suitable cut-off which
compensates for the neglection of higher non-linear terms in (3).

Let the field p denote the quark field quantity and ¢ the pseudoscalar meson field
quantity. In our case it is fundamentally impossible to distinguish the dressed pseudo-
scalar meson from the lowest bound state of a quark-antiquark pair. In order to satisfy this
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Fig. 1

requirement we assume that the meson bare mass is twice as large as the bare mass of the
quark. The dressed mass of the meson is described in the first order approximation by the
graph presented in Fig. 1 which is indistinguishable from the graph (Fig. 2) representing

>__Q__.... —O-=<

Fig. 2
the energy of the bound state of the pair inasmuch as these graphs represent in-
finite chains without a beginning and an end (and could be supplemented by dotts to both
sides from the right and left). The lowest state represents pseudoscalar mesons whereas

Fig. 3

other mesons are identified with excited bound states of the quark-antiquark system describ-
able by more complicated graphs (e. g. Fig. 3).

It is assumed that the coupling constant G should be of the same order of magnitude
as the ordinary nuclear forces coupling constant (i. e. not much different from 4). Thus,
we are left with two free parameters: the quark mass m and the cut-off K, or rather their
ratio. Assuming a reasonable ratio Kjm ~ 1 (see e. g. [3]) the self energy of the quark is
shown to be quite a small fraction of its bare mass so that we do not need to distinguish
between the bare and dressed mass of a free quark. On the other hand, it is shown that
{even with the assumed comparatively small value of the coupling constant) quark-anti-
quark pairs form strongly bound systems with an arbitrarily large mass defect.

The SU (3) symmetry is broken by assuming the A-quark to be 1.21 times heavier than
the remaining two quark (cf. [4]) which vields a correct mass splitting within the pseudo-
scalar meson octet.
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2. Self mass of the quark

In the lowest T. D. approximation the self energy of a quark is represented as an in-
finite chain of the graphs (Fig. 4).
We solve the equation

H|> = Eg|> )
with
H=Ho+H )
PN /’-\\\ ..
Fig. 4
where
H =ig: [ pypedix: (4"
where the ket | > is a superposition of one-quark and one-quark plus one-meson states
| > = 2] ek, >+ 3 blkey, P)L,, 1,> ()
ey kes,p

where |1, > is the amplitude of the one-quark state with momentum k, and (1, .1, >
is the amplitude of one-quark plus one-meson state with momenta k,, P respectively (the
spin indices have been suppressed). From (4) and (5) one gets

[Ey—o(ky)] a(ky) =kZ b(key, p) <14 H'I1y, 15> (6)
and
[Ey—w(k,) —w'(p)] bk, p) = %} a(ky) <1, L, JH'(1,> (6"

whence in the system of rest one gets the following non-linear formula for £
1
Eo_m:‘z'(Z"Z)X
st Lt

L H LY A L 1y
% f o - (K @

where it was averaged over the initial spins and summed over the final spins.
A straighforward computation yields

K [
me 8| e , 2
E, m_4@mgj@dkj?m@mhx
0 0

X [(Bo—(k?+p?)t — (k2 -+ m?)} (k* +m?) (B2 +p2)i] = ®
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Assuming the meson mass 10 be twice the quark mass we compute {8) as a function of
s == K/m under the assumption

(@) Eg<m
({) Eg~m
It appears that (i) is inconsistent with the assumption s ~ 1 and G < 10 whereas from
the assumption (i) we get for s == 0.91 and g% = 136 (G® = g?%4x = 10.8) a consistent

result Ey = 0.972 m. This means that the dressed mass of the quark differs very little
from its bare mass and we do not need to distinguish between them.

3. Energy of the bound quark-antiquark system

Assuming the same Hamiltonian (4') and the state vector

> =2 aP)ly+ 3] blky, ko), 1) ©)

F 4 Feys ks

where k, denotes the momentum of the antiquark, the problem reduces to the evaluation
of the terms corresponding to the graphs represented by Fig. 1 or Fig. 2. This yields the
following equation for the energy Fy

Ey—2m =Y [ d®kQJH'|L, 51 , >X

5

X< g3 Ll 1) (Ey—200(K))~ (10)

which may be developed in powers of E/m for small Ej. This equation has to be generalized
s0 as to accomodate the unitary spin [5].

H' = ig"{jyswoj (11)

where

0, =a +at 0, = —i{at—n")

0, = |/ 0, = K+ + K-

0, = —i(K+—K) 05 = KoK

0, = —i(K*—K?°) 05 =}29 (12)
or, in units of the mass m of the non-strange quark

_ B, & T8 —
o=t =22 In(s + J1+s3 i (13)

where s = K/m.
Denoting the mass of he strange quark by M we get similarly

27 2.2 1 e
@y = E;L =2 — gﬂ:; [ln (% +1/1 +%) - 7‘5_8;_2] (14)
7 Y = S +Q

where g = M/m.
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Similarly for bound states of non-strange quark with a strange antiquark one gets

_ Bt g 21,392 2

— VT2 252 —1—20)] +6* (0 +2) In (i +1/1 + Z-Z) — (1420 Ir (s+ V1+32))}

g

(15)
and the same for the energy of a system composed of a strange quark with a non-strange
antiquark.

a3

In the above formulae there appear three parameters g, g and s.The coupling constant g
may be eliminated by considering the ratios

2—oy _2—a
G and k, = T o,

ky = (16)

In order to get agreement with experimental evidence the quantities %, and %, must
beky >k, >1lands <g. In particular, assuming for example g = 1.21, s = 0.91 we get
k, = 1.032, k&, = 1.019 whence

oy = 0.0154, &, = 0.075, a; = 0.053 (17)

Introducing the above values into (13) we get for the coupling constant the numerical
result
g2 =136 G?2=g%4n =108 (18)

of the same order of magnitude as is the ordinary nuclear forces coupling constant.
The ratios of the masses are

¢4 :E—gp—:-—”- o :Egi': MK
1 m m 3 m m
MR _ % _ 344
My Oy )
g_ 1 N2 9f FAR2 m? s
mi=7 [(Egp)? + 2(EW?] = 5 (x24-2a2)

whence

[ e

The experimental values are respectively

(m_K) —35 (f’ﬁ_) = 3.93.
My | exp My [ exp

The mass of the non-strange quark is

m="" — 65 m, = 9.1 GeV.
Qg
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and that of the strange quark is
M =121 m = 80m, = 11 GeV

Thus, it is possible to choose the parameters so as to obtain reasonable values for the coupling
constant and the masses of the quarks as well as a correct mass splitting within the pseudo-
scalar meson octet.

4. The meson exchange forces

Inasmuch as the quark-quark interaction is described by a different type of graphs
(Fig. 5) it was not clear whether it is attractive or repulsive. Therefore we estimated also
the energy corresponding to this graph and found that it cannot yield bound two-quark
systems. It follows thai a similar graph will contribute to the binding of the quark-antiquark
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Fig. 5

system. However, inasmuch as now 3-particle states come into play, we have to go to a higher
T. D. approximation so that this contribution may be regarded to be only a correction to
the main term represented by Fig. 1 or Fig. 2. By taking this correction into account the
value of g may be still diminished.

5. Discussion

The above described model in the lowest T. D. approximation is very similar to the
Lee model [6]. Putting the bare meson mass equal to two quark masses we limit ourselves
to a case intermediate between stable and unstable states of exchanged particle in this model.
This is first reason why the bare mass of meson is so large.

The second reason is that, if we consider the exchange of a light physical particle (for
example the pion) and we want to preserve the weak interaction — we must cut the momentum
of quark at a lower value (in fact any physical particle is built from moving quarks) than
for an exchange of a heavy boson without internal structure. In case of 7z meson exchange
the formula (8) reads

2

g* s
E, = m{l— 182 [s—arctg s+§-]/1—l—s2 +

+1n (1+s2)— 3; — %m (s+)1+s? ]} (19)

which, for cut-off at s = 0.4 yields
E;=0.968m
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The effect is of the same order of magnitude as ror the exchange of a heavy boson (¢f. chapter2)
with the same coupling constant (in fact the coupling constant for the exchange of a physical
particle composed from moving quarks would be less than that for the exchange of a heavy
boson without internal structure because of the vacuum polarization).

We note here the recently issued paper by Nitti and Pusterla [7] with the hamiltonian
interaction term of a vector form. The authors used the Padé approximation and obtained
very similar results to ours, namely

2>100, wu=16=18m, m=10GeV.

xq
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